交流特高压电网对电气设备的绝缘要求
特高压输电技术知识

特高压输电技术知识特高压直流输电技术的主要特点(1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。
在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。
(2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。
特高压直流输电系统的潮流方向和大小均能方便地进行控制。
(3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。
(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。
(5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。
特高压输电与超高压输电经济性比较特高压输电与超高压输电经济性比较,一般用输电成本进行比较,比较2个电压等级输送同样的功率和同样的距离所用的输电成本。
有2种比较方法:一种是按相同的可靠性指标,比较它们的一次投资成本;另一种是比较它们的寿命周期成本。
这2种比较方法都需要的基本数据是:构成2种电压等级输电工程的统计的设备价格及建筑费用。
对于特高压输电和超高压输电工程规划和设计所进行的成本比较来说,设备价格及其建筑费用可采用统计的平均价格或价格指数。
2种比较方法都需要进行可靠性分析计算,通过分析计算,提出输电工程的期望的可靠性指标。
利用寿命周期成本方法进行经济性比较还需要有中断输电造成的统计的经济损失数据。
一回1 100 kV特高压输电线路的输电能力可达到500 kV 常规输电线路输电能力的4 倍以上,即4-5回500 kV输电线路的输电能力相当于一回1 100 kV输电线路的输电能力。
显然,在线路和变电站的运行维护方面,特高压输电所需的成本将比超高压输电少得多。
线路的功率和电能损耗,在运行成本方面占有相当的比重。
在输送相同功率情况下,1 100 kV线路功率损耗约为500 kV线路的1/16左右。
国外特高压线路绝缘水平情况

国外特高压线路绝缘水平情况特高压(Ultra-high voltage,UHV)是指交流电压超过1000千伏的电力系统,其特点是输电损耗小,供电距离远,对环境影响小,是电力传输领域的一项重要技术。
在国外,特高压输电线路的绝缘水平是保证电力传输的重要因素之一、下面将从绝缘技术的发展和应用以及国外特高压线路绝缘水平情况进行详细介绍。
绝缘技术的发展和应用:绝缘子是确保输电线路安全运行的重要部件之一、国外在绝缘子的设计和制造方面有着丰富的经验,常用的绝缘子材料有瓷瓶绝缘子、复合绝缘子和玻璃绝缘子等。
其中,复合绝缘子是一种新型的绝缘子材料,具有优良的绝缘性能和机械强度,广泛应用于特高压输电线路。
绝缘串是由若干个串联连接的绝缘子组成的。
为了提高绝缘串的绝缘水平,国外对绝缘串的设计进行了改进,采用了不同的串联方式,例如串联绝缘子和串联柱型绝缘子。
这样可以提高绝缘串的绝缘水平,减少绝缘破坏的风险。
国外特高压线路的接地系统也经过了技术创新和改进。
接地系统的作用是保护线路和设备免受雷击和浪涌等因素的影响。
国外采用了不同种类的接地系统,包括架空线路接地、绝缘接地和低阻抗接地等。
这些接地系统能够有效地提高线路的绝缘水平,保护设备安全运行。
1.中国:中国是世界上最早建设特高压输电线路的国家之一、中国特高压线路的绝缘水平达到了世界领先水平。
例如,中国南方电网公司建设的江苏单回特高压线路采用了一体化耐污绝缘子和串联绝缘子,在绝缘性能和可靠性方面具有较大的优势。
2.美国:美国是世界上电力系统技术发达的国家之一、美国的特高压线路采用了先进的绝缘技术,包括污秽绝缘子、直流耐污绝缘子等。
3.德国:德国是欧洲特高压输电领域的领导者之一、德国的特高压线路采用了复合绝缘子和绝缘串等先进技术,提高了线路的绝缘水平和安全运行。
总而言之,国外特高压线路的绝缘水平经历了技术创新和发展,可以满足长距离输电和大容量传输的要求。
通过使用先进的绝缘技术和设备,国外的特高压线路能够保证电力传输的安全和可靠性。
交流特高压电网的雷电过电压防护范文

