2016年港澳台联考数学真题
港澳台联考数学二轮复习试卷(含答案)——16空间解析几何

16.空间解析几何试卷(1)1. 已知(1,2,1)a =-,(0,2,3)b =,计算a b ,a b ⨯,以及以,a b 为邻边的平行四边形的面积2.求过三点(2,1,4)A -,(1,3,2)B --,(0,2,3)C 的平面方程3.过点(1,1,1),且垂直于平面7x y z -+=和321250x y z +-+=的平面方程为_______________.4.设平面过原点及点(6,-3,2), 且与平面428x y z -+=垂直,则此平面方程为______________.5.经过原点且垂直与两平面2530x y z -++=及370x y z +--=的平面方程是___________6.过M(-2,7,3)且平行与平面x -4y +5z -1=0平面方程是_____________7.已知一平面通过x 轴及点M(4,-3,1),则该平面方程是____________8.已知平面通过M (8,-3,1),N (4,7,2)且垂直于平面3x +5y -7z +21=0,则该平面的方程是__________9. 用对称式方程及参数方程表示直线102340x y z x y z +++=⎧⎨-++=⎩为___________________10. 一直线过点(2,3,4),A -且和y 轴垂直相交, 求其方程.11.过M(-1,2,1)且于直线210210x y z x y z +--=⎧⎨+-+=⎩平行的直线方程是________ 12.通过M(2,1,3)且与直线L :11321x y z +-==-垂直相交的直线方程是_______________ 13.求通过点M(-1,-4,3)且与下面两条直线24135x y z x y -+=⎧⎨+=-⎩,24132x t y t z t =+⎧⎪=--⎨⎪=-+⎩都垂直的直线方程.试卷(2)1.空间直角坐标系O xyz -中,经过点(2,1,1)P 且与直线310,32210x y z x y z -++=⎧⎨--+=⎩垂直的平面方程为________.2.设直线l :221126--=-+=-z y x 与平面π:2x -2y +z = 4相交于点P .在平面π内,过点P 作直线 1l ⊥l ,则点P 的坐标___________直线1l 的方程__________________3. 经过点(1,2,3),且与直线213221-=-=+z y x 垂直的平面之方程为 4.在空间直角坐标系中,经过点(1,1,2)P -且垂直于平面2x -2y +3z =1的直线之方程为5.在空间直角坐标中,经过坐标原点作直线垂直于平面x +2y -2z =3,则垂足的坐标为6.在空间垂直角坐标系O -xyz 中,若平面ax +2y +3z =1 与平面2x +y -az =2互相垂直,则a 的值7.在空间直角坐标系O —xyz 中,若原点到平面3x -2y +az =1的距离等于71,则a 的值为 8.在空间直角坐标系O -xyz 中,经过点P (3,1,0),且与直线⎩⎨⎧=+-=+4222z y x y x 垂直的平面的方程为9.在空间直角坐标系O -xyz 中,经过A(1,0,2),B(1,1,-1),和C(2,-1,1),三个点的平面方程为____________________10.把直线L 的一般方程2220260x y z x y z -++=⎧⎨+-+=⎩化为直线的点向式方程是____________________ 11.两平面2702110x y z x y z -+-=++-=与之间的夹角___________12.通过点A(2,-1,3)作平面22110x y z --+=,的垂线,求平面上的垂足是 ______________13.过点A (1,2,-2)且通过直线L : 21131x z y --=+=-的平面方程____ _____________ 14.在空间直坐标系O -xyz 中,给出点A(1, 0, 2)和平面π:2x + y - z = 3.过点A 作平面π的垂线l ,点B 是垂足.求直线l 的方程和点B 的坐标.15.在空间直角坐标系中,给定两点A (0,1,0)、B (1,0,1)和平面π:2x -3y +z +5= 0。
港澳台华侨生联考试题:数学基础练习30套:第22套:三角函数基础(含答案)

) D.第四象限 )
cos 的值等于(
D.
1 5
B.
1 5
C.
2 5
2 5
7.已知 cosθ•tanθ<0,那么角θ是( ). A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角
cos 2 2 8.若α是第三象限角,则 y= + 的值为( sin cos 2 2
上, 则
等于 ( A. 14.如果
) B. C. D.
sin 2 cos 5 ,那么 tan 的值为( ) 3 sin 5 cos 23 23 A.-2 B.2 C.- D. 16 16
15.若
sin( ) cos( ) =3 ,则 tan(π+α)=( sin( ) cos( )
.
