(完整word版)现代控制理论大作业1
现代控制理论大作业

现代控制理论直流电动机模型的分析姓名:李志鑫班级:测控1003学号:20100203030921直流电动机的介绍1.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。
在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。
[1]1.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。
直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分:-图1.1①磁极:电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。
②电枢:电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。
③电刷:电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。
直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。
电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。
2)启动时电枢电流要尽可能的小。
3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。
直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。
本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。
这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。
如图1.2Bm电枢线路图1.2——定义为电枢电压(伏特)。
——定义为电枢电流(安培)。
——定义为电枢电阻(欧姆)。
——定义为电枢电感(亨利)。
——定义为反电动势(伏特)。
现代控制理论大作业

现代控制理论大作业一、位置控制系统----双电位器位置控制系统由系统分析可知,系统的开环传递函数:2233.3s =s s 2*0.07s*s 205353G()(+1)*(++1)另:该系统改进后的传递函数:223.331s =s s 2*0.07s*s 3455353G ()(+1)*(++1)1、时域数学模型<1>稳定性>> s=tf('s');>> G=33.3/(s*(s/20+1)*(s^2/53^2+2*0.07*s/53+1)); >>sys=feedback(G,1); >> sysTransfer function:9.915e007 -----------------------------------------------------------53 s^4 + 1453 s^3 + 1.567e005 s^2 + 2.978e006 s + 9.915e007>> pzmap(sys)由零极点图可知,该系统有四个极点,没有零点,其中两个在左半s 开平面上,两个在s 平面的虚轴处,则,四个极点的坐标分别是:>> p=pole(sys)p =0.0453 +45.2232i0.0453 -45.2232i-13.7553 +26.9359i-13.7553 -26.9359i系统的特征方程有的根中有两个处于s的右半平面,系统处于不稳定状态<2>稳态误差分析稳态误差分析只对稳定的系统有意义,系统(G)处于不稳定状态,所以不做分析。
改进后系统(G1)如下,求其特征方程的极点:>> s=tf('s');>> G1=3.33/(s*(s/345+1)*(s^2/53^2+2*0.07*s/53+1));>> sys2=feedback(G1,1);>>p=pole(sys2);p =1.0e+002 *-3.4492-0.0206 + 0.5258i-0.0206 - 0.5258i-0.0338可以看出,改进后的传递函数G1的四个极点都在s平面的右半开平面上,则系统G1是稳定的,故对此系统做稳态误差分析:由系统G1的开环传递函数在原点处有一个极点,故属于1型系统。
