计算结构力学课程讲义

合集下载

结构力学基础讲义PPT(共270页,图文)

结构力学基础讲义PPT(共270页,图文)

alMM
B bM l
a l
b M
l
17
2. 多跨静定梁: 关键在于正确区分基本部分和附
属部分,熟练掌握截面法求控制截面 弯矩,熟练掌握区段叠加法作单跨梁 内力图。
多跨静定梁——由若干根梁用铰相连, 并用若干支座与基础相连而组成的静 定结构。
17:11
18
附属部分--依赖基本 部分的存在才维持几 何不变的部分。
17:11
24
3. 静定平面刚架 (1) 求反力。
切断C铰,考虑右边平衡,再分析左 边部分。求得反力如图所示:
C
17:11
25
3. 静定平面刚架
(2)作M图 (3)做Q、N图 (4) 校核
17:11M图
N图
Q图
26
§1-4 静定桁架
17:11
27
§1-4 静定桁架
* 桁架的定义:
——由若干个以铰(Pins)结点连接而成的 结构,外部荷载只作用在结点上。
对只有轴力的结构(桁架):
1组7:1合1 结构则应分别对待。
61
§1-5静定结构位移计算
3. 荷载作用下的位移计算
例:求△cy 1. 建立力状态,在C点加单位 EI
竖向力。
2. 建立各杆内力方程:
EI
3. 求位移:
17:11
62
§1-5静定结构位移计算
3. 荷载作用下的位移计算
积分注意事项:
⒈ 逐段、逐杆积分。 ⒉ 两状态中内力函数服从同一坐标系。 ⒊ 弯矩的符号法则两状态一致。
2. 三铰拱的数解法
* 内力计算: ⑴任一截面K(位置):KK截 截面 面形 形心 心处 坐拱 标X轴K切、线YK的倾角 K

结构力学(全套课件131P) ppt课件

结构力学(全套课件131P) ppt课件

的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径

《结构力学》复习讲义

《结构力学》复习讲义

《结构⼒学》复习讲义第⼀讲平⾯体系的⼏何组成分析及静定结构受⼒分析【内容提要】平⾯体系的基本概念,⼏何不变体系的组成规律及其应⽤。

静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制,静定结构特性及其应⽤。

【重点、难点】静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制⼀、平⾯体系的⼏何组成分析(⼀)⼏何组成分析按机械运动和⼏何学的观点,对结构或体系的组成形式进⾏分析。

(⼆)刚⽚结构由杆(构)件组成,在⼏何分析时,不考虑杆件微⼩应变的影响,即每根杆件当做刚⽚。

(三)⼏何不变体系体系的形状(或构成结构各杆的相对位置)保持不变,称为⼏何不变体系,如图6-1-1 (四)⼏何可变体系体系的位置和形状可以改变的结构,如图6-1-2。

图6-1-1 图6-1-2(五)⾃由度确定体系位置所需的独⽴运动参数数⽬。

如⼀个刚⽚在平⾯内具有3个⾃由度。

(六)约束减少体系独⽴运动参数(⾃由度)的装置。

1.外部约束指体系与基础之间的约束,如链杆(或称活动铰),⽀座(固定铰、定向铰、固定⽀座)。

2.内部约束指体系内部各杆间的联系,如铰接点,刚接点,链杆。

规则⼀:⼀根链杆相当于⼀个约束。

规则⼆:⼀个单铰(只连接2个刚⽚)相当于两个约束。

推论:⼀个连接n 个刚⽚的铰(复铰)相当于(n- 1)个单铰。

规则三:⼀个单刚性结点相当于三个约束。

推论:⼀个连接个刚⽚的复刚性结点相当于( n- 1)个单刚性结点。

3.必要约束如果在体系中增加⼀个约束,体系减少⼀个⾃由度,则此约束为必要约束。

4.多余约束如果体系中增加⼀个约束,对体系的独⽴运动参数⽆影响,则此约束称为多余约束。

(七)等效作⽤1.虚铰两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作⽤与实铰相同。

平⾏链杆的交点在⽆限远处。

2.等效刚⽚⼀个内部⼏何不变的体系,可⽤⼀个刚⽚来代替。

3.等效链杆。

两端为铰的⾮直线形杆,可⽤⼀连接两铰的直线链杆代⼆、⼏何组成分析(⼀)⼏何不变体系组成的基本规则1.两刚⽚规则平⾯两刚⽚⽤不相交于⼀点的三根链杆连接成的体系,是内部⼏何不变且⽆多余约束的体系。

