1984年高考数学全国卷(理科)最难高考题

合集下载

近十年高考数学试题难度分析——基于全国理科卷(2010—2019)

近十年高考数学试题难度分析——基于全国理科卷(2010—2019)

[摘要]难度分析对于保证试题的信效度及区分度具有重要的理论意义。

纵向分析比较高考试题的难度,可以总结经验教训,提升测评技术。

运用武小鹏的综合难度系数模型对2010年到2019年10年间的全国高考数学理科卷试题难度进行编码和统计分析,发现:十年来试卷的综合难度上下波动且起伏较大;运算水平、推理能力、知识含量的难度相对稳定;而背景因素、是否含参、思维方向、认知水平各年的难度变化相对较大;各年试卷难度分布基本服从正态分布。

基于已有数据对2020年的试卷进行预测,为试题命制和复习备考提供参考。

[关键词]高考;数学试题;难度;综合难度系数模型[中图分类号]G633.6[文献标志码]A[文章编号]2096-0603(2020)10-0029-03近十年高考数学试题难度分析①———基于全国理科卷(2010—2019)姚月卓,谢圣英(湖南师范大学数学与统计学院计算与随机数学教育部重点实验室,湖南长沙410081)一、问题提出高考,即普通高等学校招生全国统一考试。

近年来,参加高考的人数逐年增加。

2019年,考生人数更是达到1035万。

高考作为中国最高规格的教育选拔机制,其分析和评价也是教育领域研究的重中之重。

相关学者数不胜数,各类研究浩如烟海。

综观已有研究,时间跨度大的纵向比较研究相对缺乏。

我们迫切需要纵观近些年来的难度变化,从全局来比较高考数学试题的情况,以总结命题经验教训和预测未来难度走向,为一线教师的教学侧重点提供参考意见。

本文对2010年到2019年全国高考理科卷的难度进行纵向分析研究,以期帮助一线教师把握高考的考查规律和变化趋势,同时,为研究者提高命题质量,优化试卷结构提供参考。

二、研究内容(一)研究对象2010年新课标卷I 卷、II 卷,2011—2015年全国高考数学理科I 卷、II 卷,2016—2019年全国高考数学理科I 卷、II 卷和Ⅲ卷(2015年之后Ⅲ卷开始命制)。

(二)研究方法考虑到传统的难度模型主要是针对教材习题,与以选拔性为目的的高考有些不匹配,基于试题编码的可操作性、考查题型的全面性等因素的综合考量,本文采用武小鹏的综合难度系数模型对近十年高考题目进行分析[1],该模型是在鲍建生的难度模型的基础上针对高考试题改编的难度模型。