《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论大作业

现代控制理论直流电动机模型的分析姓名:李志鑫班级:测控1003学号:20100203030921直流电动机的介绍1.1研究的意义直流电机是现今工业上应用最广的电机之一,直流电机具有良好的调速特性、较大的启动转矩、功率大及响应快等优点。
在伺服系统中应用的直流电机称为直流伺服电机,小功率的直流伺服电机往往应用在磁盘驱动器的驱动及打印机等计算机相关的设备中,大功率的伺服电机则往往应用在工业机器人系统和CNC铣床等大型工具上。
[1]1.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以方便地在宽范围内实现无级调速,故多采用在对电动机的调速性能要求较高的生产设备中。
直流伺服电机的电枢控制:直流伺服电机一般包含3个组成部分:-图1.1①磁极:电机的定子部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。
②电枢:电机的转子部分,为表面上绕有线圈的圆形铁芯,线圈与换向片焊接在一起。
③电刷:电机定子的一部分,当电枢转动时,电刷交替地与换向片接触在一起。
直流电动机的启动电动机从静止状态过渡到稳速的过程叫启动过程。
电机的启动性能有以下几点要求:1)启动时电磁转矩要大,以利于克服启动时的阻转矩。
2)启动时电枢电流要尽可能的小。
3)电动机有较小的转动惯量和在加速过程中保持足够大的电磁转矩,以利于缩短启动时间。
直流电动机调速可以有:(1)改变电枢电源电压;(2)在电枢回路中串调节电阻;(3)改变磁通,即改变励磁回路的调节电阻Rf以改变励磁电流。
本文章所介绍的直流伺服电机,其中励磁电流保持常数,而有电枢电流进行控制。
这种利用电枢电流对直流伺服电机的输出速度的控制称为直流伺服电机的电枢控制。
如图1.2Bm电枢线路图1.2——定义为电枢电压(伏特)。
——定义为电枢电流(安培)。
——定义为电枢电阻(欧姆)。
——定义为电枢电感(亨利)。
——定义为反电动势(伏特)。
现代控制理论大作业

2019/11/21
2
课题背景
系统工作原理
Accelerometer gyroscope 遥控器
电源
左轮 软件编码
AD 采样
滤波
MCU
驱动器1 驱动器2
无线模块
软件编码 右轮
减速机构 左电机
右电机 减速机构
2019/11/21
3
系统工作原理 前进(后仰)
后退(前倾)
2019/11/21
课题背景
后退(纠正后仰) 前进(纠正前倾)
Matlab计算程序:
pole=[-1,-2,-3,-4]; K=place(A,B,pole) A1=A-B*K; pole=[-3,-4,-5,-6]; K=place(A,B,pole) A2=A-B*K; pole=[-8,-9,-10,-11]; K=place(A,B,pole) A3=A-B*K;
figure; hold on; plot(curve1(:,2),'color','blue'); plot(curve2(:,2),'color','red'); plot(curve3(:,2),'color','green'); xlabel(‘时间(s)'); ylabel(‘摆动角度(rad)'); hold off
2019/11/21
N C,CA,CA2 ,CA3
计算结果:
rankc = 4 ranko = 4
结论: k(M)=4 系统完全能控 Rank(N)=4 系统完全能观
稳定性分析
运用Matlab解出矩阵A的特征值如下:
(完整)现代控制理论-大作业-倒立摆

摘要倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。
倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的.本文主要研究的是二级倒立摆的极点配置方法,首先用Lagrange方程建立了二级倒立摆的数学模型,然后对二级倒立摆系统的稳定性进行了分析和研究,并给出了系统能控能观性的判别。
基于现代控制理论中的极点配置理论,根据超调量和调整时间来配置极点,求出反馈矩阵并利用Simulink对其进行仿真,得到二级倒立摆的变化曲线,实现了对闭环系统的稳定控制。
