2013广东梅州中考数学
初中数学中考一轮05、四边形的综合应用(学生版)

四边形的综合应用学生姓名年级学科授课教师日期时段核心内容平行四边形的性质与判定特殊平行四边形的性质与判定图形变换课型一对一/一对N教学目标熟练应用特殊四边形的性质与判定熟练的解决以特殊四边形为背景的综合题重、难点熟练的解决以特殊四边形为背景的综合题课首沟通1、知识点回顾2、作业检查3、询问学校进度及掌握情况知识导图课首小测1.[单选题] 下列命题中,正确的是(). A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形 D.两组对边分别相等的四边形是平行四边形2.[单选题] 对角线互相垂直平分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形3.[单选题] 在下列图形的性质中,平行四边形不一定具有的是().A.对角相等B.对角互补C.邻角互补D.内角和是4.如图,四边形ABCD中,当∠1=∠2,且∥时,这个四边形是平行四边形.5.若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为cm²。
6.已知菱形的两条对角线分别为6cm和8cm,则该菱形的周长为cm。
7.(2015年四川广安中考)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.8.(2013年广东广州中考)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.9.(2015年广州中考)如图,正方形ABCD中,点E、F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.导学一:平行四边形的性质与判定知识点讲解 1:平行四边形的性质与判定证:.例 1. [单选题] (2015年广州中考)下列命题中,真命题的个数有( ) ①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形. A. 3个 B. 2个C.1个D.0个例 2. [单选题] ( 2014年广东中考)如图,▱ABCD 中,下列说法一定正确的是( )A.AC=BDB. AC⊥BDC. AB=CDD.AB=BC例 3. (2014年广州中考)如图, 的对角线 、 相交于点 ,过点 且与、 分别交于点 、 ,求我爱展示1. (2015年梅州中考)如图,在▱ABCD 中,BE 平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于cm .2. (2015年大连中考)在□ABCD中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB=10cm ,AD=8cm , OB=cm .3. [单选题] (2014年昆明中考)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是 ()A.AB∥CD,AD∥BCB. OA=OC ,OB=ODC.AD=BC ,AB∥CDD.AB=CD ,AD=BC4. [单选题] (2015年绵阳中考)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD=90°,BC=4,BE=ED=3, AC=10,则四边形ABCD 的面积为()A. 6B.12C.20D.245.(2012年荔湾一模)已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.导学二:矩形的性质与判定知识点讲解 1:矩形的性质与判定应用例 1. [单选题] (2015年益阳中考)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B. AC=BDC.OA=OBD.OA=AD例 2. 如图,在矩形ABCD中,对角线AC,BD交于点O,已知,AB=2.5,则AC的长为。
2013年中考数学解题方法及提分突破训练:几何变换法专题

解题方法及提分突破训练:几何变换法专题在几何题或代数几何综合题的解证过程中,经常会使用几何变换的观点来解决问题。
从图形的特点出发,利用几何变换,可将图形的全部或一部分移动到一个新的位置,构成一个新的关系,从而使问题获得解决。
这种几何变换不改变被移动部分图形的形状和大小,而只是它的位置发生了变化,这种移动有利于找出图形之间的关系,从而使解题更为简捷。
移动图形一般有三种方法:(1)平移法。
(2)旋转法:利用旋转变换。
(3)对称:可利用中心对称和轴对称。
一真题链接1.(2012中考)如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD= .2.(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--3.(2012绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
4.(2012张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换。
.二名词释义在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
中考数学总复习第5课 二次根式

的值为
()
A.-15
B.15
C.-125
D.125
解析:由二次根式的定义,得 2x-5≥0 且 5-2x≥0,∴x
≥5且 2
x≤52,∴x=52,∴y=-3,∴2xy=2×52×(-3)=-
15.
答案:A
【预测演练 1-3】 化简:( 3-x)2- x2-10x+25.
解析:∵3-x≥0,∴x≤3,原式=3-x-|x-5|=3-x- (5-x)=3-x-5+x=-2.