1983年高考数学全国卷(理科)及其参考答案

1983年高考数学全国卷(理科)及其参考答案

1981年高考数学全国卷(理科)及其参考答案(这份试题共九道大题,满分120分)一.(本题满分10分)本题共有5小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的把正确结论的代号写在题后的圆括号内每一个小题:选对的得2分;不选,选错或者选出的代号超过一个的(不论是否都写在圆括号内),一律得0分1.两条异面直线,指的是 ( D ) (A )在空间内不相交的两条直线(B )分别位于两个不同平面内的两条直线(C )某一平面内的一条直线和这个平面外的一条直线(D )不在同一平面内的两条直线2.方程x 2-y 2=0表示的图形是 ( A ) (A )两条相交直线 (B )两条平行直线 (C )两条重合直线 (D )一个点3.三个数a ,b ,c 不全为零的充要条件是 ( D ) (A )a ,b ,c 都不是零 (B )a ,b ,c 中最多有一个是零 (C )a ,b ,c 中只有一个是零(D )a ,b ,c 中至少有一个不是零4.设,34π=α则)arccos(cos α的值是 ( C ) (A )34π (B )32π- (C )32π (D )3π5.3.0222,3.0log ,3.0这三个数之间的大小顺序是 ( C ) (A )3.0log 23.023.02<< (B )3.02223.0log 3.0<< (C )3.02223.03.0log << (D )23.023.023.0log <<二.(本题满分12分)1.在同一平面直角坐标系内,分别画出两个方程,x y -=y x -=的图形,并写出它们交点的坐标2.在极坐标系内,方程θ=ρcos 5表示什么曲线?画出它的图形解:1.图形如左图所示 交点坐标是:O (0,0),P (1,-1) 2.曲线名称是:圆图形如右所示三.(本题满分12分) 1.已知x e y x 2sin -=,求微分dy2.一个小组共有10名同学,其中4名是女同学,6名是男同学小组内选出3名代表,其中至少有1名女同学,求一共有多少种选法解:1.dx x e x e dx x e dy x x x ]2sin )()2(sin [)2sin ('+'='=---.)2sin 2cos 2()2sin 2cos 2(dx x x e dx x e x e x x x -=-=---2.)(1003416242614种=+⋅+⋅C C C C C 或:)(1002012036310种=-=-C C四.(本题满分12分) 计算行列式(要求结果最简):PXβϕ-ββαϕ+ααsin )sin(cos cos )cos(sin解:把第一列乘以ϕsin 加到第2列上,再把第三列乘以)cos (ϕ-加到第2列上,得0cos 0sin sin 0cos cos 0sin cos 2cos 2cos sin sin )sin()sin(cos cos )cos()cos(sin =ϕϕββαα=ϕϕ-ϕϕβϕ-β-ϕ-ββαϕ+α-ϕ+αα=原式 五.(本题满分15分)1.证明:对于任意实数t ,复数i t t z |sin ||cos |+=的模||z r = 适合≤r 2.当实数t 取什么值时,复数i t t z |sin ||cos |+=的幅角主值θ适合40π≤θ≤? 1.证:复数i t t z |sin ||cos |+=(其中t 是实数)的模||z r =为.|sin ||cos |)|sin |()|cos |(22t t t t r +=+=要证对任意实数t ,有42≤r ,只要证对任意实数t ,2|sin ||cos |≤+t t 成立对任意实数t ,因为1|sin ||cos |22=+t t ,所以可令|,sin |sin |,cos |cos t t =ϕ=ϕ且)2,0(π∈ϕ,于是.2)4sin(2sin cos |sin ||cos |≤π+ϕ=ϕ+ϕ=+t t2.因为复数i t t z |sin ||cos |+=的实部与虚部都是非负数,所以z 的幅角主值θ一定适合20≤θ≤从而.1040≤θ≤⇔π≤θ≤tg 显然||≠=z r 因为.111||010,|||cos ||sin |≤≤-⇔≤θ≤⇔≤θ≤==θtgt tg tg tgt t t tg 所以由于).(4411,,22为任意整数的解是因此并且它的周期是内是增函数在k k t k tgt t tgt y π+π≤≤π-π≤≤-ππ<<π-=这就是所求的实数t 的取值范围六.(本题满分15分)如图,在三棱锥S-ABC 中,S 在底面上的射影N 位于底面的高CD 上;M 是侧棱SC 上的一点,使截面MAB 与底面所成的角等 于∠NSC ,求证SC 垂直于截面MAB证:因为SN 是底面的垂线,NC 是斜线SC 在底面上的射影,AB ⊥NC ,所以AB ⊥SC (三垂线定理) 连结DM 因为AB ⊥DC ,AB ⊥SC ,所以AB 垂直于DC 和SC 所决定的平面又因DM 在这个平面内,所以AB ⊥DM∴∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NSC在△MDC 和△NSC 中,因为∠MDC=∠NSC ,∠DCS 是公共角, 所以∠DMC=∠SNC=900从而DM ⊥SC 从AB ⊥SC ,DM ⊥SC ,可知SC ⊥截面MAB七.(本题满分16分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=24,过椭圆焦点F 1作一直线,交椭圆于两点M ,N 设∠F 2F 1M=α(0≤α<π)当α取什么值时,|MN|等于椭圆短轴的长?SM P C A N D B解一:以椭圆焦点F 1为极点,以F 1为起点并过F 2的射线为极轴建立极坐标系由已知条件可知椭圆长半轴a=3,半焦距c=22,短半轴b=1,离心率e=322,中心到准线距离=429, 焦点到准线距离p=42.