关键词:二级倒立摆;极点配置;Simulink目录1.绪论 (1)2 数学模型的建立和分析 (1)2。
1 数学建模的方法 (1)2。
2 二级倒立摆的结构和工作原理 (2)2。
3 拉格朗日运动方程 (3)2。
4推导建立数学模型 (3)3 二级倒立摆系统性能分析 (9)3.1 稳定性分析 (9)3。
2 能控性能观性分析 (10)4 状态反馈极点配置 (11)4。
1 二级倒立摆的最优极点配置1 (11)4.2 二级倒立摆最优极点配置2 (12)5。
二级倒立摆matlab仿真 (14)5。
1 Simulink搭建开环系统 (14)5.2 开环系统Simulink仿真结果 (14)5.3 Simulink搭建极点配置后的闭环系统 (15)5.4极点配置Simulink仿真结果 (16)5.4。
2 第二组极点配置仿真结果 (18)6。
结论 (19)7.参考文献 (20)附录一 (21)1.绪论倒立摆最初诞生于麻省理工学院,仅有一级摆杆,另一端铰接于可以在直线导轨上自由滑动的小车上.后来在此基础上,人们又进行拓展,设计出了直线二级倒立摆、环型倒立摆、平面倒立摆、柔性连接倒立摆、多级倒立摆等实验设备。
在控制理论的发展过程中,为验证某一理论在实际应用中的可行性需要按其理论设计的控制器去控制一个典型对象来验证。
现代控制理论第一章答案
a0 3 a1 7 a2 5 b0 2 b1 1 b2 0 b3 0
标准型实现
1 0 0 0 x 0 u 0 x 0 1 3 7 5 1
y (b0 a 0 b3 ) (b1 a1b3 ) (b2 a 2 b3 )x 2 1 0x
1 0 0 0 x 0 0 1 x 0 u 3 7 5 1
y (b0 a 0 b3 ) (b1 a1b3 ) (b2 a 2 b3 )x 2 3 1x
【习题1-6】已知系统传递函数
10( s 1) (1) W ( s ) s ( s 1)(s 3) 6( s 1) (2) W ( s ) s ( s 2)(s 3) 2
x1
0 0 0 x 0 K1 Kp 0
1
0 Kb 0 J2 Kp 0 J1 0 K1 0 0 0 Kn
0 0 1 J1 0 0 0
0 0 Kp J1 K1 K1 Kp 0
0 0 0 0 1 0 J1 x 0 0 K1 Kp 0 0 0
y 0 0 1x
【解】(1)画模拟结构图的步骤 第一步:画出三个积分器 第二步:画出各增益系数和信号综合点 第三步:根据各变量的相互关系用信号线连接起来 (2)求系统的传递函数矩阵
Y ( s) 2s 2 7 s 3 1 W ( s) c( sI A) b U ( s) ( s 1)(s 2)(s 3) 2s 1 ( s 1)(s 2)
1 0
4 3
【习题1-10】已知两个子系统的传递函数分别为:
现代控制理论大作业
现代控制理论大作业“现代控制理论”课本质上是一门工学理论基础课,它在电气工程领域众多研究工作中也有着广泛的应用,例如发电机励磁控制、发电机调速控制、电力电子装置控制等。
“现代控制理论”课立足于近年来控制理论与工程应用的最新进展,旨在实现以下两个目的:一是将控制与系统理论的前沿领域介绍给研究生,使之理解基本思想并掌握基本设计方法;二是在工程实践(主要是电力系统)与先进理论之间架设一座桥梁,使研究生能正确地运用有关理论和方法解决实际工程问题。
通过实现上述目标,本课程可拓宽研究生的专业基础知识,了解和掌握学科前沿动态,培养和提高研究生独立从事科研的能力。
课程内容本课程的教学理念是“用生动鲜活的例子诠释复杂的控制理论,用教师的研究经历点亮学生思考的火炬”。
“现代控制理论”立足于近年来控制理论与工程应用的最新进展,紧紧围绕鲁棒控制和非线性系统控制两个重点,主要讲述以下内容:①线性最优控制系统理论。
②非线性最优控制系统设计——微分几何方法。
③线性H∞控制设计原理。
④非线性控制系统H∞设计原理。
课程教学方式本课程采用教师讲授、学生课外阅读、习题练习和研究型大作业相结合的教学模式。
