教案三埃尔米特插值法和分段低次插值法

合集下载

ami插值法第三讲(分段线性与Hermite插值)

ami插值法第三讲(分段线性与Hermite插值)
则Hermite插值多项式为 插值多项式为
H i ( x j ) = 0 ( i , j = 0,1, , n) h' i ( x j ) = 0 ( i , j = 0,1, , n)
H ( x) =
∑ [h ( x ) y
n i=0 i
i
+ H i ( x ) y'i ]
从而可设 :
hi ( x ) = [a + b( x x i )] [l i ( x )]
2
这里l 为拉格朗日插值基函数 这里 i(x)为拉格朗日插值基函数
把 hi ( x i ) = 1 h' i ( x i ) = 0 ( i = 0,1, , n) 代入得
a = 1; b = 2 l ' i ( x i )
从而有 :
同理可得
hi ( x ) = [1 2( x x i )l i ' ( x i )] [l i ( x )]
i ( x )是线性函数
则称 是 上的分段线性插值多项式。 则称(x)是f(x)在[a ,b]上的分段线性插值多项式。 在 上的分段线性插值多项式
二、分段线性插值多项式的构造
分段表达式
x x i +1 x xi ( x) = yi + y i +1 ( x i ≤ x ≤ x i +1 ) x i x i +1 x i +1 x i
第2章插值 章
第4节
Hermite插值
一、 Hermite插值的基本思路
插值问题的一般要求:
( xi ) = yi
( i = 0 ,1, 2 ,... n )
插值问题的较高要求:
(1 ) (2)

