定积分的基本性质
定积分运算法则

• 通过定积分求解经济学中的边际产量、边际消费等边际问题
求解经济学中的总量问题
• 通过定积分求解经济学中的总产量、总消费等总量问题
求解经济学中的平均问题
• 通过定积分求解经济学中的平均产量、平均消费等平均问题
谢谢观看.
Thank you for watching.
Docs
⌛️
06
定积分的数值计算方法
数值积分的基本原理与方法
数值积分的定义
数值积分的方法
• 通过数值方法近似求解定积分的值
• 辛普森法
• 龙贝格法
• 高斯积分法
数值积分的误差分析与控制
误差分析
误差控制
• 分析数值积分方法的误差来源
• 选择合适的数值积分方法
• 估计数值积分方法的误差范围
• 控制积分区间的长度
求解物体的速度
• 通过定积分求解物体在变力作用下的速度
求解物体的加速度
• 通过定积分求解物体在变力作用下的加速度
定积分在工程学中的应用
求解工程问题的面积
求解工程问题的体积
求解工程问题的质心位置
• 通过定积分求解曲线围成的面积
• 通过定积分求解曲面围成的体积
• 通过定积分求解物体的质心位置
定积分在经济学中的应用
积分问题
换元积分法的原理
• 利用换元公式将原积分变量变换为新变量,从而简化积分过程
换元积分法的常见类型与方法
01
幂函数换元法
• 将复杂的幂函数积分问题转化为简单的指数函数积分问
题
02
三角函数换元法
• 将复杂的三角函数积分问题转化为简单的指数函数积分
问题
03
掌握定积分概念及基本性质

供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。
函数的积分和定积分的性质

函数的积分和定积分的性质函数的积分和定积分是微积分中重要的概念,它们有一些独特的性质和特点。
本文将就函数的积分和定积分的性质进行探讨,以帮助读者更好地理解和应用这些概念。
一、函数的积分性质1.1 线性性质函数的积分具有线性性质,即对于任意实数a、b和函数f(x),有以下等式成立:∫[a,b] (af(x) + bf(x))dx = a∫[a,b] f(x)dx + b∫[a,b] f(x)dx这个性质可以方便地用来计算复杂函数的积分,可以将其分解成若干简单函数的积分求和。
1.2 反向性质函数的积分具有反向性质,即对于任意函数f(x),如果其导数存在,则有以下等式成立:∫ f'(x)dx = f(x) + C其中C为常数。
这个性质可以用来求函数的原函数,进而求得函数的积分值。
1.3 区间可加性函数的积分具有区间可加性,即对于任意函数f(x)和区间[a, c],如果在[a, c]上存在中点d,则有以下等式成立:∫[a,c] f(x)dx = ∫[a,d] f(x)dx + ∫[d,c] f(x)dx这个性质可以将一个区间的积分分解成两个子区间的积分求和,进而简化计算过程。
二、定积分的性质2.1 代数和性质定积分具有代数和性质,即对于任意实数a、b和函数f(x),有以下等式成立:∫[a,b] f(x)dx = -∫[b,a] f(x)dx这个性质表明定积分在区间内部的取值与区间两端的顺序无关,只与函数f(x)的积分值有关。
2.2 区间可加性定积分具有区间可加性,即对于任意函数f(x)和区间[a, c],如果在[a, c]上存在中点d,则有以下等式成立:∫[a,c] f(x)dx = ∫[a,d] f(x)dx + ∫[d,c] f(x)dx这个性质和函数的积分性质中的区间可加性相同,使得定积分的计算变得更加简便。
2.3 介值性质定积分具有介值性质,即对于函数f(x)在区间[a, b]上的定积分值I,对于任意介于f(a)和f(b)之间的常数K,一定存在c∈[a, b],使得f(c)=K。
定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。
一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。
在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。
1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。
则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。
我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。
对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。
1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。
当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。
当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。
1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。
例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。
定积分的基本性质

例 2 计算定积分 ∫ (1 + x cos x) 1 − x 2 dx .
−1
1
解因为 ∫ (1 + x cos x) 1 − x 2 dx =
−1
1
∫−1
1
1 − x 2 dx + ∫ x cos x 1 − x 2 dx ,且
−1
1
∫−1
所以
1
1 π 1 − x 2 dx = , ∫ x cos x 1 − x 2 dx = 0, −1 2
a
−a
f ( x)dx = 2 ∫ f ( x)dx .
0
证明取区间 [−a, a] 关于原点对称的划分
−a =x− n < x− n +1 < < x0 =0 < x1 < < xn =a ,其中 x− k = − xk .
并取 ξ k ∈ [ xk −1 , xk ] (k = 1, 2, , n) , ξ − k = −ξ k ∈ [ x− k , x− k +1 ] .
α f ( x) + β g ( x) 也在区间 [a, b] 上也可积,且
∫a [α f ( x) + β g ( x)]dx= α ∫a
证明对于 [ a, b] 的任意划分
b
b
f ( x)dx + β ∫ g ( x)dx .
a
b
a = x0 < x1 < x 2 < < x n −1 < x n = b ,
T
f ( x)dx = 0,
f ( x)dx = ∫ f ( x)dx .
0 1 −1
T
定积分基本概念