为加强理论联系实际,避免过分理论化,课程结合控制工程特别是电力系统工程实际,设置了下述专题研究:a. 汽轮机汽门开度系统非线性控制器设计b. 可控串联补偿鲁棒控制器设计c. 水轮机调速非线性鲁棒控制器设计d. 静止无功补偿器非线性控制器设计e. 直流输电系统非线性控制器设计f. 倒立摆控制器设计(购置2级和3级倒立摆各1台)g. 电力巡线机器人越障控制上述专题研究的目的是:在基本掌握现代控制理论主要设计方法的基础上,让研究生开展某一专题的研究,以培养学生的综合能力和素质。
这一部分内容可以代替课程的期末考试(笔试闭卷)。
教师事先就专题研究的要求、选题、难度等方面进行指导;专题研究一般由个人独立完成,内容较多的题目可以两个人作为一组来完成。
现代控制理论作业
现代控制理论大作业要求:(1)自选一实际物理对象进行研究,建立实际物理系统的状态空间模型;(2)进行原系统的定性分析,包括稳定性、能控性、能观性分析;(3)根据系统提出的性能指标要求(如超调量、超调时间、调节时间等动态 性能指标以及稳态误差等稳态性能指标),进行原系统的仿真分析,和要求的性能指标做对比;(4)对不稳定系统且能镇定的系统,进行镇定控制;(5)对未达到性能指标要求的系统进行状态反馈控制设计,满足系统性能指 标要求;(6)设计状态观测器观测所有状态;(7)设计降阶状态观测器;(可选)(8)最优控制;(9)体会及对课程建议。
1实际物理模型:如图1所示,为一交接车前后连接振动简化模型。
设计一个调节器系统使得在无扰动的情况下,系统保持在零位置上(y1=0)。
其中m1=1,m2=2,k=36,b=0.62系统的描述方程:)()(m )()(m 212122121211y y b y y k yu y y b y y k y-+-=+-+-= 其空间状态模型为:设:。
,,,24132211y x yx y x y x ====[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡432121432143210001u 01003.03.018186.06.0-3636-10000100x x x x y y x x x x x x x x 3分析与求解过程:由根轨迹和特征根(a = -0.4500 + 7.3347i -0.4500 - 7.3347i -0.000 0 )知虽实根都为负数但都靠近零轴,是李雅普诺夫定义下的稳定,但存在震荡,所以把希望闭环极点配置在10-s ,10-s ,32-2-s ,322-s ===+=和把最小阶观测器希望极点配置在16-s ,15-s ==来改善系统的性能。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology现代控制理论基础上机实验报告之一亚微米超精密车床振动控制系统的状态空间法设计课程名称:现代控制理论院系:航天学院自动化班号:1104103作者:皮永江学号:1110410228指导教师:刘杨、井后华哈尔滨工业大学2014年6月5日1.工程背景介绍超精密机床是实现超精密加工的关键设备,而环境振动又是影响超精密加工精度的重要因素。
为了充分隔离基础振动对超精密机床的影响,目前国内外均采用空气弹簧作为隔振元件,并取得了一定的效果,但是这属于被动隔振,这类隔振系统的固有频率一般在2Hz左右。
2.实验目的通过本次上机实验,使同学们熟练掌握:a)控制系统机理建模b)时域性能指标与极点配置的关系c)状态反馈控制律设计d)MATLAB语言的应用3.给定的实际参数与数学建模3.0参数与物理模型机床的已知参数⁄m=120kgk0=1200N mk e=980N A⁄c=0.2R=300ΩL=0.95H上图表示了亚微米超精密车床隔振控制系统的结构原理,其中被动隔振元件为空气弹簧,主动隔振元件为采用状态反馈控制策略的电磁作动器。
床身质量的运动方程为:ms̈+F p+F a=0(1)F p−空气弹簧所产生的被动控制力F p−作动器所产生的主动控制力假设空气弹簧内为绝热过程,则被动控制力可以表示为:F p=cẏ+k0y+p r{1−[V r(Vr +A e y)n⁄]}A e(2) V r−标准压力下的空气弹簧体积y=s−s0−相对位移(被控制量)p r−空气弹簧的参考压力A r−参考压力下单一弹簧的面积A e=4A r−参考压力下空气弹簧的总面积n−绝热系数电磁作动器的主动控制力与电枢电流、磁场的磁通量密度及永久磁铁和电磁铁之间的间隙面积有关,这一关系具有强非线性。