交流特高压电网的雷电过电压防护范文特高压电网作为电力系统的重要组成部分,承载着大量的电能传输任务。
然而,雷电过电压的存在给特高压电网的安全稳定运行带来了巨大挑战。
因此,为了有效防护特高压电网免受雷电过电压的损害,我们需要采取一系列措施。
首先,合理设置避雷装置是防护特高压电网的首要任务之一。
避雷装置能够将雷电过电压引到安全的地方,从而减小对特高压电网的冲击。
在特高压电网的设计和建设过程中,需要充分考虑避雷装置的安装位置和数量。
同时,避雷装置的维护和检测也是至关重要的。
定期进行避雷装置的巡检,及时发现故障并予以修复,确保其正常运行和使用。
其次,避雷接地系统也是防护特高压电网雷电过电压的关键措施之一。
避雷接地系统的设计和施工需要遵循规范和标准,确保接地电阻的合理性和稳定性。
特高压电网的大型设备和设施通常采用混凝土接地极或大面积接地网。
在实施中,应对接地系统进行详细测试和检测,确保其符合相关要求。
另外,线路的设计和绝缘配合也是防护特高压电网雷电过电压的重要措施之一。
特高压输电线路的绝缘配置必须满足特定的电气要求,以确保能够有效阻断雷电过电压的穿透。
在选用绝缘子时,应考虑其耐电压能力和防雷能力,并严格按照制造厂商的规定进行正确安装和维护。
此外,定期进行特高压电网的雷电过电压监测也是非常重要的。
监测数据可以及时反映特高压电网系统的运行状态和雷电过电压的情况,为运维人员提供及时的处理建议。
在监测数据异常或超过安全阈值时,应采取相应的技术和措施进行处理,避免雷电过电压对特高压电网带来不可逆转的损害。
总之,特高压电网的雷电过电压防护是确保特高压电网安全稳定运行的重要保障。
通过合理设置避雷装置、完善避雷接地系统、优化线路设计和绝缘配合,以及定期进行监测和处理,可以有效防护特高压电网免受雷电过电压的损害。
特高压电网的防雷工作应持续不断地加强,以确保特高压电网安全可靠地为人们输送清洁、高效的电能。
交流特高压电网的雷电过电压防护

交流特高压电网的雷电过电压防护特高压电网作为电力系统中的重要组成部分,承担着大功率输电的任务,对于雷电过电压防护具有重要意义。
特高压电网在输电过程中容易受到雷电过电压的影响,如不加以防护,可能会对电网设备和系统运行造成损害甚至发生事故。
因此,特高压电网必须采取一系列措施来防止雷电过电压的产生和传播。
首先,特高压电网必须采用合适的导线材料和结构。
特高压电网输电线路通常采用的是悬垂绝缘子,这种绝缘子有良好的绝缘性能和抗风振性能,能够有效地抵御雷电过电压的冲击。
此外,为了提高线路的耐雷电性能,可以在导线上加装避雷针和避雷器,从而将雷电过电压引入地面,保护线路设备。
其次,特高压电网还需要配置雷电过电压保护装置。
雷电过电压保护装置通常采用的是避雷器,可以将雷电过电压引入地面,保护电网设备不受损害。
在特高压电网中,避雷器通常安装在变电站设备的进出线路、变压器和电缆终端等位置。
避雷器能够有效地吸收雷电过电压的能量,保持设备工作在安全电压范围内。
另外,特高压电网还需要加强对接地系统的构建。
良好的接地系统能够将雷电过电压迅速引入地面,减少对设备的影响。
特高压电网接地系统包括接地网、接地极和接地线等,通过有效地配置这些设施,可以提高接地系统的效果。
此外,特高压电网还可以采用接地引雷的方法,将雷电引入地下,减少对电网的影响。
总之,特高压电网的雷电过电压防护是确保电网设备和系统安全运行的关键措施。
通过采用合适的导线材料和结构,配置雷电过电压保护装置,并加强对接地系统的构建,可以有效地防止雷电过电压对电网的影响。
特高压电网必须认真对待雷电过电压防护工作,确保电网的可靠运行。
只有这样,特高压电网才能够更好地为社会提供稳定可靠的电力供应。
特高压电网的技术特性

特高压电网的技术特性我国特高压电网包括特高压交流输电和特高压直流输电两种形式,交流为1000kV;直流为±800kV。
根据我国未来电力流向和负荷中心分布的特点以及特高压交流输电和特高压直流输电的特点,在我国特高压电网建设中,将以1000kV交流特高压输电为主形成国家特高压骨干网架,以实现各大区域电网的同步强联网;±800kV特高压直流输电,则主要用于远距离,中间无落点、无电压支持的大功率输电工程。
特高压电网的系统特性主要反映在技术特点、输电能力和稳定性三个方面。
1000kV交流输电中间可落点,具有电网功能,输电容量大,覆盖范围广,节省输电线路走廊,有功功率损耗与输电功率的比值小;1000kV交流输电能力取决于各线路两端的短路容量比和输电线路距离,输电稳定性主要取决于运行点的功角大小。
±800kV特高压直流输电中间不落点,可将大量电力直送大负荷中心,输电容量大、输电距离长、节省输电线路走廊,有功功率损耗与输送功率的比值大,其输电稳定性取决于受端电网的结构。
一、关键技术分析1、特高压系统中的过电压电力系统的过电压是指由于内部故障、开关操作或遭受雷击,而造成瞬时或持续时间较长的高于电网额定允许电压并可能导致电气装置损坏的电压升高。
我国特高压系统具有线路距离长、输送容量大;各地电网差异性大;部分特高压线路可能经过高海拔或重污秽地区等特点。
这些都使得过电压问题成为特高压系统设计中的重要问题之一。
表3-1为国外特高压系统的过电压水平情况。
目前我国尚无特高压过电压的标准,为了便于研究,经过反复计算和比较,并吸取其他国家的经验,初步建议下列的绝缘水平,作为进一步研究的参考和依据。
1) 工频过电压:限制在1.3p.u.以下(持续时间≤5s),在个别情况下线路侧短时(持续时间≤0.35s)允许在1.4p.u.以下。
2) 相对地统计操作过电压(出现概率为2%的操作过电压):对于变电站、开关站设备应限制在1.6p.u以下。
输配电设备外绝缘及其绝缘配合