定积分基本概念定积分是微积分中的重要概念之一,用来描述曲线下的面积或者曲线围成的封闭区域的面积。
它在数学、物理学和工程学等多个领域中有着广泛的应用。
本文将介绍定积分的基本概念及其相关性质。
一、定积分的概念定积分可以理解为对一个函数在一个区间上的面积进行求和。
给定一个函数f(x),我们可以将区间[a, b]等分成n个小区间,每个小区间的长度为Δx。
我们取这些小区间中的任意一点xi,并计算出该点处的函数值f(xi),然后将其与Δx相乘。
将这些小矩形的面积加起来,得到的和就是函数在区间[a, b]上的定积分。
定积分的数学表示为:∫(a, b) f(x) dx其中∫是求和的符号,a和b是积分的上下限,f(x)是被积函数,dx 表示自变量的微小增量。
二、定积分的几何意义从几何角度来看,定积分表示的是曲线下的面积,也可以看作是曲线与x轴之间的有向面积。
当被积函数为非负时,定积分表示的是曲线与x轴之间的面积;当被积函数为负时,定积分表示的是曲线与x 轴之间面积的相反数。
三、定积分的性质定积分具有几个重要的性质,包括线性性质、积分中值定理、换元积分法等。
1. 线性性质:对于任意的实数a和b,有∫(a, b) (f(x) + g(x)) dx = ∫(a,b) f(x) dx + ∫(a, b) g(x) dx,以及∫(a, b) (af(x)) dx = a∫(a, b) f(x) dx。
2. 积分中值定理:如果函数f(x)在区间[a, b]上连续,则存在一个点c∈(a, b),使得∫(a, b) f(x) dx = f(c) × (b - a)。
3. 换元积分法:通过变量替换,可以将一个积分问题转化为另一个更简单的积分问题。
换元积分法常用于解决复杂函数的积分计算。
四、定积分的计算方法具体计算定积分的方法包括分段函数的积分、换元法、分部积分法等。
这些方法根据具体的问题和函数性质选择不同的求解策略。
1. 分段函数的积分:对于分段函数,我们可以将其分成若干个不同的区间,在每个区间上分别计算积分,再将结果相加得到最终的定积分。
数学分析9.4定积分的性质