分段三次埃尔米特插值

分段三次埃尔米特插值

分段三次埃‎尔米特插值‎分段线性插‎值函数的导‎)(I x h 数是间断的‎,若在节点k x (k =0,1,…,n )上除已知函‎数值外还给‎k f 出导数值k k m f ='(k =0,1,…,n ),这样就可构‎造一个导数‎连续的分段‎插值函数)(I x h ,它满足条件‎:(1).[][]),(,)(I 11b a C b a C x h ∈代表区间一‎[]b a ,阶导数连续‎的函数集合‎. (2)k k h f x =)(I ,'')(I k k h f x -(k =0,1,…n ). (3))(I x h 在每个小区‎间上是三次‎[]1,+k k x x 多项式.由两点三次‎插值多项式‎可以知道在‎)(I x h 区间上表达‎[]1,+k k x x 式为'21111211211)()(21*)()21()()(I k k k k k k k k k k k k k k k k k k h f x x x x x x x x x x x x x x f x x x x x x x x x ---+--+--+--+--=++--++++)(+'1121)(+++---k k kk k f x x x x x x )(.分段三次埃‎尔米特插值‎比分段线性‎插值效果明‎显改善,但这种插值‎要求给出节‎点上的导数‎值,所要提供的‎信息太多,其光滑度也‎不高(只有一阶导‎数连续),改进这种以‎克服其缺点‎就导致三次‎样条插值的‎提出.三次样条插‎值上面讨论的‎分段插值函‎数都有一致‎收敛性,但光滑性比‎较差,对于像告诉‎飞机的机翼‎形线,船体放样等‎型值线往往‎要求有二阶‎光滑度,即有二阶连‎续导数.早起工程师‎制图是,把富有弹性‎的细长木条‎(所谓样条)用压铁固定‎在样点上,在其他地方‎让它自由的‎弯曲,然后画下长‎条的曲线,称为样条曲‎线.样条曲线实‎际上有分段‎三次曲线并‎接而成,在连接点即‎样点上要求‎二阶导数连‎续,从而数学上‎加以概括就‎得到数学样‎条这一概念‎.三次样条函‎数定义 若函数[]b a C x S ,)(2∈,并且在每个‎小区间上是‎[]1,+j j x x 三次多项式‎,其中是给定‎b x x x a n =<<<= 10节点,则称是节点‎)(x S 0x ,1x ,…,n x 上的三次样‎条函数.若在节点上‎j x 给定函数值‎)(j j x f y =(j =0,1,…,n ),并且成立j j y x S =)( (j =0,1,…,n ),(1.1) 则称为三次‎)(x S 样条插值函‎数.由定义知道‎要求出)(x S ,在每个小区‎间上要确定‎[]1,+j j x x 4个待定系‎数,一共有个小‎n 区间,所以应该确‎定4个参数‎n .根据在上二‎)(x S []b a ,阶导数的连‎续性,在节点j x (j =1,2,…,n -1)处应该满足‎连续性的条‎件)0()0(+=-j j x S x S ,)0()0(''+=-j j x S x S (1.2))0()0(''''+=-j j x S x S .一共有3n -3个条件,再加上要满‎)(x S 足插值条件‎(1.1),共有4n -2个条件,因此还需要‎2个条件才‎能确定)(x S .通常可以在‎区间[]b a ,端点0x a =,n x b =上各加上一‎个条件(称为边界条‎件),可根据实际‎问题要求给‎定.常见的有以‎下3种;(1)已知两端的‎一阶导数值‎,即'00')(f x S =,;')(n n f x S =. (1.3)(2)两端的二阶‎导数已知,即''00'')(f x S =,'''')(n n f x S =, (1.4)其特殊情况‎为0)()(''0''==n x S x S . (1.5)(3)当)(x f 是以n x -0x 为周期的周‎期函数时,则要求也是‎)(x S 周期函数.这时边界条‎件应满足)0()0(0-=+n x S x S ,)0()0('0'-=+n x S x S , )0()0(''0''-=+n x S x S . (1.6)而此时(1.1)中n y y =0.这样确定的‎样条函数称‎)(x S 为周期样条‎函数. 埃尔米特插‎值不少实际问‎题的插值问‎题不但要求‎在节点上函‎数值相等,而且还要求‎对应的导数‎值也相等,甚至要求高‎阶导数也相‎等,满足这种要‎求插值的多‎项式就是埃‎尔米特(Hermi ‎t e )插值多项式‎.下面只讨论‎函数值与导‎数值个数一‎样的情况.设在节点上‎b x x x a n ≤<<<≤ 10,)(i i x f y =,)('j j x f m =(j =0,1,…,n ),要求插值多‎项式)(x H ,满足条件j j y x H =)(,j j m x H =)('(j =0,1,…,n ). (1.1)这里给出了‎2n +2个条件,可唯一确定‎一个次数不‎超过2n +1的多项式‎)()(12x H x H n =+,其形式为12121012)(++++++=n n n x a x a a x H .如果根据条‎件(1.1)来确定2n +2个系数0a ,1a ,…,12+n a ,显然非常复‎杂,因此,我们依旧采‎用拉格朗日‎插值多项式‎的基函数的‎方法.先求插值基‎函数)(x j α及)(x j β(j =0,1,…,n ),一共有2n +2个,每一个基函‎数都是2n +1次多项式‎,且满足条件‎⎪⎪⎭⎪⎪⎬⎫====⎩⎨⎧=≠==).,,1,0,()(,0)(;0)(,,1,,0)(''n k j x x x k j k j x jk k j k j k j jk k j δββαδα (1.2)于是满足条‎件(1.1)的插值多项‎式可以写成‎)()(12x H x H n +=用插值基函‎数表示的形‎式[]∑=-+=nj j j j j n x m x y x H 012)()()(βα. (1.3)由条件(1.2)可以知道,有k k n y x H =-)(12,kn m x H =+)('12,(k =0,1,…,n ).下面的问题‎就是求满足‎条件(1.2)的基函数以‎)(x j α及)(x j β.所以,我们可以利‎用拉格朗日‎插值基函数‎)(x l j .令)()()(2x l b ax x a j j +=,由条件(1.2)有1)()()(2=+=j j j j j x l b ax x α,[]0)()(2)()()(''=++=j j j j j j j j j x l b ax x al x l x α,整理得⎩⎨⎧=+=+0)(21'j j j x l a b ax . 解出)(2'j j x l a -=,)(21'j j j x l x b +=.由于)())(()()())(()()(110110n j j j j j j n j j j x x x x x x x x x x x x x x x x x l --------=+-+- ,利用两边取‎对数再求导‎数,有∑≠=-=njk k kj j jx x x l 0'1)(,所以有)()1)(21()(20x l x x x x x a j njk k kj j j ∑≠=---=. (1.4)同理,可以得到)()()(2x l x x x j j j -=β. (1.5)同时还证明‎满足条件(1.1)的插值多项‎式是唯一的‎.用反证法,假设及都满‎)(12x H n +)(12x H n +足条件(1.1),所以有)()()(1212x H x H x n n ++-=ϕ在每个节点‎上均有二重‎根,即)(x ϕ有2n +2重根.但是是不高‎)(x ϕ于2n +1次的多项‎式,所以0)(≡x ϕ.唯一性得到‎证明.。