由于系统工作在微振动状况,且在低于作动器截止频率的低频范围内,因此主动控制力可近似线性化地表示为:F a=k e I a(3)k e−力-电流转换系数I a−电枢电流其中,电枢电流I a满足微分方程:LI a+RI a+E(I a,ẏ)=u(t)(4) L−控制回路电枢电感系数R−控制回路电枢电阻E−控制回路反电动势u−控制电压综上得到如下方程组:{ms̈+F p+F a=0 (1) F p=cẏ+k0y+p r{1−[V r(Vr+A e y)n⁄]}A e (2) F a=k e I a (3) LI a+RI a+E(I a,ẏ)=u(t) (4)3.1如果忽略非线性部分数学建模{ms̈+Fp +F a =0 (1)F p =cẏ+k 0y (2)F a =k e I a (3)LI a+RI a =u (t ) (4)y =s̈⇒ {mÿ=−(cẏ+k 0y +k e I a )my ⃛=−(cÿ+k 0ẏ+k e I a ) 整理 ⇒ { I a =−1k e(mÿ+cẏ+k 0y)I a =−1k e (my ⃛+cÿ+k 0ẏ)带入(4)式⇒ −L k e (my ⃛+cÿ+k 0ẏ)−Rk e(mÿ+cẏ+k 0y )= u (t )整理得⇒ −Lm k e y ⃛−Rm +Lc k e ÿ−Rc +Lk 0k e ẏ−Rk 0k ey = u (t ) 设状态变量为:x 1=y,x 2=ẏ,x 3=ÿ得到状态方程:{x 1=x 2x 2=x 3x 3=−Rk 0Lm x 1−Rc +Lk 0Lm x 2−Rm +Lc Lm x 3−k eLmu状态空间表达式:[x 1x 2x 3]=[01001−Rk 0Lm−Rc +Lk 0Lm −Rm +Lc Lm ]+[0−k e Lm ]uy =[100][x 1x 2x 3]代入数据:{ −Rk 0Lm =−300∗12000.95∗120=−3157−Rc +Lk 0Lm =−300∗0.2+0.95∗12000.95∗120=−10.52−Rm +Lc Lm =−300∗120+0.95∗0.20.95∗120=−316−k e Lm =−9800.95∗120=−8.6那么状态空间表达式为:[x 1x 2x 3]=[010001−3157−10.52−316]+[00−8.2]u y =[100][x 1x 2x 3] 显然系统能控,可以采用状态反馈进行任意配置极点。
3.2考虑非线性部分数学建模因为系统工作在低速,微位移情况下,那么对于(2)式中p r {1−[Vr (V r +A e y)n ⁄]}A e 0点泰勒一阶展开⇒ np r A e 2V rn y n =1.41P r =0.4∗105Pa d =0.3m ⇒A r =πd 34= 0.0707⇒A e =4A r =0.2827m 2h =0.28m ⇒V r =A r ×ℎ=0.0198m 3q =np r A e 2V rn =1.41∗4∗10000∗0.282720.01981.41=1.14×107 (4)式中E (I a ,ẏ)=5.4ẏ ,{ ms̈+F p +F a =0 (1)F p =cẏ+(k 0+q)y (2)Fa =k e I a (3)LI a+RI a +5.4ẏ=u (t ) (4)y=s ⇒ {mÿ=−(cẏ+k 0y +k e I a )my ⃛=−(cÿ+k 0ẏ+k e I a ) 整理 ⇒ { I a =−1k e [mÿ+cẏ+(k 0+q )y]I a =−1k e[my ⃛+cÿ+(k 0+q)ẏ]带入(4)式⇒ −L k e (my ⃛+cÿ+k 0ẏ+qẏ)−Rk e(mÿ+cẏ+k 0y +qy )+5.4ẏ= u (t ) 整理得⇒ −Lm k e y ⃛−Rm +Lc k e ÿ−Rc +Lk 0+Lq −5.4k e k e ẏ−Rk 0+Lq k ey = u (t )设状态变量为:x 1=y,x 2=ẏ,x 3=ÿ得到状态方程:{x1=x2 x2=x3x3=−R(k0+q)Lmx1−Rc+L(k0+q)−5.4k eLmx2−Rm+LcLmx3−k eLmu状态空间表达式:[x1x2 x3]=[010001−R(k0+q)Lm−Rc+Lk0+Lq−5.4k eLm−Rm+LcLm]+[−k eLm]uy=[100][x1x2x3]代入数据:{−Rk0+RqLm=−300∗1200+300∗1.14×1070.95∗120=−3×107−Rc+Lk0+Lq−5.4k eLm=−300∗0.2+0.95∗(1200+1.14×107)−5.4∗9800.95∗120=−1.2×108−Rm+LcLm=−300∗120+0.95∗0.20.95∗120=−316−k eLm=−9800.95∗120=−8.6[x1x2x3]=[010001−3×107−1.2×108−316]+[−8.6]uy=[100][x1x2x3]显然系统能控,可以采用状态反馈进行任意配置极点。