结构力学讲义

结构力学讲义

结构力学
一、力矩分配法中几个概念
1. 转动刚度(劲度系数)
转动刚度表示杆端抵抗转动的能力。它在数值上
等于使杆端产生单位转角时需要施加的力矩。其值与
杆件的线刚度i=EI/l及远端的支承情况有关。
1
M AB= 4i
A EI
B
M B A = 2i
转动刚度 SAB4i
l
A端一般称为近端,B端一般称为远端。
结构力学讲义
结构力学
2.分配系数
MB
A
C
B B
MB
M BA
B
M BC
图示连续梁,力偶MB使结点B产生转角θ B 。
杆端弯矩为
M B A SBAB4iB (a)
M B CSBCB3i B
取结点B为隔离体
利用结点B的力矩平衡条件∑MB=0,得 M BM B aM BC 0
MB (MBAMBC)
(SBASBC)B
CB段的杆端a ) 弯矩为
MCB10i E I =M ∞ BCC8i
梁AB弯矩图A 是直线变 化的B,按
直线比例可得c ) l
θ
l 2i
当E I = θ∞ l
A
C ΔC
l
θ
6i
C θ =1
4i
当 θ l C
SAB
6i
6 il/l= 6 i 当
B
l
B
2i
B 6 il/l= 6 i
B
8i
SAB θ =M 1 ACB 2i8
从数学上说,是一种异步迭代法。
单独使用时只能用于无侧移(线位移 )的结构。
结构力学讲义
中南大学
退出
返回
*

计算结构力学(全套课件500P)

计算结构力学(全套课件500P)

结构刚度方程形式为线性代数方程组, 利用矩阵代数和数值计算方法编制成计算机 程序,上机求解未知量。由此可知有限单元 法的中心思想是一分一合。由于单元的个数 有限,故称其为有限单元法。
单元的类型主要有:
①杆单元
②平面单元及板单元
③壳单元
④块体单元
①杆单元
②平面单元及板单元
③壳单元
④块体单元
•本课程主要研究杆系结构,称为杆系有限 元。
本课程主要介绍矩阵位移法。
在矩阵位移法中
•所有的方程组均采用矩阵的形式表示。
•所有的推导和运算均借助于矩阵代数,形式紧 凑明了,方便程序设计。
•采用矩阵结构分析方法,并不改变结构力学的 基本原理和基本假设。如平衡原理、叠加原理、 变形协调原理、能量原理等。
本课程基本假设:
小变形假设; 材料线性行为假设(结构联接为理想联结)。
•单元的杆端力列阵用{F}表示 ;
•结构结点力列阵用{P}表示;
•反力用{R}表示;
•结点位移与结点力的各个分量应相互对应, 如: {δ}i与{F}i, {Δ}与{P};
•结点位移编号(或结点力编号)与结点编号有 关。结点编号是人为的,现已可用程序实现 结点自动编号;
•在进行结构分析时,首先应编好结点号。结 点编号的好坏直接影响计算精度及内存,其 原理是应尽量使每个单元两端结点号的差值 最小。
•柔度法要确立多余约束建立基本结构,并满 足位移协调条件,要具体分析,故很难规范 化统一格式编程,不易实现计算自动化。
•所以,工程计算一般采用矩阵位移法。
但在梁、板、壳等问题中,所假设的位 移场在某些情况下不能满足一些单元的协调 性(C'连续性问题),故混合法或柔度法仍得到 运用,并能进一步发展,现主要在板壳结构 中使用。