第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
定积分的基本性质及应用

定积分的基本性质及应用定积分是微积分的重要概念之一,它在数学和各个学科中都有广泛的应用。
本文将重点介绍定积分的基本性质和在实际问题中的应用,并且通过具体的例子来加深理解。
定义:定积分是对一个函数在闭区间上的加权平均值进行求和的过程。
在数学中,一个函数f(x)在[a, b]上的定积分表示为:∫(a to b) f(x) dx其中,∫代表求和的过程,a和b是积分的上下限,f(x)是被积函数。
基本性质:1. 线性性质:定积分具有线性性质,即对于任意两个函数f(x)和g(x),以及任意的实数k,有以下等式成立:∫(a to b) (f(x) + g(x)) dx = ∫(a to b) f(x) dx + ∫(a to b) g(x) dx∫(a to b) k*f(x) dx = k * ∫(a to b) f(x) dx2. 区间可加性:如果一个函数在闭区间[a, b]上有定义,且在其中一个点c上可导,则该函数在[a, b]上的定积分等于该函数在子区间[a, c]和[c, b]上的定积分之和:∫(a to b) f(x) dx = ∫(a to c) f(x) dx + ∫(c to b) f(x) dx3. 积分中值定理:如果一个函数f(x)在闭区间[a, b]上连续,且在该区间内不恒为0,那么至少存在一个点c,使得:∫(a to b) f(x) dx = f(c) * (b - a)4. 边界性质:对于定积分∫(a to b) f(x) dx,当a等于b时,定积分的值为0。
若a小于b,则定积分的值为正数或负数,具体取决于函数f(x)在[a, b]上的正负性。
5. 非负性质:如果一个函数f(x)在闭区间[a, b]上连续且非负,那么定积分的值也是非负的。
应用:定积分在实际问题中有着广泛的应用,下面将介绍两个具体的应用。
1. 几何应用:定积分可以用于计算曲线与坐标轴之间的面积。
如果一个函数在闭区间[a, b]上非负,那么该函数与x轴围成的曲边梯形的面积可以通过定积分来计算:面积= ∫(a to b) f(x) dx同样的,若函数f(x)在闭区间[a, b]上非正,那么面积可以表示为定积分的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0, 使x N ( x0 , ) [a, b]时,有f ( x) f ( x0 ) .
2
b
a f ((x)dlxim x x0
x0
fa ( x)
f(
xf
)(dxx0
)
xx00f(2fx(0
x) ))dx
b
f ( x)dx
x0
x0 f ( x)dx x0 f ( x0 ) dx f ( x0 ) 2 0.
(a b)
证 f (x) f (x) f (x),
b
b
b
a f ( x)dx a f ( x)dx a f ( x)dx,
即 b a
f
( x)dx
b
a
f
( x)dx .
说明:f 在[a, b]上可积| f | 在[a, b] 上可积
但反之不真,如
1, x为有理数 f ( x) 1,x为无理数.
x0
2 x0
2
x0 为区间端点时类似证明(取单侧邻域).
推论:如果 f , g 在区间[a, b]上连续且 f ( x) g( x) ,
但不恒等,则
b
f ( x)dx
b
g( x)dx. (a b)
a
a
例 1
比较积分值
1 0
e
x dx
和
1
0 (1 x)dx 的大小.
解 令 f ( x) e x 1 x, 则f ( x)在[0, 1]上连续.
dx x
3
.
例 3
估计积分
2
4
sin xdx的值. x
解 f ( x) sin x , x [ , ]
x
42
f
( x)
x cos
x sin x2
x
cos x( x x2
tan
x)
0,
f ( x)在[ , ]上严格单调下降,
42
故 x 为最大点,x 为最小点,
4
2
M f () 2 2, m f () 2 ,
一、基本内容
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
a b
f
( x)dx .
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
性质1
b[ a
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a
g(
x)dx
.
证
b
a[
f
(
x)
g(
a
a
特别地,若f ( x)在[a, b]上连续,则 [a, b]使得
b
b
a f ( x)g( x)dx f ( )a g( x)dx.
(此性质可用于估计积分值的大致范围)
例 2
估计积分
0
3
1 sin 3
dx 的值. x
解
1 f ( x) 3 sin3 x , x [0, ],
0 sin3 x 1,
1 4
3
1 sin 3
x
1, 3
1dx
04
0
3
1 sin3
dx x
1dx, 03
4
0
3
1 sin3
(定积分对于积分区间具有可加性)
性质4
b
b
a 1 dx a
dx b a .
n
证
b a
dx
lim
0
i 1
1
xi
lim(b a) b a. 0
性质5 如果在区间[a, b]上 f ( x) 0,
则 b a
f
(
x)dx
0.
(a b)
证 f ( x) 0, f (i ) 0, (i 1,2, ,n)
lim
0
i 1
kf
(i
)xi
n
n
lim k
0 i1
f (i )xi
k lim 0 i1
f (i )xi
b
k a f ( x)dx.
性质1、2统称为线性性,即 设,为常数,有
b
[f ( x) g( x)]dx
a
b
f ( x)dx
a
b
a g( x)dx .
性质3(区间可加性)假设a c b
x)]dx
n
lim
0
[
i 1
f
(i
)
g(i
)]xi
n
n
lim
0
i 1
f
(i )xi
lim
0
i 1
g(i )xi
b
b
a f ( x)dx a g( x)dx.
(此性质可以推广到有限多个函数作和的情况)
性质2
abkf
(
x
)dx
k
b
a
f
(
x
)dx
(k 为常数).
证
b
n
a
kf
(
x)dx
b
a[g( x) f ( x)]dx 0,
b
b
a g( x)dx a f ( x)dx 0,
于是
b
a f ( x)dx
b
a g( x)dx.
将性质5加强便得到如下命题:
命题 设 f ( x)在区间[a, b] (a b)上连续、非负
且不恒为零,则 b f ( x)dx 0. a
证 设f ( x0 ) 0 ( x0 (a, b)), 由连续性和极限的局部保号性,
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx.
补充:不论 a,b,c的相对位置如何, 上式总成立.
例 若 a b c,
c
a
f ( x)dx
b
a f ( x)dx
c
b f ( x)dx
则
b
a
f
(
x)dx
c
a
f
(
x)dx
c
b
f
(
x)dx
c
b
a f ( x)dx c f ( x)dx.
f ( x) e x 1 0, 则f ( x)在[0, 1]上严格递增.
x (0,1], f ( x) f (0) 0 x [0,1], e x 1 x,
且仅在x 0处取等号,于是
1 e xdx
1
(1 x)dx.
0
0
性质5的推论:
(2)
b
b
a f ( x)dx a f ( x)dx.
4
2
ba , 24 4
2 4
2 4
sin xdx x
2 2, 4
1
2
2 4
sin x
xdxΒιβλιοθήκη 2. 2性质7(积分第一中值定理)
设f ( x)和g( x)都在[a, b]上可积,g( x)在[a, b]上不变号,
则存在 [m, M ],使得
b
f ( x)g( x)dx
b
g( x)dx.
n
xi 0, f (i )xi 0, i 1
max{x1,x2, ,xn }
n
lim
0
i 1
f (i )xi
b
f ( x)dx 0.
a
性质5的推论:
(1)如果在区间[a,b]上 f ( x) g( x),
则 b a
f
(
x)dx
b
a
g(
x)dx
.
(a b)
证 f ( x) g( x), g( x) f ( x) 0,
在[0,1]上 不可积.
性质6(估值定理) 设M 及m 分别是函数
f ( x)在区间[a, b]上的最大值及最小值,
则
m(b
a)
b
a
f
( x)dx
M (b
a).
证 m f (x) M,
b
b
b
a mdx a f ( x)dx a Mdx,
b
m(b a) a f ( x)dx M(b a).