共模干扰与差模干扰的成因与应对

合集下载

电磁干扰(EMI)差模共模干扰抑制措施

电磁干扰(EMI)差模共模干扰抑制措施

54差模干扰在电路回路中存在大小相等、方向相反的干扰电流,并且干扰电流在由两根导线组成的回路中传输。

图4.1.1:差模干扰示意图产生的原因差模干扰中的干扰是起源在回路线路之中(直接注入),如同一线路中工作的电机,开关电源,可控硅等,他们在回路上所产生的干扰就是差模干扰。

如何影响设备差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。

(表现为尖峰电压,电压跌落及中断)如何滤除差模干扰主要采用差模线圈和差模电容。

55差模线圈图4.1.2:差模线圈示意图从图中可知,当电流流过差模线圈之后,线圈里面的磁通是增强的,相当于两个磁通之和,线圈在低频率时低阻抗,高频率时高阻抗,所以在高频时利用它的高阻抗衰减差模信号。

差模电容电容具有低频率高阻抗,高频率低阻抗特性,利用电容在高频时它的低阻抗短路掉差模信号。

图4.1.3:差模电容示意图56共模干扰在电路回路中存在大小相等、方向相同的干扰电流,并且干扰电流在导线与地线中传输。

产生的原因电网串入共模电压、辐射干扰(如雷电) 在信号线上感应出共模电压、接地电压存在电位差引入共模电压。

如何影响设备因为在负载两端没有电位差,所有的共模电流都通过电缆和地之间的寄生电容流向地线,由于电路的非平衡性。

相同的共摸电压会在信号线和信号地线上产生不同的幅度的共模电流。

从而产生差模电压,形成干扰。

如何滤除共模干扰主要采用共模线圈和共模电容。

图4.2.1:共模干扰示意图57共模线圈图4.2.2:共模线圈示意图共模线圈和差模线圈原理比较类似,都是利用线圈高频时的高阻抗来衰减干扰信号。

共模线圈和差模线圈绕线方法刚好相反。

共模线圈对方向相反的电流基本不起作用。

共模电容共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻抗,使高频干扰信号短路,而低频时电路不受任何影响。

只是差模电容是两极之间短路。

而共模电容是线对地短路。

图4.2.3:共模电容示意图58线圈抑制频率响应实际的电感是L 、C 的并联网络(忽略绕组的电阻)它的阻抗特性如图4.3.1所示,图4.3.1:电感频率响应图DM (LC)-1/2从图上可知,在谐振频率以下,呈现电感的阻抗特性,谐振频率以上,呈现电容的阻抗特性,随着频率的升高.阻抗越来越小,失去对干扰的抑制作用。

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施电磁干扰(EMI)是指在电磁环境中,由于电磁波的辐射、传导或耦合而引起的潜在问题。