结构力学讲义2

结构力学讲义2

3.6 各类结构的受力特点
■ 组合结构 — 梁式杆主要受弯,桁架杆只受轴力 ■ 索式结构 — 在竖向荷载下支座产生向外的水平张力, 主要受力部分(例:图1.3f上部六杆)只受轴向拉力 料力学:受弯杆横截面正应力分布不均,而轴向拉 横截面正应力分布均匀,材料强度利用充分,经济。 ∴ 拱、桁架和索式结构性能优于梁和刚架。 但 是,拱、索式结构对支座要求高(解决拱推力问题 可设拉杆),桁架结点多且构造复杂;梁构造简单、施工 材 压杆
图3.33c(三跨静定梁):中跨跨度小,边跨负弯矩
图3.33d(连续梁):各跨相互影响(负弯矩)
3.6 各类结构的受力特点
q 0.16M 0.2M
0 0
q
l/ 5
l
l/ 5
x l l
x l
(a)
0
(c)
7M / 16 M
0
7M / 16 M
0
0
M
0
M =ql /8
0
2
(b)
图 3.33
(d)
3.6 各类结构的受力特点
竖向荷载下,水平直梁只有弯矩和剪力 斜梁、曲梁和刚架中除弯矩和剪力外还有轴力
■拱
— 由于支座水平推力,内力以轴压力为主。
合理拱轴,相应荷载下只有轴压力。
■ 桁架
— 在理想条件下杆件只有轴力
理想条件:直杆、理想铰接;结点荷载 符合理想条件的桁架为理想桁架,杆件均为二力杆。
实际桁架与理想条件有出入,只要杆件细长,其影响是次要的。 按理想条件求内力,称为主内力;不符合理想条件引起的附加内 力称为次内力。例如3.4.2节中非结点荷载下的附加内力。
结构不受荷载,内力及反力为零显然满足平衡方程→ 惟

《结构力学》讲义课件

《结构力学》讲义课件

结构力学讲义第1章绪论§1-1 杆件结构力学的研究对象和任务结构的定义: 建筑物中支承荷载而起骨架作用的部分。

结构的几何分类:按结构的空间特征分类:空间结构和平面结构。

杆件结构力学的任务:(1)讨论结构组成规律与合理形式,以及结构计算简图的合理选择;(2)内力与变形的计算方法.进行结构的强度和刚度验算;(3)讨论结构稳定性及在动力荷载作用下的结构反应。

结构力学的内容(从解决工程实际问题的角度提出)(1) 将实际结构抽象为计算简图;(2) 各种计算简图的计算方法;(3) 将计算结果运用于设计和施工。

§1-2 杆件结构的计算简图1.结构体系的简化一般的构结都是空间结构。

但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。

本课程主要讨论平面结构的计算。

当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。

2.杆件的简化铰支座(2) 滚轴支座(3) 固定支座4.(4)定向支座M5.材料性质的简化将结构材料视为连续、均匀、各向同性、理想弹性或理想弹塑性。

6.荷载的简化集中荷载与分布荷载§1-3 杆件结构的类型§1-4 荷载的分类2.4.刚架5.组合结构6.A B荷载可分为恒载和活载。

一、按作用时间的久暂荷载可分为集中荷载和分布荷载 荷载可分为静力荷载和动力荷载 荷载可分为固定荷载和移动荷载。

二、按荷载的作用范围三、按荷载作用的性质四、按荷载位置的变化• §2-1 几何组成分析的目的和概念几何构造分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。

几何不变体系:不考虑材料应变条件下,体系的几何形状和位置保持不变的体系一、几何不变体系和几何可变体系几何可变体系:不考虑材料应变条件下,体系的几何形状和位置可以改变的体系。

二、自由度杆系结构是由结点和杆件构成的,我们可以抽象为点和线,分析一个体系的运动,必须先研究构成体系的点和线的运动。

计算结构力学课程讲义

计算结构力学课程讲义

第1章绪论1.1 课程内容(1) 研究内容本课程主要研究工程结构计算机分析(数值分析)的常用方法——有限单元法、加权残数(余量)法和边界单元法的基本概念、基本原理及其应用。