4.性能指标与理论设计4.0性能指标:闭环系统单位阶跃响应的a)超调量不大于5%b)过渡过程时间不大于0.5秒(∆=2%)。
由经验公式得到:σp≈√1−ξ2π×100%<5%⇒ ξ>0.7t s≈4ξωn≤0.5(∆=2%)⇒ξωn>8为留有一定余量,设ξωn=10,ξ=√22(θ=45。
)得到闭环主导极点为:−10±j10,取第三个极点为−100;得到闭环特征多项式为:f∗(λ)=(λ+100)(λ+10+j10)(λ+10−j10)=λ3+120λ2+2200λ+200004.1忽略非线性状态控制采用状态反馈控制,设状态反馈矩阵为:K=[k1k2k3]u=v+KX=v+[k1k2k3] [x1 x2 x3 ]f(λ)=det[λI−(A+bK)]=|[λ000λ000λ]−[010001−(3157+8.2k1)−(10.52+8.2k2)−(316+8.2k3)]| =|λ−100λ−1(3157+8.2k1)(10.52+8.2k2)λ+(316+8.2k3)| =λ3+(316+8.2k3)λ2+(10.52+8.2k2)λ+3157+8.2k1{f(λ)=λ3+(316+8.2k3)λ2+(10.52+8.2k2)λ+3157+8.2k1f∗(λ)=λ3+120λ2+2200λ+20000{316+8.2k3=12010.52+8.2k2=22003157+8.2k1=20000⇒{k1=2054k2=267k3=−24得出状态控制规律为:v=u+KX=u+[2054267−24] [x1x2x3]系统校正框图如下图:4.2考虑非线性状态控制K=[k1k2k3]u=v+KX=v+[k1k2k3] [x1 x2 x3 ]f(λ)=det[λI−(A+bK)]=|[λ000λ000λ]−[010001−(3157+8.2k1)−(10.52+8.2k2)−(316+8.2k3)]| [x1x2x3]=[010001−3×107−1.2×108−316]+[−8.6]uFigure 1系统模拟结构图=|λ−100λ−1(3×107+8.2k 1)(1.2×108+8.2k 2)λ+(316+8.2k 3)|=λ3+(316+8.2k 3)λ2+(1.2×108+8.2k 2)λ+3×107+8.2k 1{f (λ)=λ3+(316+8.2k 3)λ2+(1.2×108+8.2k 2)λ+3×107+8.2k 1f ∗(λ)=λ3+120λ2+2200λ+20000{316+8.2k 3=1201.2×108+8.2k 2=22003×107+8.2k 1=20000 ⇒ {k 1=−3.65×106k 2=−1.46×107k 3=−24得出状态控制律为:u =v +KX =v +[−3.65×106−1.46×107−24] [x 1x 2x 3]控制流程简图在此处键入公式。
Figure 2系统模拟结构图5.数字仿真5.1闭环传递函数校正后系统状态空间表达式:[x1x2x3]=[010001−20000−2200−120][x1x2x3]+[−8.6]uy=[100][x1x2x3]Simulink仿真框图:Figure 3 Simulink仿真框图系统0初始状态响应曲线:Figure 4闭环系统0初始状态响应曲线系统非0初始状态响应曲线:Figure 5系统非0初始状态响应曲线:5.2闭环传递函数与数字仿真Φ(s)=C(sI−A)−1BΦ(s)=[100][s−100s−1 200002200s+120]−1[−8.6]=−8.6s3+120s2+2200s+20000为了更好的观测系统的超调量σp,以及调整时间t s,可以将系统闭环传递函数增益调整为1,或者将阶跃响应的幅值调到20000−8.6,那么系统的稳态输出为1。