在电子设备中,差模共模干扰是最常见和容易发生的电磁干扰形式之一、差模干扰是指在信号的正负两根导线上引入的干扰信号。

共模干扰是指在信号和地线之间或信号和屏蔽之间引入的干扰信号。

为了保证电子设备的正常工作,需要采取一系列抑制措施来抑制差模共模干扰。

1.使用差分信号传输:差模干扰是指在信号的正负两根导线上引入的干扰信号,而差分信号传输采用了两根互补的信号线,其中一根是信号线,另一根是信号线的反相线。

这样设计可以使得差模信号在两根导线上被平衡地引入,从而减小差模干扰的影响。

2.使用屏蔽线缆:差分信号传输可以减小差模干扰,但无法完全消除。

将信号线包裹在屏蔽层中可以进一步减小差模干扰的影响。

屏蔽线缆使用了金属屏蔽层,可以有效地吸收和屏蔽外部的电磁干扰,从而减小差模干扰。

3.采用均衡电路:在接收信号的端口,使用均衡电路可以进一步减小差模干扰的影响。

均衡电路可以将差模信号进行抵消,从而降低差模干扰对信号的影响。

4.使用差模输入输出接口:差模输入输出接口可以限制差模干扰信号的传播路径。

通过选择合适的差模输入输出接口,可以减小差模干扰信号的传播,从而减小对设备的影响。

1.接地:良好的接地可以减小共模干扰的影响。

在设计电子设备时,需要合理设置接地点,确保设备的各个部分都能够得到正确的接地。

2.屏蔽:在信号传输过程中,可以采用屏蔽层将信号线和地线之间隔离,从而减小共模干扰的影响。

屏蔽层采用金属材料制成,可以有效地吸收和屏蔽外部的电磁干扰。

3.使用滤波器:在信号线上安装共模滤波器可以减小共模干扰的影响。

共模滤波器可以选择合适的频率范围,将共模干扰信号滤除,从而保证信号的质量。

4.绕线方式:在布线时,可以通过适当的绕线方式来减小共模干扰的影响。

例如,采用环形绕线、交叉绕线等方法,可以使得信号线和地线之间的耦合减小,从而减小共模干扰。

差模干扰和共模干扰的原理

差模干扰和共模干扰的原理

差模干扰和共模干扰的原理差模干扰和共模干扰都是电路中常见的干扰形式。

差模干扰和共模干扰的原理可以通过对其定义以及电路中的具体应用来解释。

首先,差模干扰指的是信号的两个分量相对于地的电位差所引起的干扰。

差模信号是指两个信号相对地的电位差,一般称为差模电压或差模信号;而差模干扰是指差模信号中存在的噪声或干扰信号。

差模干扰往往来源于信号源自身的不完美,或者由于信号传播过程中的电磁波耦合等因素引起。

例如,在音频线路中,差模干扰可能来自于电源线的磁场感应、地线噪声以及其他电源干扰。

其次,共模干扰指的是信号的两个分量相对地的电位相等所引起的干扰。

共模信号是指信号的两个分量相对地的电位相等,一般称为共模电压或共模信号;而共模干扰是指共模信号中存在的噪声或干扰信号。

共模干扰往往来源于外部环境中的电磁干扰,例如电源线上的高频噪声信号、其他电器设备的辐射电磁波等。

差模干扰和共模干扰的区别在于信号的两个分量相对地的电位差异。

对于差模干扰,由于信号源自身的不完美或传播过程中的电磁波耦合,信号的两个分量之间存在电位差,因此产生了差模干扰;而对于共模干扰,由于外部环境中的电磁干扰,信号的两个分量相对地的电位相等,因此产生了共模干扰。

差模干扰和共模干扰在电路中的影响与应对方法也有所不同。

差模干扰会破坏信号的差模部分,导致信号失真或降低信噪比;而共模干扰则会影响整个信号以及相关设备的正常工作。

为了解决差模干扰问题,可以采取一些差模抑制技术,如采用差模放大器、差模滤波器,或者在设计中增加屏蔽层和引入差模输入和输出滤波来降低差模干扰的影响。

而对于共模干扰问题,可以采取共模抑制技术,如增加屏蔽层、使用阻抗匹配技术、选择低耦合度的电子元件等,以减少共模干扰的影响。

总之,差模干扰和共模干扰是电路中常见的干扰形式,其原理在于信号分量相对地的电位差异。

了解差模干扰和共模干扰的原理,有助于我们在电路设计和干扰抑制中采取相应的措施,保证信号的质量和系统的正常工作。

共模干扰,差模干扰,共模残压

共模干扰,差模干扰,共模残压

共模干扰与差模干扰共模干扰(Common-mode):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。

共模电流一般情况下,电缆上产生共模电流的原因有三个方面: 一个是外界电磁场在电缆中所有导线上感应出来的电压(这个电压相对于大地是等幅同相的),这个电压产生电流;另一个原因是电缆两端的设备所接的地电位不同,在这个地电位的驱动下产生电流; 第三个原因是设备上的电缆与大地之间的电位差,这样电缆上会有共模电流。

如果设备在其电缆上产生共模电流,电缆会产生强烈的电磁辐射,对电子、电气产品元器件产生电磁干扰,影响产品的性能指标。

另外,当电路不平衡时,共模电流会转变为差模电流,差模电流对电路直接产生干扰影响。

对于电子、电气产品电路中的信号线及其回路而言:差模电流流过电路中的导线环路时,将引起差模辐射,这种环路相当于小环天线,能向空间辐射磁场,或接收磁场。

因此,必须限制环路的大小和面积。

如何识别共模干扰1)从干扰源判断:雷电、附近发生的电弧、附近的电台或其它大功率辐射装置在电缆上产生的干扰是共模干扰。

2)从频率上判断:共模干扰主要集中在1MHz以上。

这是由于共模干扰是通过空间感应到电缆上的,这种感应只有在较高频率时才容易发生。

但有一种例外,当电缆从很强的磁场辐射源(例如,开关电源)旁边通过时,也会感应上频率较低的共模干扰。

3)用仪器测量:只要有一台频谱分析仪和一只电流卡钳就可以进行测量、判断了,判断的步骤如下:将卡钳卡在信号线或地线(火线或零线)上,记录下某个感兴趣频率(f1)的干扰强度;/将卡钳同时卡住信号线和地线,若能观察到(f1)处的干扰,则(f1)干扰中包含共模干扰成份,要判断是否仅含共模成份,进行步骤三的判别;将卡钳分别卡住信号线和地线,若两根线上测得的(f1)干扰的幅度相同,则(f1)干扰中仅含共模成份;若不相同,则(f1)干扰中还包含差模成份。