(2) 参考书籍课程的主要参考书籍如下:唐锦春,孙炳楠,郭鼎康,计算结构力学,浙江大学出版社,1989丁皓江, 谢贻权, 何福保,弹性和塑性力学中的有限单元法,机械工业出版社,1989王勖成,有限单元法,清华大学出版社,2003王勖成,邵敏,有限单元法基本原理与数值方法,第二版,清华大学出版社,1997徐次达,固体力学加权残数法,同济大学出版社,1987孙炳楠,项玉寅,张永元,工程中边界单元法及其应用,浙江大学出版社,1991 Bath, K. J. Finite Element Procedures, Prentice-Hall, Inc., 1996.Zienkiewicz, O. C., The Finite Element Method, 5th Edition, McGraw Hill, 2001.Brebbia, C.A., The Boundary Element Method for Engineers, Pentech Press, London, 1978.Chandrupatla, T. R., Belegundu, A.D. Introduction to Finite Elements in Engineering, Prentice-Hall, Inc., 2002.1.2 结构分析方法概述一个工程技术问题总可由一组基本方程(通常是微分方程)加一组边界条件描述,即由下式给出:基本方程:L(u)-p=0,∈V(域内)边界条件:B(u)-g=0,∈S(边界)式中L、B为算子,p、g为已知函数。

工程技术问题的常用分析方法有:(1) 解析方法只适用于少数简单问题,即形状规则且外部作用(如外荷载)简单的结构分析问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论1.1 课程内容(1) 研究内容本课程主要研究工程结构计算机分析(数值分析)的常用方法——有限单元法、加权残数(余量)法和边界单元法的基本概念、基本原理及其应用。

(2) 参考书籍课程的主要参考书籍如下:唐锦春,孙炳楠,郭鼎康,计算结构力学,浙江大学出版社,1989丁皓江, 谢贻权, 何福保,弹性和塑性力学中的有限单元法,机械工业出版社,1989王勖成,有限单元法,清华大学出版社,2003王勖成,邵敏,有限单元法基本原理与数值方法,第二版,清华大学出版社,1997徐次达,固体力学加权残数法,同济大学出版社,1987孙炳楠,项玉寅,张永元,工程中边界单元法及其应用,浙江大学出版社,1991Bath, K. J. Finite Element Procedures, Prentice-Hall, Inc., 1996.Zienkiewicz, O. C., The Finite Element Method, 5th Edition, McGraw Hill, 2001.Brebbia, C.A., The Boundary Element Method for Engineers, Pentech Press, London, 1978.Chandrupatla, T. R., Belegundu, A.D. Introduction to Finite Elements in Engineering, Prentice-Hall, Inc., 2002.1.2 结构分析方法概述一个工程技术问题总可由一组基本方程(通常是微分方程)加一组边界条件描述,即由下式给出:基本方程:L(u)-p=0,∈V(域内)边界条件:B(u)-g=0,∈S(边界)式中L、B为算子,p、g为已知函数。

工程技术问题的常用分析方法有:(1) 解析方法只适用于少数简单问题,即形状规则且外部作用(如外荷载)简单的结构分析问题。

(2) 数值方法数值方法可分为区域型方法和边界型方法。

常用的区域型方法包括有限差分法、加权残数法、里兹(Ritz)法(变分法)和有限单元法等,其中有限差分法是直接对基本微分方程进行离散,再对离散后的代数方程进行求解;后几种方法则是先建立基本方程(一般是微分方程)的等效积分表达式,再进行离散求解。