输配电设备外绝缘及其绝缘配合1. 引言输配电设备外绝缘是指对输配电设备进行绝缘处理,以防止电流泄露、电器故障和人身安全事故的发生。
绝缘配合是指不同绝缘材料之间的组合运用,以提高绝缘系统的整体性能和可靠性。
本文将介绍输配电设备外绝缘的基本原理、绝缘材料的选择以及绝缘配合的注意事项。
2. 输配电设备外绝缘的基本原理输配电设备外绝缘的基本原理是通过在设备表面涂覆一层绝缘材料,将设备与外界环境隔离开来,防止电流泄露和电器故障。
传统的绝缘材料包括绝缘漆和绝缘纸。
绝缘漆具有较好的绝缘性能和耐高温性能,适用于对绝缘要求较高的设备;绝缘纸具有较好的电气性能和绝缘性能,适用于对绝缘要求一般的设备。
3. 绝缘材料的选择选择合适的绝缘材料对于输配电设备外绝缘至关重要。
以下是几种常用的绝缘材料:3.1 绝缘漆绝缘漆具有良好的绝缘性能和耐高温性能,是一种常用的绝缘材料。
常见的绝缘漆有环氧树脂漆、聚氨酯漆、丙烯酸酯漆等。
选择绝缘漆时需要考虑其绝缘性能、耐热性能、耐化学性能以及施工方便性等因素。
3.2 绝缘纸绝缘纸具有较好的电气性能和绝缘性能,适用于对绝缘要求一般的设备。
常见的绝缘纸有钳型绝缘纸、绝缘纸板、绝缘纸板等。
选择绝缘纸时需要注意其绝缘性能、机械强度以及湿敏性等指标。
3.3 其他绝缘材料除了绝缘漆和绝缘纸,还有其他一些绝缘材料可供选择,如绝缘胶带、绝缘管等。
选择合适的绝缘材料需要综合考虑设备的工作环境、绝缘要求和经济性等因素。
4. 绝缘配合的注意事项在输配电设备的绝缘配合过程中,需要注意以下几点:4.1 绝缘层厚度绝缘层厚度的选择需要根据设备的电压等级和绝缘要求来确定。
一般来说,越高电压等级的设备,需要越厚的绝缘层来防止电流泄露。
4.2 绝缘层质量绝缘层的质量对设备的绝缘性能和可靠性起着重要作用。
在绝缘材料施工过程中,需要注意工艺的控制,保证绝缘层的均匀性和密实性。
4.3 绝缘配合接头绝缘配合接头是绝缘系统中一个重要的部分,需要注意其选择和安装。
±800kV特高压直流输电线路绝缘选择