椭圆的极坐标方程为 θ-=θ-=ρcos 2231cos 1e ep.2cos 896||,cos 2231||.cos 2231||2212211=α-=ρ+ρ=α+=ρ=α-=ρ=∴MN N F M F解得.656.22cos π=απ=α∴±=α或 以上解方程过程中的每一步都是可逆的, 所以当6π=α或65π=α时,|MN|等于短轴的长解二:以椭圆的中心为原点,F 1F 2所在直线为x 轴建立直角坐标系(如图)由已知条件知,椭圆的方程为.1922=+y xMN 所在直线方程为)()22(α=+=tg k x k y 其中解方程组⎪⎩⎪⎨⎧+==+)22(1922x k y y x消去y 得0)18(9236)91(2222=-+++k x k x k .Xα+α+=++=++++=-+-=22222222222122191669166)91()1(36)1(36)()(||tg tg k k k k k k y y x x MN下同解法一解三:建立坐标系得椭圆如解二, MN 所在直线的参数方程为)(sin cos 22是参数t t y t x ⎩⎨⎧α=α+-=代入椭圆方程得 .01)cos 24()sin 9(cos 222=-α-α+αt t设t 1,t 2是方程两根,则由韦达定理,.sin 9cos 64)(||||.sin 9cos 1,sin 9cos cos 2422212212122212221α+α=-+=-=α+α-=α+αα=+t t t t t t MN t t t t下同解一解四:设|F 1M|=x ,则|F 2M|=6-x |F 1F 2|=24,∠F 2F 1M=α在△MF 1F 2中由余弦定理得13cos 22,cos 28)24()6(222=+-αα-+=-x x x x xα-=cos 2231x同理,设|F 1N|=y ,则|F 2N|=6-y 在△F 1F 2N 中,由余弦定理得.cos 896cos 2231cos 2231||,cos 2231,1cos 223).cos(28)24()6(2222α-=α++α-=α+==α+α-π-+=-MN y y y y y y下同解一已知数列{a n }的首项a 1=b(b ≠0),它的前n 项的和S n =a 1+a 2+…+a n (n ≥1),并且S 1,S 2,S n ,…是一个等比数列,其公比为p (p ≠0且|p|<1)1.证明:a 2,a 3,a 3,…a n ,…(即{a n }从第二项起)是一个等比数列2.设W n =a 1S 1+a 2S 2+a 3S 3+…+a n S n (n ≥1),求n n W ∞→lim(用b,p 表示)1.证:由已知条件得S 1=a 1=b.S n =S 1p n-1=bp n-1(n ≥1)因为当n ≥2时,S n =a 1+a 2+…+a n-1+a n =S n-1+a n ,所以 a n =S n -S n-1=bp n-2(p-1)(n ≥2)从而),2()1()1(211≥=--=--+n p p bp p bp a a n n n n 因此a 2,a 3,a 3,…a n ,…是一个公比为p 的等比数列2.解:当n ≥2时,,)1()1(212111p bpp bp bp p bp S a S a n n n n n n n n =--=---++ 且由已知条件可知p 2<1,因此数列a 1S 1,a 2S 2,a 3S 3,…a n S n …是公比为p 2<1的无穷等比数列于是.11)1(1)(lim 2222223322p p b pp p b p S a S a S a S a n n n +-=--=-=+++∞→ 从而)(lim lim )(lim lim 332211332211n n n n n n n n n S a S a S a S a S a S a S a S a W ++++=++++=∞→∞→∞→∞→.11222pb p p b b +=+-=1.已知a,b 为实数,并且e<a<b ,其中e 是自然对数的底,证明a b >b a . 2.如果正实数a,b 满足a b =b a .且a<1,证明a=b1.证:当e<a<b 时, 要证a b >b a , 只要证blna>alnb,即只要证b ba a ln ln > 考虑函数0(ln +∞<<=x xxy 因为但e x >时, ,0ln 12<-='x x y 所以函数),(ln +∞=e x x y 在内是减函数因为e<a<b ,所以bba a ln ln >,即得ab >b a 2.证一:由a b =b a ,得blna=alnb ,从而bba a ln ln = 考虑函数)0(ln +∞<<=x xxy ,它的导数是 .ln 12x x y -='因为在(0,1)内0)(>'x f ,所以f(x)在(0,1)内是增函数由于0<a<1,b>0,所以a b <1,从而b a =a b <1.由b a <1及a>0,可推出b<1.由0<a<1,0<b<1,假如b a ≠,则根据f(x)在(0,1)内是增函数,得)()(b f a f ≠,即bba a ln ln ≠,从而ab b a ≠这与a b =b a 矛盾 所以a=b证二:因为0<a<1,a b =b a ,所以,log log b a a b a a =即aba log =假如a<b ,则1>ab,但因a<1,根据对数函数的性质,得b abb a b a b a a a a log ,log ,1log log =>=<这与从而矛盾所以a 不能小于b假如a>b ,则1<a b ,而1log >b a ,这也与b ab a log =矛盾所以a 不能大于b 因此a=b证三:假如a<b ,则可设ε+=a b ,其中ε>0由于0<a<1,ε>0,根据幂函数或指数函数的性质,得1<εa 和1)1(>ε+a a, 所以 ,)(,)1(,)1(a a a a a a a a aa a a a a ε+<ε+<ε+<ε+εε 即ab <b a .这与a b =b a 矛盾所以a 不能小于b假如b<a ,则b<a<1,可设a=b+ε,其中ε>0,同上可证得a b <b a .这于a b =b a 矛盾a 不能大于b因此a=b。