解析:(1)4 1- 8=4× 2-2 2=2 2-2 2=0.
2
2
(2)原式=( 2+1)( 2-1)× 2=(2-1)× 2= 2.
(3)原式=(3 2)2-1-[(2 2)2-4 2+1]
=18-1-8+4 2-1=8+4 2.
(4)原式=( 10-3)2013·( 10+3)2013·( 10+3)
∴a=m 2+2n 2,b=2m n . 这样,小明找到了把部分 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的
式子分别表示 a,b 得,a=________,b=________; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空: ______+______ 3=(______+______ 3)2; (3)若 a+4 3=(m+n 3)2 且 a,b,m,n 均为正整数,求 a 的值.
解析:x-3≥0, ∴x≥3.
答案:x ≥3
【预测演练 1-1】
等式 2k-1= k-3
数 k 的取值范围是
2k-1成立,则实 k-3
()
2013年广东省各市中考数学分类解析专题10四边形

一、选择题1. (2013年广东广州3分)如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB=4,AD=6 ,则tan B =【 】A B C1142. (2013年广东茂名3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AC 的长是【 】A .2B .4C .D .3. (2013年广东深圳3分)下列命题是真命题的有【】①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A..1个B.2个C.3个D.4个二、填空题1. (2013年广东省4分)如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是▲.2. (2013年广东省4分)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是▲(结果保留π).3. (2013年广东珠海4分)如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是▲.三、解答题1. (2013年广东佛山11分)我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.解:在表格中作答【答案】解:(1)在表格中作答:(2) 如图①,连接BD ,取AB 中点E ,连接DE .∵AB=2a ,E 为AB 中点,∴AE=BE=a 。
2013年中考数学复习课件:第二部分 第六章 第4讲 图形的相似

a+c+…+m =k ⇔__________________________. b+d+…+n
3.黄金分割 (1)定义:点 C 把线段 AB 分成两条线段 AC 和 BC ,如果
5-1 AC _______________,那么线段 AB 被点 C 黄金分割.其中点 C 叫 AB= 2
黄金分割点 做线段 AB 的____________,AC 与 AB 的比叫做黄金比.
B.△ADE∽△ABC D.S△ABC=3S△ADE
3.图 6-4-3 中的两个四边形是位似图形,它们的位似中
心是( D)
图 6-4-3 A.点 M C.点 O B.点 N D.点 P
AE 1 4. 如图 6-4-4, 在△ABC 中, EF∥BC, =2, 四边形 BCFE S EB =8,则 S△ABC=( A )
∴CD=CB.
9. (2009 年广东)如图 6-4-14, 正方形 ABCD 的边长为 4, M,N 分别是 BC,CD 上的两个动点,当点 M 在 BC 上运动时, 保持 AM 和 MN 垂直. (1)证明:Rt△ABM ∽Rt△MCN; (2)设 BM=x,梯形 ABCN 的面积为 y,求 y 与 x 之间的函 数关系式;当点 M 运动到什么位置时,四边形 ABCN 的面积最大?并求出最大面积; (3)当点 M 运动到什么位置时, Rt△ABM ∽ Rt△AMN?求此时 x 的值. 图 6-4-14
6.相似三角形的定义 相等 成比例 如果两个三角形的对应角__________,对应边__________,
那么这两个三角形叫做相似三角形. 7.相似三角形的判定 (1)两角对应相等的两个三角形相似. (2)_______________________________的两个三角形相似. 两边对应成比例,且夹角相等 三边对应成比例 (3)_______________________________的两个三角形相似. (4)平行于三角形一边的直线和其他两边相交,所构成的三 相似 角形和原三角形__________.
中考数学《视图与投影》复习课件

4.中心投影 (1)由同一点(点光源) 发出的光线形成的
投影叫做中心投影. (2)中心投影的投影 线交于一点. (3)投影面确定时,物 体离点光源越近,影 子越大;物体离点光 源越远,影子越小.