消除共模干扰的方法包括:(1)采用屏蔽双绞线并有效接地(2)强电场的地方还要考虑采用镀锌管屏蔽(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线(4)不要和电控锁等易产生干扰的设备共用同一个电源(5)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV) (6)使用差分式电路差模干扰(Differential-mode):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。

什么是差模干扰和共模干扰 该如何抑制

什么是差模干扰和共模干扰 该如何抑制

一.什么是差模信号和共模信号差模信号:大小相等,方向相反的交流信号;双端输入时,两个信号的相位相差180度。

共模信号:大小相等。

方向相同。

双端输入时,两个信号相同。

在差分放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这指有效信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。

如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化(温漂)而产生的信号,是一种有害的东西),为了形象化温漂而提出了共模信号,这时的放大倍数叫做共模放大倍数。

由于差分放大电路的构成特点,在差分放大电路中共模信号是不会被放大的,所以共模放大倍数很小(一般都小于1)。

计算公式又分为单端输出和双端输出,所以有四个共模信号和差模信号是指差动放大器双端输入时的输入信号。

二.什么是差模干扰和共模干扰任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示。

1.差模干扰差模干扰:差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。

各个信号间产生的相互干扰,一般使用电感电容就能过滤掉,就是我们经常使用的104,或者磁珠。

差模干扰幅度小、频率低、所造成的干扰较小。

差模干扰的电流大小相等,方向(相位)相反。

由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。

2.共模干扰共模干扰:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;所有输出的波形都具有此属性,这个需要使用共模电感过滤。

在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。

共模干扰一般来自电源。

共模干扰产生原因1. 电网串入共模干扰电压。

2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。

共模干扰与差模干扰的成因与应对

共模干扰与差模干扰的成因与应对

共模干扰与‎差模干扰的‎成因与应对‎共模干扰:一般指在两‎根信号线上‎产生的幅度‎相等,相位相同的‎噪声。

差模干扰:则是幅度想‎等,相位相反的‎的噪声。

常用的差分‎线对共模干‎扰的抗干扰‎能力就非常‎强。

干扰类型通‎常按干扰产‎生的原因、噪声干扰模‎式和噪声的‎波形性质的‎不同划分。

其中:按噪声产生‎的原因不同‎,分为放电噪‎声、浪涌噪声、高频振荡噪‎声等;按噪声的波‎形、性质不同,分为持续噪‎声、偶发噪声等‎;按噪声干扰‎模式不同,分为共模干‎扰和差模干‎扰。

共模干扰和‎差模干扰是‎一种比较常‎用的分类方‎法。

共模干扰是‎信号对地的‎电位差,主要由电网‎串入、地电位差及‎空间电磁辐‎射在信号线‎上感应的共‎态(同方向)电压迭加所‎形成。

共模电压有‎时较大,特别是采用‎隔离性能差‎的配电器供‎电室,变送器输出‎信号的共模‎电压普遍较‎高,有的可高达‎130V以‎上。

共模电压通‎过不对称电‎路可转换成‎差模电压,直接影响测‎控信号,造成元器件‎损坏(这就是一些‎系统I/O模件损坏‎率较高的主‎要原因),这种共模干‎扰可为直流‎、亦可为交流‎。

差模干扰是‎指作用于信‎号两极间的‎干扰电压,主要由空间‎电磁场在信‎号间耦合感‎应及由不平‎衡电路转换‎共模干扰所‎形成的电压‎,这种让直接‎叠加在信号‎上,直接影响测‎量与控制精‎度。

差模干扰在‎两根信号线‎之间传输,属于对称性‎干扰。

消除差模干‎扰的方法是‎在电路中增‎加一个偏值‎电阻,并采用双绞‎线;共模干扰是‎在信号线与‎地之间传输‎,属于非对称‎性干扰。

消除共模干‎扰的方法包‎括:(1)采用屏蔽双‎绞线并有效‎接地(2)强电场的地‎方还要考虑‎采用镀锌管‎屏蔽(3)布线时远离‎高压线,更不能将高‎压电源线和‎信号线捆在‎一起走线(4)采用线性稳‎压电源或高‎品质的开关‎电源(纹波干扰小‎于50mV‎)在一般情况‎下,差模信号就‎是两个信号‎之差,共模信号是‎两个信号的‎算术平均值‎。

共模干扰与差模干扰

共模干扰与差模干扰

共模干扰与差模干扰来源:| 作者:| 发布时间:2009-12-25 12:50:13 | 浏览:266次【字体:大中小】共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。