边界型方法中最典型的是边界单元法。

它是先将基本微分方程变换为等效的边界积分方程,再在边界上对其进行离散求解。

例如,图1.1给出了一个受复杂横向荷载(分布荷载、集中力、集中力偶等)作用的两端固定变截面梁。

为求梁的挠度和内力,可列出梁的基本方程和边界条件如下:图1.1 变截面单跨梁受横向荷载作用基本方程:L(u )-p =0,∈V (域内)——EI (x )y ’’= -M (x ), 0≤x ≤l . 边界条件:B(u )-g =0, ∈S (边界)——(y )x =0或x =l =0,(y ’)x =0或x =l =0以下分别就采用加权残数法、里兹法(位移变分法)和有限单元法的基本原理进行讨论。

(1) 加权残数法为求近似解,设试探函数∑==mk k k u u 1α代入基本方程和边界条件,得残值:R L =L(u )-p (域内),R B =B(u )-g (边界)迫使残值在某种平均意义(加权积分)上等于零,则有0d d =⎰+⎰S Sj B V j L S W R V W R由此可得到关于待定系数αi 的代数方程组,解方程可求得待定系数及解答的近似表达式,其中的试函数可以选择多项式、三角函数、样条函数等。

(2) 里兹法(位移变分法)里兹法的理论依据是最小势能原理。

该原理可表述为:给定外力作用下,满足几何条件的各种可能位移中,真实的位移使总势能取极值,据此有δ(U +U R )=0假设满足位移边界条件的位移函数为:∑=ii i u A u将其代入方程得到关于待定系数A i 的代数方程,解方程可得A i 。

里兹法需要在整个计算区域上假设近似函数,很难适应形状(边界)较复杂或解答较难预测的问题。

(3) 有限单元法有限单元法的理论依据是最小势能原理或其他形式的变分原理。

该方法与里兹法的主要区别是不在整体计算区域上假设近似函数,而是先将连续的求解区域离散为一个由有限个单元组成并按一定方式相互连接的单元集合体,再以各单元连接结点处的场量(如位移量)作为基本未知量,在各单元内假设近似函数(通过结点未知量插值得到),从而将一个无限自由度问题简化为有限自由度问题。

图1.2 一维试函数的分段假设例如图1.2中的曲线是某个一维问题的目标函数曲线,若采用里兹法对整个区段假设一个近似的试函数,显然比较困难。

但如果现对整个区域进行分段(如图中短线为分段线),再对各个区段假设试函数,则要简单和准确得多,如可将各区段均假设为二次函数。

哟次可见,有限单元法可视为一种分片(或分块、分段)形式的变分法。

虽然有限单元法的理论依据和里兹法是一致的,但采用了分片(或分块、分段)假设试函数的处理方法以后,使得该方法的具体实施变得简便易行,具有了优越的可操作性和更为明确的物理意义,也使得该方法具有了其他方法(如里兹法)所不具备的优点:1) 概念简单、明确,易为工程人员接受;也可建立严格的数学分析和证明;2) 适用性十分广泛,适应于各类复杂边界和不同外部作用的问题;3) 求解过程程序化,易于编程和计算机实现。

1.3 课时安排课程的总体课时安排如下:有限单元法部分包括概论、进展;平面三角形、矩形、等参元;杆元、板元等,共约20个课时;加权残数法部分包括基本原理、方法分类,以及伽辽金(Galerkin)方法、最小二乘法的应用,共需约4~6个课时;边界单元法主要包括基本原理(以二维势问题为例);梁弯曲和板弯曲问题,共需约4~6个课时。

思考题1.1区域型分析法和边界型分析法在对问题的基本方程和边界条件的处理上有何不同和相同点?试分别举例说明。

1.2里兹法和有限单元法的理论依据、基本未知量的选取、试函数的假设等方面有何异同点?1.3与里兹法相比,有限单元法在解决复杂问题上的适应性更为广泛,你认为主要的原因在于那些方面?第2章有限单元法2.1 概述2.1.1 发展概况有限单元法的发展概况:1943年R. Courant尝试应用三角形区域上定义的分片连续函数和最小势能原理解决St. Venant扭转问题,是较早的有限元思想的体现:R. Courant, Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bulletin of the American Mathematical Society, 49: 1-23, 19431956年M.J. Turner,R.W. Clough等将刚架矩阵位移法推广到弹性力学平面问题,开始了有限元的第一个成功尝试和应用;用直接刚度法建立单元刚度特性:M.J. Turner, R.W. Clough, H.C. Martin and L.T. Topp, Stiffness and deflection analysis of complex structures, J. Aeronaut. Sci., 25: 805-823, 19561960年Clough第一次提出“有限单元法(FEM)”的名称,沿用至今。