39.已知 sin
5 ,则 sin 4 cos 4 的值为 5
. .
40.已知 tan 2, 求 7sin 2 3cos 2 A.
1 5
B.
11 5
C.
21 5
D.
31 5
1.D 11.B 21.D 26. 2 31.
3 4
2.C 12.A 22.D
B.
13 4
C.
13 5
13 4
弧度时,它有最大的面积.
26.已知扇形的周长为 20,当扇形的圆心角为
27.若角α的终边上有一点 P(-4,a),且 sinα·cosα=
3 ,则 a 的值为 4
;
28.已知角α的终边经过点 P(3, 3 ),则与α终边相同的角的集合是______. 29.设扇形周长为 8cm ,面积为 4cm ,则扇形圆心角的弧度数是 30.如果 cos A 31.已知 sin( ) 32.已知 tan α=2,则
港澳台侨联考试题:数学必考知识点:三角测试(含答案)

20. 设函数 f(x)=2 sin x cos 2
cos x sin sin x(0 ) 在 x 处取最小值.(1)求 .的值; 2
3 ,求角 C.. 2
(2)在 ABC 中, a, b, c 分别是角 A,B,C 的对边,已知 a 1, b 2 , f ( A) 解: (1) f ( x) 2sin x
(1)求 f x 的解析式;(2)若函数 g x af x b 的最大和最小值分别为 6 和 2,求 a, b 的值. 解:(1)依题意,得 T 3 3 2 2 x0 x0 , T 3 , 2 2 2 3 A 2 最大值为 2,最小值为-2,
2 x ,2 f x 2 (2) f x 2sin 6 3
2 a b 6 2 a b 2 或 2a b 2 2a b 6 a 1 a 1 解得, 或 . b 4 b 4
北京博飞--华侨港澳台培训学校 1. 设 a sin 210 , b cos 210 , c tan 210 , 则( (A)a<b<c (B)b<c<a D ) (D)b<a<c
(C)c<b<a
)C
2. 已知 a 是第二象限角, sin a A.
5 13
B.
5 13
5 , 则cosa ( 13
2 ,则 tan +cot 的值为_____3_____. 3
2
15. 函数 f ( x ) sin(2 x
) 2 2 sin 2 x 的最小正周期是_______ . π 4
港澳台华侨生联考真题:数学-圆的方程解答题1-3(含答案)

北京博飞华侨港澳台联考 圆锥曲线之圆的方程
数学最新训练试题 解答题 1-5(含答案)
做最专业的华侨港澳台联招辅导班,更多信息请访问官方网站
1.已知直线 l1:3x+4y-5=0,圆 O:x2+y2=4. (1)求直线 l1 被圆 O 所截得的弦长; (2)如果过点(-1,2)的直线 l2 与 l1 垂直,l2 与圆心在直线 x-2y=0 上的圆 M 相切,圆 M 被直线 l1 分成两段圆弧,其弧长比为 2∶1,求圆 M 的方程.
y 的最大值和最小值;(2)y-x 的最小值;(3)x2+y2 的最大值和最小值. x
9.已知实数 x、y 满足 x2+y2+2x-2 3 y=0,求 x+y 的最小值. 10.设 O 为坐标原点,曲线 x2+y2+2x - 6y+1=0 上有两点 P 、 Q ,满足关于直线 x+my+4=0 对称,又满足
2 2
(2) x 2 y 2 4
2. ( x 1) y 9( y 0) 3.(1) 2 x y 5 0 ;(2) 2 30 。 4 .( x 3) ( y 6) 20
2 2
5.
2 30 5
2
北京博飞教育中心
网址:
2 2
6.已知圆 C 和 y 轴相切,圆心在直线 x 3 y 0 上,且被直线 y x 截得的弦长为 2 7 程。 7.已知定点 A(0,1),B(0,-1),C(1,0).动点 P 满足: AP BP k | PC | .