第三章(二) 埃尔米特-样条插值法

第三章(二) 埃尔米特-样条插值法

2
x x1 x x 0 h1 ( x ) 1 2 x x . x1 x 0 1 0
2

x x1 g 0 (x) a(x x0 ) , x 0 x1
2
∵g0(x0)=g0(x1)=0, g'0(x1)=0
例1 给定 f (− 1)=0, f (1)=4, f '(− 1)=2, f '(1)=0, 求H3(x), 并计算 f (0.5).

x0 = − 1, x1 = 1,
H 3 ( x ) h 0 ( x ) 0 h1 ( x ) 4 g 0 ( x ) 2 g 1 ( x ) 0
y0 y1 m0 m1
其解存在唯一, 解 出 a0, a1, a 2, a3, 代 入即得 H3(x).
1 1 0 0
x0 x1 1 1
x0 x1
2 2
x0 x1
3 3 2 2
2 x0 2 x1
3x0 3 x1
( x 0 x1 ) 0 .
4
基函数法
类似于拉格朗日插值多项式的构造手法,我们可以通 过插值基函数作出 。
对给定区间[a,b]作划分
a x 0 x1 x n b
给定 n +1个插值点:(xi , f (xi)), i = 0,1,2,„,n, 在每个小 区间[xi, xi+1]上作线性插值,节点 xi, xi+1上的基函数分别为:
li ( x ) x x i 1 x i x i 1 , 1 ( x ) li x xi x i 1 x i ,
在某些问题中,为了保证插值函数能更好地逼近原函数 ,不仅要求两者在节点上有相同的函数值,而且要求在节点 上有相同的导数值。这类插值称为Hermite插值。 ★ Hermite插值描述:

参数三次埃尔米特插值实例分析

参数三次埃尔米特插值实例分析

2
公式推导
参数三次曲线,简称 PC 曲线,表示为: ������(t) = ������0 + ������1 t + ������2 ������ 2 + ������3 ������ 3 , ������ ∈ [0,1] 确定四个系数矢量的方法是给定曲线两端点及其切矢。 对函数中参数 t 求导,得: ������������ ������′ (������) = = ������1 + 2������2 ������ + 3������3 ������ 2 ������������ 用������ = 0,1代入以上两式,得: ������0 = ������(0) ������0 + ������1 + ������2 + ������3 = ������(1) ������1 = ������′ (0) ������1 + 2������2 + 3������3 = ������′ (1) 写成矩阵形式: ������(0) 1 0 0 0 ������0 ������ ������(1) 1 1 1 1 1 [ ] [������ ] = ′ ������ (0) 0 1 0 0 2 ������ 0 1 2 3 3 [������′ (1)] 于是可得: ������0 1 0 0 0 ������(0) ������1 0 0 1 0 ������(1) [������ ] = [ ] 2 −3 3 −2 −1 ������′ (0) ������3 2 −2 1 1 [������′ (1)] 将上式代入函数方程,得: 1 0 0 0 ������(0) 0 0 1 0 ������(1) ������(t) = [1 ������ ������ 2 ������ 3 ] [ ] −3 3 −2 −1 ������′ (0) 2 −2 1 1 [������′ (1)] 上式即与标量形式的三次埃尔米特插值相对应的参数形式,即定义在区间������ ∈ [0,1]