4.下列影子不是中心投影的是( D ) A.皮影戏中的影子 B.晚上在房间内墙上的手影 C.舞厅中霓红灯形成的影子 D.太阳光下林荫道上的树影
A.6
B.5
C.4
D.3
14.(2019 桂林)一个物体的三视图如图所示,其中主视图和左视 图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这 个物体的表面积为( C )
A.π
B.2π
C.3π
D.( +1)π
A.正方体
B.圆柱
C.圆锥
D.球
4.(2019宜昌)如图所示的几何体的主视图是(D )
A
B
C
D
5.(2019陕西)如图是由两个正方体组成的几何体,则该几何体 的俯视图为( C )
ABC来自D6.(2019 河池)某几何体的三视图如图所示,该几何体是( A ) A.圆锥 B.圆柱 C.三棱锥 D.球
B.你
C.顺
D.利
基础训练
1.(2019 岳阳)下列立体图形中,俯视图不是圆的是( C )
A
B
C
D
2.(2019 临沂)如图,正三棱柱的左视图( A )
A
B
C
D
3.(2019 宁波)如图,下列关于物体的主视图画法正确的是( C )
A
B
C
D
4.(2019 沈阳)如图是由五个相同的小立方块搭成的几何体,这个 几何体的俯视图是( A )
第二部分 空间与图形 第七章 尺规作图及图形变换
43[一键打印]【解析版】2013年广东省梅州市中考数学试卷及答案
![43[一键打印]【解析版】2013年广东省梅州市中考数学试卷及答案](https://img.taocdn.com/s3/m/701741e7e009581b6bd9eb5b.png)
广东省梅州市2013年中考数学试卷一、选择题.每题3分,共5小题,共15分.只有一个正确答案.1.(3分)(2013•梅州)四个数﹣1,0,,中为无理数的是()无理数有:2.(3分)(2013•梅州)从上面看如图所示的几何体,得到的图形是()B4.(3分)(2013•梅州)不等式组的解集是(),二、填空题.每题3分,共8题,共24分.6.(3分)(2013•梅州)﹣3的相反数是3.7.(3分)(2013•梅州)若∠α=42°,则∠α的余角的度数是48°.8.(3分)(2013•梅州)分解因式:m2﹣2m=m(m﹣2).9.(3分)(2013•梅州)化简:3a2b÷ab=3a.10.(3分)(2013•梅州)“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为8×106吨.11.(3分)(2013•梅州)如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是105度.12.(3分)(2013•梅州)分式方程的解x=1.13.(3分)(2013•梅州)如图,已知△ABC是腰长为1的等腰直角三形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2013个等腰直角三角形的斜边长是()2013.根据等腰直角三角形的斜边长为直角边长度的×=的斜边长,所以它的斜边长:×=))()三、解答题.共10小题,共81分.14.(7分)(2013•梅州)计算:.﹣﹣+2×﹣15.(7分)(2013•梅州)解方程组.,原方程组的解为16.(7分)(2013•梅州)如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);(2)将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.=17.(7分)(2013•梅州)“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计.图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)九年级(1)班共有60名学生;(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是18°;(3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有300名.×=1818.(8分)(2013•梅州)已知,一次函数y=x+1的图象与反比例函数y=的图象都经过点A(a,2).(1)求a的值及反比例函数的表达式;(2)判断点B(,)是否在该反比例函数的图象上,请说明理由.;=19.(8分)(2013•梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.=22DEA==﹣2﹣﹣20.(8分)(2013•梅州)为建设环境优美、文明和谐的新农村,某村村委会决定在村道两两种树苗的相关信息如表:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?21.(8分)(2013•梅州)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB与点E,且CF=AE,(1)求证:四边形BECF是菱形;(2)若四边形BECF为正方形,求∠A的度数.22.(10分)(2013•梅州)如图,已知抛物线y=2x2﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)写出以A,B,C为顶点的三角形面积;(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).AB OC=±,的坐标为(的坐标为(﹣±的坐标为(的坐标为(﹣=,即==,即=DQ=.23.(11分)(2013•梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.×=CFP=×=1BC=CP=﹣.AP==..长为半径画弧,与BC===BCMN====+x=时,有最小值,最小值为周长的最小值为。