2
,求圆 C 的方
(1)求动点 P 的轨迹方程,并说明方程表示的曲线; (2)当 k 2时, 求 | 2 AP BP | 的最大值和最小值. 8.已知实数 x、y 满足方程 x2+y2-4x+1=0.求 ( 1)
港澳台全国联考试题:数学-圆的方程选择题1-5(含答案)

)
A. ( x 2) ( y 6) 1
2 2
B. ( x 6) ( y 2) 1
2 2
C. ( x 1) ( y 3) 1
2 2
D. ( x 1) ( y 3) 1
2 2
40.若直线 y kx 4 2k 与曲线 y A. 1, B. 1,
2 2 2
B. x ( y 2) 1
2
C. ( x 1) ( y 3) 1
2
2 2
D. ( x 1) ( y 3) 1
2 2
24.直线 3 x 4 y 5 0 与圆 x y 4 相交于 A 、 B 两点,则弦 AB 的长等于( A. 2 3
2
)
2
A、 ( x 1) ( y 4) 4 C、 ( x 4) ( y 1) 4
2 2 2 2
B、 ( x 1) ( y 4) 4
2 2
D、 ( x 4) ( y 1) 4
2 2
4. 已知圆 O :x y 4 上到直线 l : x y a 的距离等于 1 的点至少有 2 个, 则 a 的取值范围为 ( A. ( 3 2,3 2) B. ( , 3 2 ) (3 2, ) C. ( 2 2, 2 2 ) D. [ 3 2,3 2 ]
2 2
14.过点 A. 15.已知圆 A. 16.直线 A.相交
有公共点,则直线 的倾斜角的取值范围是( C. D. )
)
,则两圆的公共弦长为( C. 2 D.1 )
的位置关系是 ( C.相离
D.不确定
17.直线 y kx 3 与圆 ( x 3) ( y 2) 4 相交于 M,N 两点,若 | MN | 2 3 ,则 k 的取值范围是 ( )
2016届港澳台联考数学模拟试题(3)含答案

绝密★启用前2016届港澳台联考模拟试题(3)数学试卷一、选择题:本大题共12小题;每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3} 2.已知命题p: "x ÎR ,cos x ≤1,则( )A .1cos ,:≥∈∃⌝x R x pB .:p Ø" x ∈R ,cos x ≥1C . 1cos ,:>∈∃⌝x R x pD .:p Ø" x ∈R ,cos x >13.若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( )A 、-6B 、13 C.32D.13 4.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 ( ) A .-2 B. 22 C.34 D. 25.在△ABC 中,a ,b ,c 分别是A ∠,B ∠,C ∠的对边,且222b c a +=,则A ∠等于( ) A .6π B .3π C .23π D .56π6.如图,目标函数u=ax -y 的可行域为四边形OACB(含边界). 若点24(,)35C 是该目标函数的最优解,则a 的取值范围是( )A .]125,310[--B .]103,512[--C .]512,103[D .]103,512[-7.若函数1()ax f x e b=-的图象在x =0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是( ) A .在圆外B .在圆内C .在圆上D .不能确定8.某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”. 黑“电子狗”爬行的路线是111AA A D →→ ,黄“电子狗”爬行的路线是1AB BB →→ ,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(其中i 是正整数). 设黑“电子狗”爬完2008段、黄“电子狗”爬完2007段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( )A . 0B .1C .D .9.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 ( )A .(1)f p +>0B .(1)f p +<0C .(1)f p +=0D .(1)f p +的符号不能确定 10.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为( )A.2 B.2 C.2 D.1011.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 ( ) A .13 B .23 C .19 D .2912.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数; 能使命题甲、乙均为真的所有函数的序号是 ( )A .①②B .①③C .②D .③二、填空题:(本大题共6题,每小题5,共30,把答案填写在题横线上).13.曲线 所围成的封闭图形的面积为_________ 14.已知△ABC 的顶点A(-6,0) 和C(6,0),顶点B 在双曲线2212511x y -=的左支上,则sin sin sin A C B -= ______ 15.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……试用 n 表示出第n 个图形的边数 ___n a =. 16.三位同学在研究函数 f (x ) =x1 + | x |(x ∈R ) 时,分别给出下面三个结论:① 函数 f (x ) 的值域为 (-1,1)② 若x 1≠x 2,则一定有f (x 1)≠f (x 2)③ 若规定 f 1(x ) = f (x ),f n +1(x ) = f [ f n (x )],则 f n (x ) = x1 + n | x |对任意 n ∈N *恒成立.你认为上述三个结论中正确的个数有 17.不等式|1||3|2x x +--≥的解集是18.求过点M (1,-1,2),N (-1,0,3)且平行于z 轴的平面方程1,1,2,0y x x y x====三、解答题:19.(满分15分)旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.(1)求3个旅游团选择3条不同的线路的概率;(2)求恰有2条线路没有被选择的概率.(3)求选择甲线路旅游团数的期望.20.(满分15分)如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.21.(满分15分)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. 若P 是该椭圆上的一个动点,求21PF ⋅的最大值和最小值;22. (满分15分)设函数()ln 1f x x px =-+(Ⅰ)求函数()f x 的极值点;(Ⅱ)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围;2016届港澳台联考模拟试题(3)数学试卷参考答案一、选择题(本大题12,共6分,每小题给出的四个选项中,只有一项是符合要求)二、填空题:(本大题共须作8题,每小题4,共32,把答案填写在题横线上).13、 ln 2 14、5615、134n -´ 16、3 17、3 ;18、13+。
港澳台华侨生联考试题:数学基础练习30套:第28套:和差公式二倍角公式(含答案)

B. cos
2
7. sin 27 cos 63 cos 27 sin 63 ( A. 1 B. 1 C.