史上最难的1984全国高考理科数学试卷

史上最难的1984全国高考理科数学试卷
/ 10 编者说明 1984年的第二大题,含6个小题,比1983年的2个小题多出了4个,从而使整个试卷的题量比1983年多出了3道。题目很活,题量又大,多数考生在规定的时间不能完成解答,这也是1984年数学得分很低的原因之一。 答:.84或 2.函数)44(log25.0xx在什么区间上是增函数? 答:x<-2. 3.求方程21)cos(sin2xx的解集 答:},12|{},127|{ZnnxxZnnxx 4.求3)2||1|(|xx的展开式中的常数项 答:-20 5.求1321limnnn的值 答:0 6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算) 答:!647P 三.(本题满分12分)本题只要求画出图形 1.设,0,1,0,0)(xxxH当当画出函数y=H(x-1)的图象 2.画出极坐标方程)0(0)4)(2(的曲线 解(1) (2)
/ 10 编者说明 1984年的第六题,考查解析几何。第1小题将椭圆参数藏在复数方程的根中;第2小题求椭圆的轨迹方程,给出的“衍生轨迹”而不是“直接轨迹”。使得广大考生无模式可套。本题 解:1.因为p,q为实数,0p,z1,z2为虚数,所以 0,04)2(22pqqp 由z1,z2为共轭复数,知Z1,Z2关于x轴对称, 所以椭圆短轴在x轴上又由椭圆经过原点, 可知原点为椭圆短轴的一端点 根据椭圆的性质,复数加、减法几何意义及一元二次方程根与系数的关系,可得椭圆的 短轴长=2b=|z1+z2|=2|p|, 焦距离=2c=|z1-z2|=2212212|4)(|pqzzzz, 长轴长=2a=.2222qcb 2.因为椭圆经过点M(1,2),且以y轴为准线,所以椭圆在y轴右侧,长轴平行于x轴 设椭圆左顶点为A(x,y),因为椭圆的离心率为21, 所以左顶点A到左焦点F的距离为A到y轴的距离的21, 从而左焦点F的坐标为),23(yx 设d为点M到y轴的距离,则d=1 根据21||dMF及两点间距离公式,可得 1)2(4)32(9,)21()2()123(22222yxyx即 这就是所求的轨迹方程 七.(本题满分15分) 在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, 34coscosabBA,P为△ABC的内切圆上的动点求点P到顶点A,B,C的距离的平方和的最大值与最小值

2024年高考数学(理科)真题试卷(全国甲卷)

2024年高考数学(理科)真题试卷(全国甲卷)