±800kV特高压直流输电线路绝缘选择发表时间:2017-06-13T10:59:36.960Z 来源:《电力设备》2017年第6期作者:康淑丰赵志刚李俭依阳[导读] 电力行业的发展速度逐步加快,由于我国能源丰富的西部地区远离经济发达的东部地区,因此采用远距离、大容量输电系统成为必然。
(国网河北检修公司河北石家庄 050000)摘要:随着我国国民经济的飞速发展,用电需求日趋增长,电力行业的发展速度逐步加快,由于我国能源丰富的西部地区远离经济发达的东部地区,因此采用远距离、大容量输电系统成为必然。
±800kV特高压直流输电线路具有远距离、大容量、低损耗等优势,一回±800kV直流工程可输送电力5~6.4GW,输电距离可达2500km,是±500kV线路输送能力的2倍以上,是交流500kV线路输送能力的5倍以上。
关键词:±800kV;特高压;直流输电线路;绝缘选择1绝缘子片数的选择1.1按±500kV直流输电线路的绝缘水平外推我国第一条±500kV葛南线的绝缘配合设计当时是参照交流线路爬距并邀请加拿大泰西蒙公司进行咨询设计,绝缘子有关污闪试验数据采用日本NGK公司的CA735(160kN)瓷质绝缘子(若无说明,以下均指此型绝缘子),其绝缘子选择片数。
葛南线自1989年投运以来,污闪事故多次发生,导致其多次调爬,调爬前后绝缘子片数。
国内其他几条±500kV直流线路借鉴了葛南线的设计运行经验、并经长时间运行及调爬后绝缘子片数配置。
从表2可以看出,对于0.05mg/cm2污区,相对37片而言,40片有8%的裕度,建议用于补偿难以预测的±800kV长串绝缘子污耐压的非线性,因此可按40片为基准进行线性外推得到±800kV线路各污区所需片数。
1.2 按爬电比距法选择根据原电力部向泰西蒙公司提出的我国电网110~220kV线路防污运行经验数据分析可以得出,在导线对地电压情况下爬电比距与等值盐密的关系如图1所示。
±800kV特高压换流站绝缘配合

±800kV 特高压换流站绝缘配合发布时间:2021-09-04T00:46:21.021Z 来源:《福光技术》2021年9期作者:白龙生[导读] 目前我国已成为世界上直流输电电压等级最高、输送容量最大的国家。
国网山西省电力公司检修分公司山西太原 030032摘要:特高压直流输电具有大容量、远距离和低损耗等优点,±1100kV 特高压直流输电作为一个全新的输电电压等级,非常适合特大型能源基地向远方负荷中心输送电能。
多端柔性直流输电与传统直流输电相比具有诸多优势,非常适用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电和异步交流电网互联等领域。
特高压直流输电和柔性直流输电是当今直流输电领域的两大热点,代表着直流输电技术的最高水平。
关键词:特高压直流;柔性直流;±1100kV;换流站;绝缘配合;过电压我国能源资源和经济发展具有分布不均的地域性特点,能源资源主要集中在西部地区,而负荷主要集中在中东部地区。
为了保证中东部地区的电力供应,必须采取相关技术措旅将能源送往负荷中心。
特高压直流输电具有超大容量、超远距离、低损耗的特点,且具有灵活的调节性能,因此非常适合大型能源基地向远方负荷中心送电。
特高压直流输电是指电压等级为 ± 及以上的直流输电,截至 2013 年,我国已有云南一广东、向家坝一上海和锦屏一苏南 3 条 ±800kV 特高压直流输电工程建成并投运,目前我国已成为世界上直流输电电压等级最高、输送容量最大的国家。
1.国内研究现状1.1特高压直流输电技术的研究现状国家电网公司从 2004 年开始,组织相关科研、设计单位和高等院校对特高压直流的关键技术问题进行的研究,取得了一系列重要成果。
2007 年,国家电网公司在北京建成了特高压直流试验基地;2008 年,在西藏建成了高海拔直流试验基地。
通过这些试验基地的建设,使我国具备了 ±1000kV 及以下电压等级下特高压直流输电工程在不同海拔高度下的电磁环境、空气间隙放电特性、直流避雷器等设备关键技术的试验研究能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流特高压电网对电气设备的绝缘要求
现代电网应具有安全不间断的基本功能。
实践表明,在全部停电事故中,输电线路和变电站电气设备的绝缘闪络或击穿是最主要的原因。
因此,为了保证电网具有一个可接受的可靠性指标,科学合理地选择电气装置的绝缘水平至关重要。
电气设备的绝缘在运行中会受到以下几种电压的作用:工作电压、暂时过电压、操作过电压、雷电过电压和陡波过电压。
电气装置的绝缘强度一般以在上述各种电压的作用下的放电电压来表征。
交流特高压设备绝缘的主要特点:一是运行电压高。
为了降低设备尺寸和造价,通过采用大容量高性能的避雷器等措施,降低过电压水平和设备试验绝缘水平,运行电压与试验水平的比值同超高压相比有显著增加。
二是设备的重要性提高。
特高压线路输送容量可达500千瓦,单组变压器容量为300千瓦,要求设备具有更高的可靠性。
三是设备尺寸比较大。
由于设备尺寸增大,杂散分布电容和局部发热等因素对绝缘的长期稳定运行形成威胁。
特高压输电线路的绝缘可以分为两类:一类是导线与杆塔或大地之间的空气间隙,另一类则是绝缘子。
由于电压等级的提高,特高压输电工程对绝缘子提出了更高的要求,如高机械强度、防污闪、提高过电压耐受能力和降低无线电干扰等。