) D.
1 13 , cos( ) ,且 0 , ( 7 14 2 5 A. B. C. D. 4 6 3 12 sin cos 1 9.若 ,则 tan 2 ( ) sin cos 2 3 3 3 3 A. B. C. D. 4 4 5 5 3 10. sin cos 则 sin 2 ( ) 3 2 2 2 2 A. B. C. D. 3 9 9 3
北京博飞华侨港澳台学校
3
网址:
北京博飞--华侨港澳台培训学校
33.若 , , sin 2 = 8 4 2 A.
3 7
,则 cos = ( C. )
)
3 4
B.
34.已知 sin A.
cos
9 25
12 25 3 35.已知 为第二象限角, sin cos ,则 cos 2 ( ) 3 5 5 5 5 A. B. C. D. 3 9 3 9 3 2 36.已知 tan , tan , 则 tan 的值为 6 7 6 5 29 1 1 A. B. C. D. 1 41 29 41 24 3 37.已知 sin 2 ,且 ( ) , ) ,则 sin ( 25 4 3 4 3 4 A. B. C. D. 5 5 5 5
48.已知 tan =2 ,那么 sin 2 的值是( ) (D) (
4 (A) 5
4 3 (B) (C) 5 5 1 2 49.已知 sin cos , 则 cos = 3 4
2016年台湾省中考数学试卷和解析PDF版(重考)

2016年台湾省中考数学试卷(重考)一、选择题(第1~25题)1.(3分)算式2.5÷[(﹣1)×(2+)]之值为何?()A.﹣ B.﹣C.﹣25 D.112.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.133.(3分)计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+44.(3分)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.5.(3分)若两正整数a和b的最大公因子为405,则下列哪一个数不是a和b 的公因子?()A.45 B.75 C.81 D.1356.(3分)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣57.(3分)如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?()A.95 B.100 C.105 D.1108.(3分)有一个三位数8□2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8□2就为812.小欣打算投掷一颗骰子,骰子上标有1~6的点数,若骰子上的每个点数出现的机会相等,则三位数8□2是3的倍数的机率为何?()A.B.C.D.9.(3分)如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.1610.(3分)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣1811.(3分)坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?()A.(,9)B.(,9)C.(,9)D.(,9)12.(3分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40°B.45°C.50°D.60°13.(3分)已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1514.(3分)判断2﹣1之值介于下列哪两个整数之间?()A.3,4 B.4,5 C.5,6 D.6,715.(3分)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A.2:1 B.7:5 C.17:12 D.24:1716.(3分)表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?()成绩(分)507090男生(人)101010女生(人)5155合计(人)152515A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数17.(3分)如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:(甲)1.作∠A的角平分线L.2.以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.(乙)1.过B作平行AC的直线L.2.过C作平行AB的直线M,交L于D点,则D即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确18.(3分)桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A.80 B.110 C.140 D.22019.(3分)如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点.若AO=5,且圆O的半径为3,则BG的长度为何?()A.4 B.5 C.6 D.720.(3分)已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?()A.300 B.310 C.600 D.62021.(3分)如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5,则△ABD外心与△BCD外心的距离为何?()A.5 B.5 C.D.22.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B 两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.23.