2024年高考数学(理科)真题试卷(全国甲卷)1.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

若,则( )A.B.C.10D.2.已知集合,则( )A. B. C. D.3.若满足约束条件,则的最小值为( )A. B. C. D.4.记为等差数列的前项和,已知,,则( )A. B. C. D.5.已知双曲线的两个焦点分别为,点B.3( )A.4C.在该双曲线上,则该双曲线的离心率为2 D.6.设函数,则曲线在点积为( 处的切线与两坐标轴所围成的三角形的面) A. B. C. D.7.函数在区间的图象大致为( )A.B.C. D.8.已知,则( )A. B. C. D.9.设向量 A.,则( )“”是“”的必要条件B.“”是“ C.”的必要条件“”是“”的充分条件D.“”是“ 10.”的充分条件设为两个平面,为两条直线,且.下述四个命题:①若,则或②若,则或③若且,则 ④若与,所成的角相等,则 11. B.②④D.其中所有真命题的编号是( )A.①③C.①②③①③④在中,内角所对的边分别为,若,,则)(A. B. C.D.12.已知b是的等差中项,直线与圆交于两点,则B.2的最小值为( )A.1C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.14.的展开式中,各项系数中的最大值为_______________.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,15.,则圆台甲与乙的体积之比为_______________.已知且,则16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球._______________.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与之差的绝对值不大于三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150的概率为_______________.件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计9652215017.1.17.2.已知升级改造前该工厂产品的优级品率,设.为升级改造后抽取的n件产品的优级品率如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()附:0.0500.0100.001k3.8416.63510.82818.记为数列的前项和,已知18.1..求18.2.的通项公式;设,求数列的前项和19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF .均为等腰梯形,,,,为的中点.19.1.证明:平面19.2.;求二面角20.的正弦值.已知椭圆的右焦点为,点在上,且20.1.轴.求20.2.的方程;过点的直线交于两点,为线段的中点,直线交直线于点,证明:21.轴.已知函数21.1..当时,求21.2.的极值;当时,,求22.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.的取值范围.[选修4-4:坐标系与参数方程]在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为22.1..写出22.2.设直线l 的直角坐标方程;:(为参数),若与l相交于两点,若,求23..[选修4-5:不等式选讲]已知实数满足23.1..证明:;23.2.证明:参考答案1.A 解析:结合共轭复数与复数的基本运算直接求解..由,则故选:A2.D . 解析:由集合的定义求出,结合交集与补集运算即可求解.因为,所以,则,故选:D3.D 解析:画出可行域后,利用的几何意义计算即可得.实数满足,作出可行域如图:由可得,即的几何意义为的截距的,则该直线截距取最大值时,有最小值,此时直线过点,联立,解得,即,则故选:.D.4.B 解析:由结合等差中项的性质可得,即可计算出公差,即可得的值.由,则,则等差数列的公差,故故选:B.5.C 解析:.由焦点坐标可得焦距,结合双曲线定义计算可得由题意,,即可得离心率.设、、,则,,,则,则故选:C.6.A 解析:.借助导数的几何意义计算可得其在点其面积处的切线方程,即可得其与坐标轴的交点坐标,即可得.,则,即该切线方程为,即,令,则,令,则,故该切线与两坐标轴所围成的三角形面积故选:A.7.B 解析:利用函数的奇偶性可排除A、C .,代入可得,可排除D.,又函数定义域为,故该函数为偶函数,可排除A、C,又故可排除D.故选:B.8.B 解析:,先将弦化切求得,再根据两角和的正切公式即可求解.因为,所以,,所以对A 故选:B.9.C 解析:根据向量垂直和平行的坐标表示即可得到方程,解出即可,.,当时,则,所以,解得或对C ,即必要性不成立,故A错误;,当时,,故,所以对B ,即充分性成立,故C正确;,当时,则,解得对D ,即必要性不成立,故B错误;,当时,不满足,所以故选:C.10.A 解析:根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③不成立,即充分性不立,故D错误..对①,当,因为,,则,当,因为,,则,当既不在也不在内,因为,,则且,故①正确;对②,若,则与不一定垂直,故②错误;对③,过直线分别作两平面与分别相交于直线和直线,因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,同理可得,则,因为平面,平面,则平面,因为平面,,则,又因为,则,故③正确;对④,若与和所成的角相等,如果,则综上只有①③正确,故选:A.11.C 解析:,故④错误;利用正弦定理得,再利用余弦定理有,由正弦定理得到的值,最后代入计算即可.因为,则由正弦定理得由余弦定理可得.:即,:,根据正弦定理得,所以,因为为三角形内角,则,则故选:C.12.C 解析:.结合等差数列性质将代换,求出直线恒过的定点,采用数形结合法即可求解.因为成等差数列,所以,,代入直线方程得,即,令得,故直线恒过,设,圆化为标准方程得:,设圆心为,画出直线与圆的图形,由图可知,当时,最小,,此时.故选:C13.5 解析:先设展开式中第项系数最大,则根据通项公式有,进而求出可求解.即由题展开式通项公式为,且,设展开式中第项系数最大,则,,即,又,故,所以展开式中系数最大的项是第9项,且该项系数为故答案为:5..14.先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得 解析:解.由题可得两个圆台的高分别为,,所以.故答案为:15.64 解析:.将利用换底公式转化成来表示即可求解.由题,整理得,或,又,所以,故故答案为:64.16. 解析:根据排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就值分类讨论后可求随机事件的概率.从6个不同的球中不放回地抽取3的不同取次,共有种,设前两个球的号码为,第三个球的号码为,则,故,故,故,若,则,则为:,故有2种,若,则,则为:,,故有10种,当,则,则为:,故有16,种,当,则,同理有16种,当,则,同理有10种,当,则,同理有2种,共与的差的绝对值不超过时不同的抽取方法总数为,故所求概率为.故答案为:17.1.答案见详解 解析:略17.2.答案见详解 解析:由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为,用频率估计概率可得,又因为升级改造前该工厂产品的优级品率,则,可知所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了,.18.1. 解析:当时,,解得.当时,,所以即,而,故,故,∴数列是以4为首项,为公比的等比数列,所以.18.2. 解析:,所以故所以,.19.1.证明见详解; 解析:因为为的中点,所以,四边形为平行四边形,所以,又因为平面,平面,所以平面;19.2. 解析:如图所示,作交于,连接,因为四边形为等腰梯形,,所以结合(1,)为平行四边形,可得,又,所以为等边三角形,为中点,所以,又因为四边形为等腰梯形,为中点,所以,四边形为平行四边形,,所以为等腰三角形,与底边上中点重合,,,因为,所以,所以互相垂直,以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,,,,,设平面的法向量为,平面的法向量为,则,即,令,得,即,则,即,令,得,即,,则,故二面角的正弦值为.20.1. 解析:设,由题设有且,故,故,故,故椭圆方程为20.2.证明见解析. 解析:直线的斜率必定存在,设,,,由可得,故,故,又,而,故直线,故,所以,故,即21.1.轴.极小值为,无极大值. 解析:当时,,故,因为在上为增函数,故在上为增函数,而,故当时,,当时,,故在处取极小值且极小值为,无极大值. 21.2. 解析:,设,则,当时,,故在上为增函数,故,即,所以在上为增函数,故.当时,当时,,故在上为减函数,故在上,即在上即为减函数,故在上,不合题意,舍.当,此时在上恒成立,同理可得在上恒成立,不合题意,舍;综上,.22.1. 解析:由,将代入,故可得,两边平方后可得曲线的直角坐标方程为.22.2. 解析:对于直线的参数方程消去参数,得直线的普通方程为法1.:直线的斜率为,故倾斜角为,故直线的参数方程可设为,.将其代入中得设两点对应的参数分别为,则,且,故,,解得法2.:联立,得,,解得,设,,则,解得23.1.证明见解析 解析:因为,当时等号成立,则,因为,所以23.2.证明见解析;解析:。

