(物理)物理万有引力定律的应用练习题含答案含解析

合集下载

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gRπ= (2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。

若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。

两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。

忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。

求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。

【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。

则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。

物理万有引力定律的应用题20套(带答案)

物理万有引力定律的应用题20套(带答案)

mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

人教版高一物理必修二 6.3 万有引力定律(含解析)

人教版高一物理必修二 6.3 万有引力定律(含解析)

人教版高一物理必修二 6.3万有引力定律(含解析)人教版高一物理必修二第六章第三节6.3万有引力定律(含解析)一、单选题1.有关物理学史,以下说法正确的是( )A.伽利略首创了将实验和逻辑推理相结合的物理学研究方法B.卡文迪许通过库仑扭秤实验总结出点电荷相互作用规律C.法拉第不仅发现电磁感应现象,而且还总结出了电磁感应定律D.开普勒在天文观测数据的基础上,总结出行星运动的规律并发现了万有引力定律【答案】A【解析】伽利略首创了将实验和逻辑推理相结合的物理学研究方法,选项A正确;库伦通过库仑扭秤实验总结出点电荷相互作用规律,选项B错误;法拉第发现了电磁感应现象,但没有总结出了电磁感应定律,是韦伯和纽曼发现了电磁感应定律,故C错误;开普勒在天文观测数据的基础上,总结出行星运动的规律,牛顿发现了万有引力定律,选项D错误;故选A.2.2018年9月7日将发生海王星冲日现象,海王星冲日是指海王星、地球和太阳几乎排列成一线,地球位于太阳与海王星之间。

此时海王星被太阳照亮的一面完全朝向地球,所以明亮而易于观察。

地球和海王星绕太阳公转的方向相同,轨迹都可近似为圆,地球一年绕太阳一周,海王星约164.8年绕太阳一周。

则A.地球的公转轨道半径比海王星的公转轨道半径大B.地球的运行速度比海王星的运行速度小C.2019年不会出现海王星冲日现象D.2017年出现过海王星冲日现象【答案】D【解析】地球的公转周期比海王星的公转周期小,根据万有引力提供向心力1 / 122224Mm G m r r T π=,可得:2T =可知地球的公转轨道半径比海王星的公转轨道半径小,故A 错误;根据万有引力提供向心力,有22Mm v G m r r=,解得:v =可知海王星的运行速度比地球的小,故B 错误; T 地=1年,则T 木=164.8年,由(ω地-ω木)·t =2π,可得距下一次海王星冲日所需时间为: 2 1.01-t πωω=≈地火年,故C 错误、D 正确。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理)物理万有引力定律的应用练习题含答案含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。

覆盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静止轨道卫星共35颗组成的。

卫星绕地球近似做匀速圆周运动。

已知其中一颗地球同步卫星距离地球表面的高度为h ,地球质量为M e ,地球半径为R ,引力常量为G 。

a.求该同步卫星绕地球运动的速度v 的大小;b.如图所示,O 点为地球的球心,P 点处有一颗地球同步卫星,P 点所在的虚线圆轨道为同步卫星绕地球运动的轨道。

已知h = 5.6R 。

忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地球同步卫星?(cos81= 0.15︒,sin810.99︒=)(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。

根据量子理论,每个光子动量大小h pλ=(h为普朗克常数,λ为光子的波长)。

当光照射到物体表面时将产生持续的压力。

设有一质量为m的飞行器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。

已知引力常量为G,光速为c,太阳质量为M s,太阳单位时间辐射的总能量为E。

若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的方向运动,成为“流浪飞行器”。

请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小面积s0。

(忽略其他星体对飞行器的引力)【答案】(1)a.eGMvR h=+b.至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s0【解析】【详解】(1)a.设卫星的质量为m。

由牛顿第二定律()2e2M m vG mR hR h=++,得eGMvR h=+b.如答图所示,设P点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ,至少需要N颗地球同步卫星才能覆盖全球。

由直角三角形函数关系cosRR hθ=+,h= 5.6 R,得θ= 81°。

所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ = 162°360=2.22Nθ︒≥所以,N = 3,即至少需要3颗地球同步卫星才能覆盖全球(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为r时,光帆受到太阳光的压力F与太阳对飞行器的引力大小关系,有s2M mF Gr≥设光帆对太阳光子的力为F',根据牛顿第三定律F' =F设t∆时间内太阳光照射到光帆的光子数为n,根据动量定理:'2hF t nλ∆=设t∆时间内太阳辐射的光子数为N,则E tNchλ∆=设光帆面积为s ,24n s N r π= 当s 2=M m F Gr 时,得最小面积s 02cGM ms Eπ= 由上式可知,s 0和飞行器与太阳距离r 无关,所以随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s 0。

6.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

求: (1)行星的质量;(2)若行星的半径为R ,行星的第一宇宙速度大小;(3)研究某一个离行星很远的该行星卫星时,可以把该行星的其它卫星与行星整体作为中心天体处理。

现通过天文观测,发现离该行星很远处还有一颗卫星,其运动半径为R 2,周期为T 2,试估算靠近行星周围众多卫星的总质量。

【答案】(1)(2)(3)【解析】(1)根据万有引力提供向心力得:解得行星质量为:M=(2)由得第一宇宙速度为:(3)因为行星周围的卫星分布均匀,研究很远的卫星可把其他卫星和行星整体作为中心天体,根据万有引力提供向心力得:所以行星和其他卫星的总质量M 总=所以靠近该行星周围的众多卫星的总质量为:△M =点睛:根据万有引力提供向心力,列出等式只能求出中心体的质量.要求出行星的质量,我们可以在行星周围找一颗卫星研究,即把行星当成中心体.7.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】M = 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r Tπ⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=9.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M GM R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:ω=因为2πT ω=,所以有:T 2π=答:()1双星的轨道半径分别是211212M M L L M M M M ++,; ()2双星的运行周期是2π点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.10.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.【答案】2324r GTπ 【解析】 【详解】对双星系统,角速度相同,则:22122Mm GM r m r rωω== 解得:221Gm r r ω=; 222GM r r ω=;其中2Tπω=,r =r 1+r 2; 三式联立解得:2324r M m GT π+=。

相关文档
最新文档