结构力学第六章-5(温度、位移)
第六章 结构位移计算

解:(1)虚拟状态如图b,各杆内力为
AB段: M x , FN 0, FS 1 BC段: M l , FN 1, FS 0
(2)实际状态中,各杆内力为
AB段:
MP
qx2 2
,
FNP 0,
FSP qx
BC段:
MP
ql 2 2
,
FNP ql,
FSP 0
(3)代入位移计算公式
三、计算位移的有关假定
1、结构材料服从“虎克定律”,即应力、应变成线形关系。
2、小变形假设。变形前后荷载作用位置不变。
3、结构各部分之间为理想联结,不计摩擦阻力。
4、当杆件同时承受轴力与横向力作用时, 不考虑由于杆 弯曲所引起的杆端轴力对弯矩及弯曲变形的影响。
P
A
B
P
满足以上要求的体系为“线变形体系”。因位移与荷载 为线形关系,故求位移时可用叠加原理。
第6章
求图a所示桁架AB杆的角位移。
在位移微小的前提下,桁架杆件的 角位移=其两端在垂直于杆轴方向上的 相对线位移除以杆长,如图b。
AB杆的角位移
AB
ΔA
d
ΔB
荷载所做的虚功
1 d
ΔA
1 d
ΔB
ΔA
d
ΔB
AB
第6章
计算对象:线弹性结构,位移与荷载成正比,应力与应变符合
胡克定律。
求图a所示结构K点的竖向位
A —截面A的角位移(顺时针方向) B —截面B的角位移(逆时针方向) AB A B —截面A、B的相对角位移
ΔC —C点水平线位移(向右) ΔD —D点水平线位移(向左) ΔCD ΔC ΔD —C、D两点的水平相对线位移
结构力学课件--5位移计算(1)

MP
EI
NP
EA
k
QP GA
k--为截面形状系数
1.2
10 9
(3) 荷载作用下的位移计算公式
MM P ds NNP ds kQ QP ds
2021/4/9
EI
EA
GA
二、各类结构的位移计算公式
21
(1)梁与刚架
MM P EI
ds
(2)桁架
NNP ds NNP ds NNPl
We =Wi
2021/4/9
§5-2 结构位移计算的一般公式 ——变形体的位移计算
18
d 1 ds ds d ds
R
d ds
K
t1 t2
c2
1
R1
K
c1
ds
ds R2 ds
M
N
Q
外虚功:We 1 Rk ck 内虚功:Wi M N Q ds
1 (RMkck N MQ N)dsQ Rdksck
9
刚体的虚功原理 刚体系处于平衡的必要和充分条件是:
对于任何可能的虚位移,作用于刚体 系的所有外力所做虚功之和为零。
2021/4/9
10
四、虚功原理的两种应用
1)虚功原理用于虚设的协调位移状态与实际的 平衡力状态之间。
例. 求 A 端的支座反力(Reaction at Support)。 直线
A
EA
EA
EA
(3)拱
MM P EI
ds
NNP EA
ds
2021/4/9
图乘§法5是-4V图er乘es法hag位in于移1计92算5年举提例出的,他当 22
时为莫斯科铁路运输学院的学生。
MiMk
结构力学(第五版)第六章 结构位移计算

相对位移 △CD= △C+ △D
3. 计算位移的目的
(1)校核结构的刚度。 (2)结构施工的需要。 (3)为分析超静定结构打 基础。
△ 起拱高度
除荷载外,还有一些因素如温度变化、支座移动、 材料收缩、制造误差等,也会使结构产生位移。 结构力学中计算位移的一般方法是以虚功原理为 基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。 返4回
B
变力 W= 1 M· ϕ 2
(d )
返6回
P
(2)实功与虚功 实功: 力本身引起的位移上所作的功。 例如: W=
A 力在其它 虚功: 因素引起的位移上所作 的功。力与位移是彼此无关的量,分别属于同一体系 的两种彼此无关的状态。
△2
2
A
P1
△1
1
B P2 B
例如:
W12=P1·△2
返7回
2. 变形体的虚功原理:
A RA
P
M
q B dS
q
RB N+dN Q+dQ
Q N 力状态 A
ds B dS
dWi=Ndu+QγdS+Mdϕ Wi=
(6—2)
整个结构内力的变形虚功为
虚功方程为
W=
(6—3)
dS du
dϕ
γ γ
dS
位移状态
dS
9
返dx γ回
§6—3 位移计算的一般公式
k 1. 位移计算的一般公式 t1 K △K t2 c3 K ds 设平面杆系结构由 ds k R 3 K′ 于荷载、温度变化及支 k P1 座移动等因素引起位移 du、dϕ、γdS N MQ 、、 如图示。 R 1 c2 求任一指定截面K K c1 2 沿任一指定方向 k—k 实际状态-位移状态 R 虚拟状态-力状态 上的位移△K 。
结构力学——第6章结构位移计算