历年梅州市初三数学中考试卷及答案

梅州市高中阶段学校招生考试数学试卷一、填空题(每小题 3分,共30分) 1、 计算:(a — b ) — ( a+b ) = 2、 计算:(a 2b ) 2+ a 4 = 。
3、 函数y 奸右中,自变量x 的取值范围是 。
4、 北京与巴黎两地的时差是一 7小时(带正号的数表示同一时间比北京早的时间数) 如果现在北京时间是 7 : 00,那么巴黎的时间是 5、 求值:sin 230° +cos 230° = 。
6、 根据图1中的抛物线,当x 时,y 随x 的增大而增大, 当x 时,y 随x 的增大而减小,当 x 时,y 有最大值。
7、 如图2,将一副直角三角板叠在一起,使直角顶点重合于点 O,则 / AOB+ / DOC= 0 8、 已知一个三角形的三边长分别是 6 cm, 8 cm, 10 cm,则这个 三角形的外接圆面积等于 cm 2。
9、 如图3,扇子的圆心角为a,余下扇形的圆心角为为了使扇子 的外形美观,通常情况下a 与6的比按黄金比例设计,若取黄金比为 则a =度。
10、如图4是我市城乡居民储蓄存款余额的统计图, 请你根据该图写出两条正确的信息: ① 、选择题(每小题 3分,共15分)11、已知O O 的半径为5 cm,③O 的半径为3 cm, 两圆的圆心距为 7 cm,则它们的位置关系是 ................. A 、相交 B 、外切 C 、相离 D 、内切 212、 万程 x — 5x — 1=0 ........................................................................................ A 、有两个相等实根B、有两个不等实根C 、没有实根D 、无法确定 13、 一组对边平行,并且对角线互相垂相等的四边形是 ............. A C 、 14、设 A 、 菱形或矩形 矩形或等腰梯形 a 是实数,则|a| 可以是负数 必是正数 D 一a 的值 .. BDOO图2图1C0.6, 卤3239.6155.1419.460.461978 年 1990^ 2000 年 2003 年图4300 200150 100 50 0城乡居民储蓄存款余额(亿元、正方形或等腰梯形、菱形或直角梯形 、不可能是负数D 、可以是正数也可以是负数 15、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州 华城一一河源一一惠州一一东莞一一广州, 那么要为这次列车制作的火车票有 A 、6 种 B 、12 种 C 、21 种 D 、42 种三、解答下列各题(每小题 6分,共24分)16、计算:(2)2 G/2) 1 78 (1 J3)017、在“创优”活动中,我市某校开展收集废电池的活动,该校初二(1)班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:(单位:个):48, 51, 53, 47, 49, 50, 52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梅州市2013年初中毕业生学业考试数学试卷一、选择题:本大题共5小题,每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的.1. (2013广东梅州,1,3分)四个数-1,0,12A .-1B .0C .12D 【答案】D .2. (2013广东梅州,2,3分)从上面看如左图所示的几何体,得到的图形是A .B .C .D .【答案】B .3. (2013广东梅州,3,3分)数据2,4,3,4,5,3,4的众数是A .5B .4C .3D .2 【答案】B .4. (2013广东梅州,4,3分)不等式组2020x x +>⎧⎨-≥⎩的解集是A .2x ≥B .2x >-C .2x ≤D .22x -<≤ 【答案】A .5. (2013广东梅州,5,3分)一个多边形的内角和小于它的外角和,则这个多边形的边数是A .3B .4C .5D .6 【答案】A .二、填空题:本大题共8小题,每小题3分,共24分. 6. (2013广东梅州,6,3分)-3的相反数是 . 【答案】3.7.(2013广东梅州,7,3分)若42α∠=︒,则α∠的余角的度数是 . 【答案】48°.8.(2013广东梅州,8,3分)分解因式:22m m -= . 【答案】(2)m m -.9.(2013广东梅州,9,3分)化简:23a b ab ÷= .【答案】3a . 10. (2013广东梅州,10,3分)“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为 吨. 