历年全国卷高考数学真题大全解析版

历年全国卷高考数学真题大全解析版

全国卷历年高考真题汇编 三角1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是() A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x【解析】首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.【解析】πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,【解析】即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 【解析】2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 【解析】注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 【解析】根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π122 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC △的周长.【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用. 【解析】(1)∵ABC △面积23sin a S A=.且1sin 2S bc A =【解析】∴21sin 3sin 2a bc A A = 【解析】∴223sin 2a bc A =【解析】∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,sin A =1cos 2A =由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A=⋅ ∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为3+3. (2017·新课标全国Ⅱ卷理17)17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b 【命题意图】本题考查三角恒等变形,解三角形.【试题分析】在第(Ⅰ)中,利用三角形内角和定理可知A C B π+=-,将2sin 8)sin(2BC A =+转化为角B 的方程,思维方向有两个:①利用降幂公式化简2sin 2B,结合22sin cos 1B B +=求出cos B ;②利用二倍角公式,化简2sin 8sin 2B B =,两边约去2sin B ,求得2tan B ,进而求得B cos .在第(Ⅱ)中,利用(Ⅰ)中结论,利用勾股定理和面积公式求出a c ac +、,从而求出b . (Ⅰ) 【基本解法1】由题设及2sin8sin ,2BB C B A ==++π,故 上式两边平方,整理得 217cos B-32cosB+15=0解得 15cosB=cosB 171(舍去),= 【基本解法2】由题设及2sin8sin ,2B BC B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==又17=22ABC S ac ∆=,则由余弦定理及a 6c +=得 所以b=2【知识拓展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系,这样的题目小而活,备受老师和学生的欢迎. 4 (2017全国卷3理)17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =2b =. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形, 则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=,1πsin 26ABD S AD AB =⋅⋅=△5 (2017全国卷文1)14 已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。