Zienkiewicz等——编写第一本有限元方面专著:O.C. Zienkiewicz and Y.K. Cheung, The Finite Element Method in Continuum and Structural Mechanics, McGraw-Hill, New York, 19651963-1964年发现该方法是基于变分原理的里兹法的另一种形式,确立其理论基础。

我国冯康在同一时期独立提出并证明了该方法:Melosh证明了位移法就是基于最小势能原理的Rayleigh-Ritz法冯康,基于变分原理的差分格式,应用数学和计算数学,1965,2(4): 238-2621960至今:实际工程应用:平面⇒空间⇒板壳;静力⇒动力、波动⇒稳定;弹性⇒塑性⇒粘弹性、复合材料;固体⇒流体、传热等连续介质力学;计算分析⇒优化设计、与CAD技术结合。

E.L. Wilson:编写了第一个公开的有限元软件SAP;通用有限元软件:SAP、ADINA、NASTRAN、ANSYS、ABAQUS、MIDAS等从半个多世纪以来有限单元法的萌芽、理论依据的证明和充实及其逐步的广泛应用可以看到,它的发展和计算机软硬件的发展基本上是同步的。

如果没有计算机的强大软硬件支撑,有限单元法只有其微不足道的一点理论上的意义,而没有更为重要的实际应用的意义。

2.1.2 有限单元法概念(1) 离散化离散化的过程是将连续体划分为有限数目、有限大小的单元的集合体。

单元与单元之间只在指定点(即结点)连接,其他位置则一般保持连续即可。

单元可以具有不同的形状,即单元外形可以不同;单元与单元之间可以有不同的连接方式,即单元的结点数目、位置可以不同。

图2.1 连续体离散为单元集合体示例(2) 单元分析对典型单元假设位移模式(由各结点位移插值),再分析单元的力学特性,建立单元的结点力与结点位移之间的关系,即单元刚度方程:{F}e=[k]{∆}e)并将各类荷载变换为作用在结点上的等效结点荷载。

(3) 整体分析将各单元刚度方程集成整体结构的整体刚度方程:{F}=[K]{∆}根据结点的平衡条件,得最终的有限元方程:[K]{∆}={R}求解该方程可得到未知的结点位移。

(4) 再次单元分析求出各单元的应变和应力。

2.2 弹性力学平面问题的矩阵描述2.2.1两类平面问题弹性力学的平面问题可分为平面应力问题和平面应变问题两类。

实际上,所有的弹性力学问题都是空间问题。

所谓平面问题,并不是说这个问题所分析的对象本身(如形状、荷载分布)是平面的,而是指该问题的形状、外部作用以及问题的解答(即由此产生的效应,如位移、应力等)只在平面内有变化,而沿着平面外就保持不变了。

因此可以肯定地说,所谓的平面问题就是一个特殊的空间问题。

那么,是不是一个问题的形状和外部作用(即已知的位移和应力边界条件)只在平面内发生变化,而沿着平面外保持不变了,这个问题就是平面问题呢?不是的,还必须附加其他条件,这一结论才能成立。

这个附加条件就是该问题沿平面外的尺寸与平面内尺寸相比要么非常小(如无限短),要么非常大(如无限长)。

如果符合前者条件,则弹性体内只存在平面内的应力,而平面外的应力均为零,故这类问题称为平面应力问题;如果符合后者条件,则弹性体内只存在平面内的位移或平面内的应变,而平面外的位移及应变均等于零,故这类问题称为平面应变问题。

相关文档
最新文档