(3分)已知a=(﹣)67,b=(﹣)68,c=(﹣)69,判断a、b、c三数的大小关系为下列何者?()A.a>b>c B.b>a>c C.b>c>a D.c>b>a24.(3分)如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN 的长度为何?()A.B.C.D.25.(3分)有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.48二、非选择题(第1~2题)26.图1为长方形纸片ABCD,AD=26,AB=22,直线L、M皆为长方形的对称轴.今将长方形纸片沿着L对折后,再沿着M对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形EFGHI,如图2.最后将图2的五边形展开后形成一个八边形,如图2,且八边形的每一边长恰好均相等.(1)若图2中HI长度为x,请以x分别表示剪下的直角三角形的勾长和股长.(2)请求出图3中八边形的一边长的数值,并写出完整的解题过程.27.如图,△ABC中,D为AB上一点.已知△ADC与△DBC的面积比为1:3,且AD=3,AC=6,请求出BD的长度,并完整说明为何∠ACD=∠B的理由.2016年台湾省中考数学试卷(重考)参考答案与试题解析一、选择题(第1~25题)1.(3分)算式2.5÷[(﹣1)×(2+)]之值为何?()A.﹣ B.﹣C.﹣25 D.11【解答】解:2.5÷[(﹣1)×(2+)]=2.5÷[(﹣)×]=2.5÷(﹣2)=﹣.故选:A.2.(3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.13【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,则a+b=1+12=13,故选D.3.(3分)计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+4【解答】解:(2x2﹣4)(2x﹣1﹣x),=(2x2﹣4)(x﹣1),=x3﹣2x2﹣2x+4.故选:D.4.(3分)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.5.(3分)若两正整数a和b的最大公因子为405,则下列哪一个数不是a和b 的公因子?()A.45 B.75 C.81 D.135【解答】解:∵405=3×3×3×3×5=3×135=9×45=27×15=81×5∴a和b的公因子有3,5,9,15,27,45,81,135.∴75不是a和b的公因子.故选B6.(3分)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.7.(3分)如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?()A.95 B.100 C.105 D.110【解答】解:∵∠AEG=∠ABC+∠GCB,∴∠ABC=∠AEG﹣∠GCB=95°﹣20°=75°,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣75°=105°;故选:C.8.(3分)有一个三位数8□2,□中的数字由小欣投掷的骰子决定,例如,投出点数为1,则8□2就为812.小欣打算投掷一颗骰子,骰子上标有1~6的点数,若骰子上的每个点数出现的机会相等,则三位数8□2是3的倍数的机率为何?()A.B.C.D.【解答】解:投掷一颗骰子,共有6种可能的结果,当点数为2或5时,三位数8□2是3的倍数,则三位数8□2是3的倍数的机率为=,故选B.9.(3分)如图,有一圆O通过△ABC的三个顶点.若∠B=75°,∠C=60°,且的长度为4π,则BC的长度为何?()A.8 B.8 C.16 D.16【解答】解:连接OB,OC,∵∠B=75°,∠C=60°,∴∠A=45°,∴∠BOC=90°,∵的长度为4π,∴=4π,∴OB=8,∴BC===8,故选B.10.(3分)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.11.(3分)坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?()A.(,9)B.(,9)C.(,9)D.(,9)【解答】解:设该一次函数的解析式为y=kx+b,将点(5,0)、(10,﹣10)代入到y=kx+b中得:,解得:.∴该一次函数的解析式为y=﹣2x+10.A、y=﹣2×+10=9≠9,A中点不在直线上;B、y=﹣2×+10=9≠9,B中点不在直线上;C、y=﹣2×+10=9,C中点在直线上;D、y=﹣2×+10=9≠9,D中点不在直线上.故选C.12.(3分)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40°B.45°C.50°D.60°【解答】解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=140°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣140°=40°.故选A.13.(3分)已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣15【解答】解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.14.(3分)判断2﹣1之值介于下列哪两个整数之间?()A.3,4 B.4,5 C.5,6 D.6,7【解答】解:∵2=,且<<,即6<2<7,∴5<2﹣1<6,故选:C.15.