C
Aω—MP图的面积; xC—形心C到y轴的距离。
yC是MP图的形心C所对应的M图的竖标
图乘法
§6-5 图乘法
如结构上所有各杆段均可图乘,则位移计算公式可写为
A yC MM P ds EI EI
ΔKP
应用图乘法时,应注意下列各点: (1)必须符合上述前提条件。 (2)竖标yC只能取自直线图形。
上式中:第一项为弯矩的影响,第二、三项分别为轴力、剪力的影响。 设:杆件截面为矩形,宽度为b、高度为h,A=bh,I=bh3/12,k=6/5
5 ql 4 2 h 2 E h 2 ΔAy [1 ( ) 2 ( ) ] 8 EI 15 l 25 G l
截面高度与杆长之比h/l愈大,轴力和剪力影响所占比重愈大。 当h/l=1/10,G=0.4E时,计算得
例6-3 试求图a所示对称桁架结点D的竖向位移△D。图中右半 部各括号内数值为杆件的截面面积A(×10-4m2), E=210GPa。 解:实际状态各杆内力 如图a(左半部)。 虚拟状态各杆内力如图b (左半部)。 注意桁架杆件轴力是正对称的
FN FNP l ΔD 8mm() EA
§6-5 图乘法
对整个结构有:
WV dWV FN du Md FSds
虚功方程为: W WV
W FN du Md FSds
§6-2 变形体系的虚功原理
虚功原理的应用
虚位移原理: 对于给定的力状态,虚设一个位移状态,利 用虚功方程求解力状态中的未知力。
虚位移必须 是微小的
§6-2 变形体系的虚功原理
外力虚功W:整个结构所有外力(荷载与支座反力)在其 相应的虚位移上所作虚功的总和。
第六章结构位移计算

广义的位移——角、线位移;相对、绝对位移
△C
△D
C C′
A
A
F F
D′ D
B
B
3. 引起位移的原因
(1)荷载作用——内力——变形——位移 (2)温度变化——结构变形——位移 (3)支座位移——几何位置改变——位移
5 第六
4.计算结构位移的目的
1)校核刚度——位移是否超过许用限值,防止构件和结构产
生过大的变形而影响结构的正常使用。
F
W 1 F 变力功 2
9 第六
F
M=Fd
d F
F
WM 力偶功
广义力可以是一个集中力、一对集中力,也可以 是一个力偶、一对力偶;广义位移是相应的沿力方向 的线位移和沿力偶转向的角位移或相对位移。
10 第六
其他形式的力或力系所作的功也用两个因子的 乘积表示为:功=广义力×广义位移
1)作功的力系为一个集中力 2)作功的力系为一个集中力偶
§6—2 变形体系的虚功原理
§6—3 位移计算的一般公式
A′
§6—4 静定结构在荷载作用下的位移计算
§6—5 图乘法
§6—6 静定结构温度变化时的位移计算
§6—7 静定结构支座移动时的位移计算
§6—8 线弹性结构的互等定理
3 第六
§6—1 概 述
1. 变形和位移
任何结构都由可变形体(固体)材料组成, 在荷载作用下会产 生变形和位移。
A''
B''
将ds虚位移分解为:
C
D
刚体虚位移: ABCD A'B'C'D'
变形虚位移: A'B'C'D' A''B''C''D''
结构力学课件位移法对称性