差模干扰:一般指在两根信号线上产生的幅度想等,相位相反的噪声。

共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的同方向电压迭加所形成。

差模干扰是指作用于信号两极间的干扰电压。

主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压。

差模干扰在两根信号线之间传输,属于对称性干扰。

消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线。

共模干扰是在信号线与地之间传输,属于非对称性干扰。

消除共模干扰的方法包括:采用屏蔽双绞线并有效接地、强电场的地方采用镀锌管屏蔽、布线时远离高压线,不能将高压电源线和信号线捆在一起走线、采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对共模信号的抑制能力,因此共模抑制比越大越好,说明电路的性能优良。

传输线的共模传输模式:当两条耦合传输线上驱动信号的幅度与相位都相同。

此时,传输线的等效电容将随着互容的减少而减少,同时等效电感却因为互感的增加而增加。

传输线的差模传输的模式:当两根耦合的传输线相互之间的驱动信号幅值相同但相位相差180 度的时候,就是一个差模传输的模型。

此时,传输线的等效电容因为互容的加倍而增加,但是等效电感因为互感的减小而变小。

任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。

在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。

因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下。

除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。

共模干扰与差模干扰的成因与应对

共模干扰与差模干扰的成因与应对

共模干扰与差模干扰的成因与应对共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。

差模干扰:则是幅度想等,相位相反的的噪声。

常用的差分线对共模干扰的抗干扰能力就非常强。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。

其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

共模干扰和差模干扰是一种比较常用的分类方法.共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。

差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

差模干扰在两根信号线之间传输,属于对称性干扰。

消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线;共模干扰是在信号线与地之间传输,属于非对称性干扰。

消除共模干扰的方法包括:(1)采用屏蔽双绞线并有效接地(2)强电场的地方还要考虑采用镀锌管屏蔽(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线(4)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)在一般情况下,差模信号就是两个信号之差,共模信号是两个信号的算术平均值.共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对攻模信号的抑制能力,因此共模抑制比越大越好,说明电路的性能优良传输线的共模状态:当两条耦合传输线上驱动信号的幅度与相位都相同时,称为共模传输模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共模干扰与差模干扰的成因与应对
共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。

差模干扰:则是幅度想等,相位相反的的噪声。

常用的差分线对共模干扰的抗干扰能力就非常强。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。

其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

共模干扰和差模干扰是一种比较常用的分类方法。

共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。

差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

差模干扰在两根信号线之间传输,属于对称性干扰。

消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线;
共模干扰是在信号线与地之间传输,属于非对称性干扰。

消除共模干扰的方法包括:
(1)采用屏蔽双绞线并有效接地
(2)强电场的地方还要考虑采用镀锌管屏蔽
(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线
(4)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)
在一般情况下,差模信号就是两个信号之差,共模信号是两个信号的算术平均值。

共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对攻模信号的抑制能力,因此共模抑制比越大越好,说明电路的性能优良传输线的共模状态:当两条耦合传输线上驱动信号的幅度与相位都相同时,称为共模传输模式。

此时,传输线的等效电容将随着互容的减少而减少,同时等效电感却因为互感的增加而增加。

传输线的差模状态:当两根耦合的传输线相互之间的驱动信号幅值相同但相位相差180 度的时候,就是一个差模传输的模型。

此情况下,传输线的等效电容因为互容的加倍而增加,但是等效电感因为互感的减小而变小。

任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。

差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。

在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。

因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下。

除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。

开关电源的工作频率约为10~100 kHz。

EMC很多标准规定的传导干扰电平的极限值都是从10 kHz算起。

对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就不难满足符合EMC标准的滤波效果。

差模传导噪音是电子设备内部噪音电压产生的与信号电流或电源电流相同路径的噪音电流。

减小这种噪音的方法是在信号线和电源线上串联差模扼流圈、并联电容或用电容和电感组成低通滤波器,来减小高频的噪音。

噪音产生的电场强度与电缆到观测点的距离成反比,与频率的平方成正比,与电流和电流环路的面积成正比。

因此,减小这种辐射的方法是在信号输入端加LC低通滤波器阻止噪音电流流进电缆;使用屏蔽电缆或扁平电缆,在相邻的导线中传输回流电流和信号电流,使环路面积减小。

共模传导噪音是在设备内噪音电压的驱动下,经过大地与设备之间的寄生电容,在大地与电缆之间流动的噪音电流产生的。

减小共模传导噪音的方法是在信号线或电源线中串联共模扼流圈、在地与导线之间并联电容器、组成LC滤波器进行滤波,滤去共模噪声。

噪音辐射的电场强度与电缆到观测点的距离成反比,与频率和电缆的长度成正比。

相关文档
最新文档