【答案】6810⨯.11. (2013广东梅州,11,3分)如图,在△ABC 中,AB =2,AC A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .【答案】105°.12. (2013广东梅州,12,3分)分式方程211xx =+的解是x = . 【答案】1.13. (2013广东梅州,13,3分)如图,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2013个等腰直角三角形的斜边长是.【答案】2013.三、解答下列各题:本大题共10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.(2013广东梅州,14,7分)本题满分7分.计算:()1012013|2cos452-⎛⎫--+︒⎪⎝⎭.解:原式=122⨯-=.15.(2013广东梅州,15,7分)本题满分7分.解方程组251x yx y+=⎧⎨-=⎩.【解】251x yx y+=⎧⎨-=⎩①②,①+②,得36x=,即2x=,将2x=代入②,得1y=.所以原方程组的解为21 xy=⎧⎨=⎩.16.(2013广东梅州,16,7分)本题满分7分.如图,在平面直角坐标系中,A(-2,2),B(-3,-2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内.(不包括边界.....)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【解】(1)∵点C 与点A 关于原点O 对称,且A (-2,2),∴点C 的坐标为(2,-2). (2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2).(3)四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点有15个,如图其中横、纵坐标之和恰好为零的有3个,所以所取的点横、纵坐标之和恰好为零的概率是51153 .17.本题满分7分(2013广东梅州,17,7分)“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计,图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)九年级(1)班共有 名学生;(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是 ;(3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有 名.【解】(1)九年级(1)班中“很好”所占的比例为30%,“很好”的人数为18,所以九年级(1)班共有18÷30%=60(人).(2)九年级(1)中“较好”的人数为30,所以“较好”所占的比例为30÷60=50%,所以“较差”的所占比例为1-30%-15%-50%=5%.所以对安全知识的了解情况为“较差”部分所对应的圆心角的度数是360°×5%=18(人).(3)全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有(5%+15%)×1500=300(人).18.本题满分8分.(2013广东梅州,18,8分)已知,一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点A (a ,2).(1)求a 的值及反比例函数的表达式;(2)判断点B (2)是否在该反比例函数的图象上,请说明理由. 【解】(1)∵一次函数y=x+1的图象经过点A (a ,2),∴2=a +1,解得a =1.又反比例函数(0)ky k x=≠的图象经过点A (a ,2),∴12k =,∴k =2. ∴a 的值为1,反比例函数的表达式为x y 2=.(2)∵22222=⨯,∴点B (2)是在该反比例函数的图象上.19.本题满分8分. (2013广东梅州,19,8分)如图,在矩形ABCD 中,AB =2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA =2. (1)求线段EC 的长;(2)求图中阴影部分的面积.【解】(1)∵在矩形ABCD 中,AB =2DA ,∴AE =2AD ,且∠ADE =90°.又DA =2,∴AE =AB =4,∴DE =3221622=-=-AD AE ,∴EC =DC -DE =324-.(2)ADE AEF S S S ∆=-阴影扇形=260418236023ππ︒⨯⨯-⨯⨯=-︒.20.本题满分8分. (2013广东梅州,20,8分)为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A ,B 两种树木,需要购买这两种树苗1000棵.A ,B 两种树苗的相关信息如设购买A 种树苗x 棵,绿化村道的总费用为y 元.解答下列问题: (1)写出y (元)与x (棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元? (3)若绿化村道的总费用不超过31000元,则最多可购买B 种树苗多少棵? 【解】解:(1)设购买A 种树苗x 棵,则购买B 种树苗(1000-x )棵,绿化村道的总费用为y =(20+5)x +(30+5)(1000-x )=25x +35000-35x =35000-5x . (2)90%x +95%(1000-x )=925.