(3分)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A.2:1 B.7:5 C.17:12 D.24:17【解答】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,根据题意,知:3x=2y,即y=x,则===,故选:C.16.(3分)表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?()成绩(分)507090男生(人)101010女生(人)5155合计(人)152515A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数【解答】解:由表可知,男生成绩共30个数据,∴Q1的位置是=7,Q3==23,则男生成绩Q1是第8个数50分,Q3是第23个数90分,∴男生成绩的四分位距是=20分;女生成绩共25个数据,∴Q1的位置是=6,Q3的位置是=19,则女生成绩Q1是第6、7个数的平均数70,Q3是第19、20个数的平均数70,∴女生成绩的四分位距是0分,∵20>0,∴男生成绩的四分位距大于女生成绩的四分位距,故A正确,B错误;∵==70(分),==70(分),∴男生成绩的平均数等于女生成绩的平均数,故C、D均错误;故选:A.17.(3分)如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:(甲)1.作∠A的角平分线L.2.以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.(乙)1.过B作平行AC的直线L.2.过C作平行AB的直线M,交L于D点,则D即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【解答】解:(甲)如图一所示,∵∠A=60°,∠B=58°,∴∠ACB=62°,∴AB≠BC≠CA,由甲的作法可知,BC=BD,故△ABC和△DCB不可能全等,故甲的作法错误;(乙)如图二所示,∵BD∥AC,CD∥AB,∴∠ABC=DCB,∠ACB=∠DBC,在△ABC和△DCB中,∴△ABC≌△DCB(ASA),∴乙的作法是正确的.故选D.18.(3分)桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A.80 B.110 C.140 D.220【解答】解:设甲杯中原有水a毫升,乙杯中原有水b毫升,丙杯中原有水c毫升,②﹣①,得b﹣a=110,故选B.19.(3分)如图,菱形ABCD的边长为10,圆O分别与AB、AD相切于E、F两点,且与BG相切于G点.若AO=5,且圆O的半径为3,则BG的长度为何?()A.4 B.5 C.6 D.7【解答】解:连接OE,∵⊙O与AB相切于E,∴∠AEO=90°,∵AO=5,OE=3,∴AE==4,∵AB=10,∴BE=6,∵BG与⊙O相切于G,∴BG=BE=6,故选C.20.(3分)已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?()A.300 B.310 C.600 D.620【解答】解:∵a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,∵a2+b30=29,a30+b2=﹣9,∴a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…,∴a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+…+(a16+b16)=15×(29﹣9)+=310.故选B.21.(3分)如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5,则△ABD外心与△BCD外心的距离为何?()A.5 B.5 C.D.【解答】解:如图,连接AC,作DF⊥BC于F,AC与BD、DF交于点E、G.∵AB=AD,CB=CD,∴AC垂直平分BD,∵∠BAD=90°,∴∠ABD=∠ADB=45°,∵∠ABC=105°,∴∠CBD=60°,∵CB=CD,∴△BCD是等边三角形,△ABD是等腰直角三角形,∴点E是△BAD的外心,点G是△BCD的外心,在RT△ABD中,∵AB=AD=5,∴BD=10,∴BE=DE=5,在RT△EDG中,∵∠DEG=90°,∠EDG=30°,ED=5,∴tan30°=,∴EG=5.∴△ABD外心与△BCD外心的距离为5.故选A.22.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B 两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【解答】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD 的面积比为1:4,∴k=(4﹣k),解得:k=.故选:D.23.(3分)已知a=(﹣)67,b=(﹣)68,c=(﹣)69,判断a、b、c三数的大小关系为下列何者?()A.a>b>c B.b>a>c C.b>c>a D.c>b>a【解答】解:因为a=(﹣)67,b=(﹣)68,c=(﹣)69,所以b>c>a,故选C.24.(3分)如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN 的长度为何?()A.B.C.D.【解答】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:AE=,将AE=代入②,得:,解得:BN=,故选:D.25.(3分)有一正角锥的底面为正三角形.若此正角锥其中两个面的周长分别为27、15,则此正角锥所有边的长度和为多少?()A.36 B.42 C.45 D.48【解答】解:如图所示:根据题意得:2y+x=27,3x=15,其他都不符合三角形条件,解得:x=5,y=11,∴正角锥所有边的长度和=3x+3y=15+33=48;故选:D.