rij由第 j个附加约束的单位位移引起的第 i个附加约束上的约束反力影 响系数(i,j = 1,2); r13 和 r23 表示单位多余未知力引起的第 1,2 个附加约束上的约束反 力影响系数。
3j由第 j个附加约束的单位位移引起的第 3个多余未知力的位移影响
静定结构
超静定结构
仅某一几何不变部分承受一平 仅某一几何不变部分承受一平 衡力系时,其它部分仍将产生 衡力系时,其它部分不受力。 内力(由于多余约束要限制其
变形)。
仅基本部分承受荷载时,附属 部分不受力。
?
作业(16)
习题集:5-25、26、37、45、51
谢 谢!
2010.8
由一端固定、一端铰支梁的形常数可画出各柱子的弯矩图。
启示
2 3 2 5 2
M
3EI 2h2
tl
M 3M 5M
★离对称轴越远的柱子,温度影响越大。 ★结构上通过设置温度缝,减小温度影响。 ★斜撑尽量设置在结构中部,减小斜撑温度应力。
第六章 位移法
6.6 位移法与力法的比较
The comparison of the displacement method to force
6.5 支座移动、温度变化 作用时的位移法
Effects of support settlement and temperature change
1. 支座移动
例:作M 图,EI=常数。
l
l
l
解: r11Z1+R1C=0
Z1
4i r11 8i
Z1=1 3i
i
M1
2i
3i / 2l
15i / 8l M
《结构力学考试样题库》6-位移法

第六章 位移法一、是非题1、位移法未知量的数目与结构的超静定次数有关。
2、位移法的基本结构可以是静定的,也可以是超静定的。
3、位移法典型方程的物理意义反映了原结构的位移协调条件。
4、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。
5、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。
6、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。
7、位 移 法 可 解 超 静 定 结 构 ,也 可 解 静 定 结 构 。
8、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。
/2/22l l θθC9、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是 -θ/2 。
10、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。
q l11、图 示 超 静 定 结 构 , ϕD 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。
此 结 构 可 写出 位 移 法 方 程 111202i ql D ϕ+=/。
二、选择题1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须 ; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。
2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 :A.M i i i l AB A B AB =--426ϕϕ∆/ ;B.M i i i l AB A B AB =++426ϕϕ∆/ ;C.M i i i l AB A B AB =-+-426ϕϕ∆/ ;D.M i i i l AB A B AB =--+426ϕϕ∆/。
结构力学——第6章结构位移计算讲解