解得x =500(棵),则购买B 种树苗500棵. (20+5) ×500×90%+(30+5) ×500×95%=27875(元).(3)(20+5)x +(30+5)(1000-x )≥31000,解得x ≤400.则1000-x ≥1000-400=600.所以最多可购买B 种树苗600棵.21.本题满分8分.(为方便答题,可在答题卡上画出你认为必要的图形)(2013广东梅州,21,8分)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交于点D ,交AB 于点E ,且CF =AE .(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数. 【解】(1)∵BC 的垂直平分线EF 交于点D ,∴BF =FC ,BE =EC .又∵∠ACB =90°,∴EF //AC . ∴BE :AB=DB :BC ,∵D 为BC 中点,∴DB :BC=1:2,∴BE :AB=1:2,∴E 为AB 中点,即BE=AE ,∵CF=AE ,∴CF=BE ,∴CF=FB=BE=CE ,∴四边形BECF 是菱形.(2)如图,∵四边形BECF 为正方形,∴∠BEC =90°.又AE =CE ,∴∠A =45°.22.本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)(2013广东梅州,22,8分)如图,已知抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)写出以A ,B ,C 为顶点的三角形面积;(2)过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点(点M 在点N 的左侧),以MN 为一边,抛物线上的任一点P 为另一顶点作平行四边形,当平行四边形的面积为8时,求出点P 的坐标;(3)过点D (m ,0)(其中m >1)且与x 轴垂直的直线2l 上有一点Q (点Q 在第一象限....),使得以Q ,D ,B 为顶点的三角形和以B ,C ,O 为顶点的三角形相似,求线段QD 的长(用含m 的代数式表示).【解】(1)∵抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .∴2220x -=,C (0,-2)∴1x =±.∴A (-1,0),B (1,0).∴AB =2.∴12222ABC S ∆=⨯⨯=. (2)∵过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点,∴2226x -=,解得2x =±,∴MN =4.又平行四边形的面积为8时,∴点P 到MN 的距离为2,即P 点的纵坐标为4,∴2224x -=,解得x =P 的坐标为(44). (3)设Q (m ,b ),则可分两种情况: ①当OB OCBD DQ=时,121m b =-,解得22b m =-(1m >). ②当OB OCDQ BD=时,121b m =-,解得1122b m =-(1m >).23.本题满分11分.(为方便答题,可在答题卡上画出你认为必要的图形)(2013广东梅州,23,8分)用如图①,②所示的两个直角三角形(部分边长及角的度数在..........图中已标出.....),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P . (1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长; (2)当点P 在运动的过程中出现P A =FC 时,求∠P AB 的度数.探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN ,在旋转△DEF 的过程中,△AMN 的周长是否存在有最小值?若存在.求出它的最小值;若不存在,请说明理由.【解】(1)过点A 作AG ⊥BC ,垂足为G .当点P 运动到∠CFB 的角平分线上时,∠PFC =∠BFP=30°,∴PC=12PF.又∵∠CBF=30°,∴BP=PF.∵BC=3,∴BP=2.在Rt△BAC中,∵∠ABC=45°,∴AG=BG=12BC=32.∴GP=12.∴在Rt△AGP中,AP2==.(2)如图,过点A作AG⊥BC,垂足为G.在Rt△APG中,AP=CF AG=32,则PG==,所以∠P AG=30°,所以∠P AB=15°.当点P位于点P′处时,∠BAP=75°.探究二:过点D分别作DH⊥AB于点H,DI⊥AC于点I.在Rt △ABC 中,∵点D 是BC 中点,AB =AC ,∴HD =DI .∴四边形HDIA 是正方形.∵∠HDI =∠MDN ,∴∠HDM =∠IDN .在△HDM 与△IDN 中,HDM IDN HD DIDHM DIN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△HDM ≌△IDN (ASA ). ∴DM =DN ,HM =IN .设MA =x ,则HMx , ∴ANxx ∴MN当x =MN34=. 所以最小周长为AM +AN +MN 有最小值=2AH +34=AB +3434.。