【免费下载】1984年高考数学全国卷理科及其参考答案

【免费下载】1984年高考数学全国卷理科及其参考答案


0)
的曲线 新疆 王新敞
4
O1 2bຫໍສະໝຸດ γcαβ讨论方程 log(cx d
奎屯
新疆
王新敞
奎屯
X
a
x
)
x
四.(本题满 分 12 分) 已知三个平面 两两相交,有
2.若 c∥b,则 由
b ,有c // .又由c ,且 a

1 在什么情
3
x 0,
(cccxxxdxdxd
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2023年高考全国卷1理科数学难不难

2023年高考全国卷1理科数学难不难

2023年高考数学刚刚落幕,就有人反应,今年的全国1卷高考数学真的是太难了,第21道题改成了统计题,很多考生表示根本无从下手。

2023高考数学全国1卷试题分析高考数学终于结束了,走出考场的考生:#全国一卷数学#很难,#全国二卷数学#很难……总之,高考数学就是很难……你当年高考时数学是什么水平?理科Ⅰ卷第(15)题、理科Ⅱ卷第(18)题分别引入了非常普及的乒乓球和篮球运动,以其中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学方法分析、解决体育问题。

文科Ⅰ卷第(6)题设置了学校对学生体质状况进行调查的情境,考查学生的抽样调查知识。

这些试题在考查学生数学知识的同时,引导学生加强体育锻炼,体现了对学生的.体育教育。

结合学科知识,展示数学之美。

文、理科Ⅱ卷第(16)题融入了中国悠久的金石文化,赋以几何体真实背景,文、理科Ⅰ卷第(4)题以著名的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。

2023年的数学试题贯彻落实高考评价体系学科化的具体要求,突出学科素养导向,将理性思维作为重点目标,将基础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和逻辑推理能力。

固本强基,夯实发展基础。

试卷注重对高中基础内容的全面考查,集合、复数、常用逻辑用语、线性规划、平面向量、算法、二项式定理、排列组合等内容在选择题、填空题中得到了有效的考查。

在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。

在解答题中重点考查了函数、导数、三角函数、概率统计、数列、立体几何、直线与圆锥曲线等主干内容。

2023年的数学试题还注重考查数学应用素养,体现综合性和应用性的考查要求。

理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合试题,体现了中国古代的哲学思想。

(完整版)历年高考数学真题(全国卷整理版)