WV dWV FNdu Md FSds
虚功方程为: W WV
W FNdu Md FSds
§6-2 变形体系的虚功原理
虚功原理的应用
虚位移原理: 对于给定的力状态,虚设一个位移状态,利 用虚功方程求解力状态中的未知力。
虚力原理: 对于给定的位移状态,虚设一个力状态,利用 虚功方程求解位移状态中的位移。
例6-7 图a为一组合结构,试求D点的竖向位移△Dy。
解:实际状态FNP、MP如图b所示。 ΔDy
FN FNPl E1 A1
A yC E2 I2
虚拟状态FN、M如图c所示。
(1 2 2)Fa 4Fa3
()
E1 A1
3E2 I 2
§6-6 静定结构温度变化时的位移计算
试求图a所示结构由于温度变
对于静定结构,支座发生移动并不引起内力,材料不发生变形,此 时结构的位移属刚体位移。位移计算一般公式简化为
ΔKc FRc
§6-7 静定结构支座移动时的位移计算
例6-9 图a所示三角刚架右边支座的竖向位移△By=0.06m, 水 平位移为△Bx=0.06m, 已知l=12m,h=8m。试求由此引
第六章 结构位移计算
§6-1 概述 §6-2 变形体系的虚功原理 §6-3 位移计算的一般公式 单位荷载法 §6-4 静定结构在荷载作用下的位移计算 §6-5 图乘法 §6-6 静定结构温度变化时的位移计算 §6-7 静定结构支座移动时的位移计算 §6-8 线弹性结构的互等定理 §6-9 空间刚架的位移计算公式
变形曲线。 解:实际状态弯矩图如图b所示。
虚拟状态弯矩图如图c所示。
ΔAy
A yC 1 (l l ) Fl 1 (l 2l ) Fl EI EI 2 2 2EI 3 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2. 试求图示两端固定单跨梁在下属情 况下的M图。 (a) A端逆时针转动单位转角。 (b) A端竖向向上移动了单位位移。 (c) A、B两端均逆时针转动单位转角。 (d) A、B两端相对转动单位转角。 P (e) A端竖向向上、BF 端竖向向下移动了单 位位移。
A
EI
B
例 3. 求图示刚架由于温度变X3X1Fra bibliotekX2b a
1 l b 2 a 3
用几 何法 与公 式法 相对 比。
基本体系3
11 X 1 12 X 2 13 X 3 1 0 21 X 1 22 X 2 23 X 3 2 0 X X X 0 31 1 32 2 33 3 3
§6-6 支座位移、温度变化下超静定结构的计算
例 1. 求解图示刚架由于 支座移动所产生的内力。
EI 常 数
解:取图示基本结构 力法典型方程为: 方程的物理意义是否明确?
11 X 1 12 X 2 13 X 3 1 0 21 X 1 22 X 2 23 X 3 2 X X X a 31 1 32 2 33 3 3
其中 1 , 2 , 3 为由于支座移动所产生的位移, 即 i FRi ci
单位基本未知力引起的弯矩图和反力
b b b b ( Δ) , 2Δ ( ) , 3 0 、Δ 等于多少? δ 由自乘、互乘求 1 2Δ 3 1Δ 、 Δ, ij与荷载作用时一样 l l l l
简 化
例 4. 求作弯矩图(同例3)。 10 EI ( k ) EI常数 l
3
解:选取基本体系 建立典型方程
11 X 1 1 P 0
基本体系二
M12ds Fk2 2l 22 16l 11 ( ) EI k 3 EI l lk 15EI M1 M P ds Fk FPk ql 2 ql 7 ql 1 P EI k 12EI l k 60 EI
t0 30 t 10
FN 1
温度改变引起的内力与各杆的绝对刚度 EI 有关。
FNK 0
FNK 0.5
M图
M K Md s Ky FNK t0 l EI t M K ds 34.75 l h
FNK
返 章 首
温度低的一侧受拉,此结论同样适用于温度 引起的超静定单跨梁。
3 3
M D Md s Fk Fk Dy EI k 1 2 ql 2 l 5 l 1 l 7ql 2 [ 2 l ] EI 3 8 2 8 4 2 4 128 1 25ql 181ql 4 ( ) ( ) 2 32k 3072EI
弯矩图为: 进一步求D点竖向位移
2 h hl 13 23 2 EI 2 EI
问题:如何建立如下基本结构的典型方程?
X3
X1
基本体系2
X3
X1
X2
基本体系3
X2
X3
X1
基本体系2
X2
i 0 i
11 X 1 12 X 2 13 X 3 1 b 21 X 1 22 X 2 23 X 3 2 a X X X 31 1 32 2 33 3 3
最后内力(M图): M M 1 X 1 M 2 X 2 M 3 X 3
支座移动引起的内力与各杆的绝对刚度 EI 有关 吗?
这时结构中的位移以及位移条件的校核公式如何? M k Mds M k Mds k k FRi ci EI EI
h l 11 22 EI 3 EI l 12 6 EI 3 2 2h hl 33 3 EI EI
7ql X1 64
2
(下侧 受拉)
(c)
设刚架杆件截面对称于形心轴,其高 h
t1 25 C , t2 35 C
0 0
l / 10
则
5l 3 11 3 EI FN 0 t M 1ds 1 t FN 1t 0 l h FN 10 l2 2 30 l ( 2 l ) 230l h 2 EI X 1 138 2 l
化引起的内力与K点的 Ky 。 内侧t2
解:取基本体系如图 (a) (b) t =250C 典型方程为: 1 t2=350C 11 X 1 1t 0 温度变化引起的结构位移与内力的计算公式 为:
外侧t1 EI 常 数
t M i ds it FNit0 l h M Mi Xi