二、非选择题(第1~2题)26.图1为长方形纸片ABCD,AD=26,AB=22,直线L、M皆为长方形的对称轴.今将长方形纸片沿着L对折后,再沿着M对折,并将对折后的纸片左上角剪下直角三角形,形成一个五边形EFGHI,如图2.最后将图2的五边形展开后形成一个八边形,如图2,且八边形的每一边长恰好均相等.(1)若图2中HI长度为x,请以x分别表示剪下的直角三角形的勾长和股长.(2)请求出图3中八边形的一边长的数值,并写出完整的解题过程.【解答】解:(1)延长HI与FE相交于点N,如图所示.∵HN=AD=13,NF=AB=11,HI=EF=x,∴NI=HN﹣HI=13﹣x,NE=NF﹣EF=11﹣x,∴剪下的直角三角形的勾长为11﹣x,股长为13﹣x.(2)在Rt△ENI中,NI=13﹣x,NE=11﹣x,∴EI==.∵八边形的每一边长恰好均相等,∴EI=2HI=2x=,解得:x=5,或x=﹣29(舍去).∴EI=2×5=10.故八边形的边长为10.27.如图,△ABC中,D为AB上一点.已知△ADC与△DBC的面积比为1:3,且AD=3,AC=6,请求出BD的长度,并完整说明为何∠ACD=∠B的理由.【解答】解:∵△ADC与△DBC同高,且△ADC与△DBC的面积比为1:3,AD=3,∴BD=9,∴AB=12,∵AC=6,∴∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年港澳台联考数学试题(真题)
一:选择题:本大题共12小题;每小题5分,共60分。
1.设集合{}{},22,11<=<-=x x B x x A 则=B A A.{}10<<x x B.{}20<<x x C.{}2<x x D.φ
2.若,20πθ<≤且2
1sin ≤θ,则θ的取值范围是 A.[)π20, B.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ23530,, C.⎥⎦⎤⎢⎣⎡656ππ, D.⎪⎭
⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ2,656,0 3.平面向量)3,(x a =→与),2(y b =→
平行的充分必要条件是
A.0,0==y x
B.2,3-=-=y x
C.6=xy
D.6-=xy
4.复数()()22i 22i -1+的模为 A.1 B.2 C.5 D.5
5.等比数列{}n a 的各项都为正数,记{}n a 的前n 项和为n S ,若,4,1253=-=S S S 则=1a A.91 B.71 C.51 D.31
的反函数是函数)),1((11log 6.2+∞∈-=x x y
)1,(2
.)(2.))
,1((2.)(12.1111≠∈=∈=+∞∈-=∈+=----x R x y D R x y C x y B R x y A x x x x 5
.3.5.3.1:427.22
2D C B A C b y x C x y 的离心率为的一条渐近线平行,则与双曲线设直线=--= []5.6.7.9.3)1,1(.822D C B A a a x a y x =
+-∈=-,则为的最大值与最小值之和若函数
9.从1,2,3,4,5,6中任取3个不同的数相加,则不同的结果共有
A.6种
B.9种
C.10种
D.15种
10.正四棱锥的各棱长均为1,则它的体积是
61
.62
.63
.33
.D C B A
16
17.1.1615.0.)1(4111.2====-=
x D x C x B x A x y 的准线方程是抛物线
2.2.2
.2.11112.+-==-=-=--==+=-=-+=x y x y D x y x y C x y x y B x y x y A x
y 与与与与的对称轴的方程是曲线
二:填空题:本大题共6小题;每题5分,共30分
[] 则若则时,,当为周期函数,其周期为的偶函数定义域为.______________)4tan(,33)4tan(.14.
____________)25(,1)(0,48)(R 13.=-=+=+=-∈πθπθf x x f x x f
._____________)1(16)1().0()()(.16._____________521213115.4
=-=>>+===+--=-=-b a f f a b b ax x f c z y x c z y x ,则若设函数则平行,与平面若直线
在空间直角坐标系中, .
___________,18.___.
__________1)(31)(11)(17.2所成角的大小为与,则异面直线且为直二面角,已知的余式为除以,则
的余式为除以,的余式为除以多项式CD AB BC AB ADC Rt ABC Rt D AC B x x p x x p x x p =∆≅∆---+- 三:解答题:本大题共4小题,每小题15分,共60分。
()
.
.2;
.1.
cos 2,1),1,sin 2(19.的最大值求)(时,求当)(已知平面向量→
→→→→→→→+-⊥==n m n m n m x n x m
{}{}{}.12.120.1
2
项和的前,求数列)记(的通项公式;
求)(项和的前已知数列n b a a b a n S n a n n n n n n n ++==
最大?
为何值时,,的概率为次次投篮中恰好命中)若该同学在(次的概率;
次投篮中至少命中求该同学在独立各次投篮是否命中相互,且中的概率都为已知该同学每次投篮命某同学进行投篮训练,k k P k P k k )10,,2,1,0(10223)1(.
4
321. =
.412;
1.),(),,(19
25:22.2122112
2的方程,求直线)若
(的最大值)求(轴上不在,且于两点交的直线右焦点过椭圆l FB AF y y x A y x B y x A C l F y x C ==+。