(完整版)历年高考数学真题(全国卷整理版)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .62.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为2 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________. 14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C=14,求C .19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x ya b(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A.3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x -(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D. 8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---.故12314PA PA k k =-. ∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BDCH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则=2AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 12CH , ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k (+),x 1x 2=4.①由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当t =.∴g (t )max ,即f (x )的最大值为9.故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示. ∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE =2R .又OK ⊥EK ,∴32=OE ·sin 60°=22R ⋅∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P ,故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG ,则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角.连结AG ,EG ,则EG ∥PB .又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A (,0,0),D (0,,0),C (,0),P (0,0).PC =(,),PD =(0,,).AP =,0),AD =,,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m+q=0,m-p=0.取m=1,得p=1,q=-1,故n2=(1,1,-1).于是cos〈n1,n2〉=1212||||3=-·n nn n.由于〈n1,n2〉等于二面角A-PD-C的平面角,所以二面角A-PD-C的大小为π-20.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1·A2.P(A)=P(A1·A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)·P(A3)=18,P(X=2)=P(1B·B3)=P(1B)P(B3)=14,P(X=1)=1-P(X=0)-P(X=2)=1151848--=,EX=0·P(X=0)+1·P(X=1)+2·P(X=2)=98.21.(1)解:由题设知ca=3,即222a ba+=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|=-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k n k k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2.所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4 D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-2)2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA=2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA=4. 18. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1984年高考数学全国卷(理科)
(这份试题共八道大题,满分120分满分10分,不计入总分)
一.(本题满分15分)本题共有5小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的把正确结论的代号写
在题后的圆括号内每一个小题:选对的得3分;不选,选错或者选出
的代号超过一个的(不论是否都写在圆括号内),一律得负1分
1.数集X={()π12+n ,n Z ∈}与数集Y={()π14±k ,K Z ∈}之间的关系是( ) (A )X ⊂Y (B )X ⊃Y (C )X=Y (D )X ≠Y
2.如果圆x 2+y 2+Gx+Ey+F=0与x 轴相切于原点,那么( ) (A )F=0,G ≠0,E ≠0. (B )E=0,F=0,G ≠0. (C )G=0,F=0,E ≠0. (D )G=0,E=0,F ≠0. 3.如果n 是正整数,那么)1]()1(1[8
1
2---n n 的值 ( ) (A )一定是零 (B )一定是偶数(C )是整数但不一定是偶数 (D )不一定是整数
4.)arccos(
x -大于x arccos 的充分条件是 ( ) (A )]1,0(∈x (B ))0,1(-∈x
(C )]1,0[∈x (D )]2
,0[π
∈x
5.如果θ是第二象限角,且满足,sin 12sin 2cos θ-=θ-θ那么2
θ
(A )是第一象限角 (B )是第三象限角 ( ) (C )可能是第一象限角,也可能是第三象限角 (D )是第二象限角
二.(本题满分24分)本题共6小题,每一个小题满分4分只要求
直接写出结果)
1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积
答:
2.函数)44(log 25.0++x x 在什么区间上是增函数? 答:
3.求方程2
1
)cos (sin 2=+x x 的解集
答: 4.求3)2|
|1
|(|-+x x 的展开式中的常数项 答:
5.求1
321lim +-∞→n n
n 的值 答:
6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算)
答:
三.(本题满分12分)本题只要求画出图形
1.设⎩

⎧>≤=,0,1,
0,0)(x x x H 当当画出函数y=H(x-1)的图象
2.画出极坐标方程)0(0)4
)(2(>ρ=π
-θ-ρ的曲线
四.(本题满
分12分)
已知三个平面两两相交,有三条交线求证这三条交线交于一点或互相
平行
证:
五.(本题满分14分)
设c,d,x 为实数,c ≠0,x 为未知数讨论方程1log
)
(-=+x x
d
cx 在什么情
况下有解有解时求出它的解
解:
六.(本题满分16分)
1.设0≠p ,实系数一元二次方程022=+-q pz z 有两个虚数根z 1,z 2.再设z 1,z 2在复平面内的对应点是Z 1,Z 2求以Z 1,Z 2为焦点且经过原点的
椭圆的长轴的长(7分)
2.求经过定点M (1,2),以y 轴为准线,离心率为2
1
的椭圆的左顶点的轨迹方程(9分)
解:
七.(本题满分15分)
在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b,c ,且c=10,
3
4
cos cos ==a b B A ,P 为△ABC 的内切圆上的动点P 到顶点A ,B ,C 的距离的平方和的最大值与最小值
解:
解:
八.(本题满分12分) 设a >2,给定数列{x n },其中x 1=a ,)2,1()
1(221 =-=+n x x x n n
n 求证: 1.);2,1(1,21
=<>+n x x x n
n n 且
2.);2,1(21
2,31 =+
≤≤-n x a n n 那么如果 3..3,3
4lg 3lg
,31<≥>+n x a n a 必有时那么当如果
九.(附加题,本题满分10分,不计入总分)
如图,已知圆心为O 、半径为1A ,一动
点P 自切点A 沿直线L 向右移动时,取弧AC 的长为AP 3
2
,直线PC 与直线AO 交于点M 又知当AP=
4

时,点P 的速度为V 求这时点M 的速度
解:
历年来最难的一次)
A P L。

相关文档
最新文档