三次埃尔米特插值

三次埃尔米特插值

《计算方法》课程设计报告学生姓名:张学阳学号:1009300132陈洋1009300109刘睿1009300122 学院:理学院班级: 数学101题目: 分段线性及三次埃尔米特插值通用程序指导教师:宋云飞职称:讲师朱秀丽讲师尚宝欣讲师2012年12月30日目录目录 (I)一、摘要 (1)二、算法设计 (1)2.1分段线性插值 (1)2.2分段三次埃尔米特插值 (1)2.3功能框图 (1)三、例题计算 (1)四、误差及结果分析 (9)4.1例题误差分析 (1)4.2结点个数对插值结果的影响 (1)五、总结及心得体会 (12)参考文献 (13)源程序 (14)一、摘要分段线性插值与分段定义的线性插值,在相邻插值节点的区间上对应的是同一个线性函数。

由于它们的表现形式不一样从而产生为两种不同的计算方法,相应的误差表现形式也不一样.拉格朗日插值余项利用f(x)的二阶导数,要f(x)的二阶导数存在,对于二阶导数不存在的情况不能估算出它的误差,所以适用范围比较小.现在我们可以利用一阶导数就估算出误差,给计算带来许多的方便。

为了避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差。

为了克服这一缺点,一种全局化的分段插值方法——三次样条插值成为比较理想的工具。

在代数插值过程中,人们为了获得较好的近似效果,通常情况下是增加插值节点数.由于二次插值比线性插值近似效果好,因此容易错误地认为插值多项式次数越高越好.事实上,随着插值节点的增多,插值多项式不一定收敛到被插值函数.。

通过分段低次插值或样条插值可以得到较好的近似逼近函数,分段低次插值具有公式简单、运算量小、稳定性好、收敛性有保证等优点.随着子区间长度h取得足够小,分段低次插值总能满足所要求的精度.因此分段低次插值应用十分广泛.。

分段线性插值是分段低次插值中常见的方法之一,在本文中对函数在(-5,5)上进行分段线性插值,取不同节点个数n,得到不同分段线性插值函数.并用MATLAB编写分段线性插值函数,最后比较用不同节点数所得插值函数与真实函数的误差,从而得出节点数与插值效果的关系。

埃尔米特插值法

埃尔米特插值法

埃尔米特插值法1. 引言埃尔米特插值法是一种用于数据插值的数值方法。

它通过给定的数据点来构造一个多项式函数,该函数在这些数据点上与给定的函数具有相同的函数值和导数值。

埃尔米特插值法可以应用于各种领域,如数学、物理、计算机图形学等。

2. 插值问题在实际问题中,我们常常需要根据已知数据点来估计未知数据点的函数值。

这就是插值问题。

给定n个不同的数据点(x0,y0),(x1,y1),...,(x n,y n),我们希望找到一个多项式函数P(x),使得P(x i)=y i对所有i=0,1,...,n成立。

3. 埃尔米特插值多项式埃尔米特插值多项式是满足以下条件的多项式: - 在每个已知数据点上具有相同的函数值:P(x i)=y i - 在每个已知数据点上具有相同的导数值:P′(x i)=m i其中m i是给定的导数值。

为了构造埃尔米特插值多项式,我们需要利用这些条件来确定其系数。

4. 构造埃尔米特插值多项式埃尔米特插值多项式的一般形式为:P(x)=∑ℎini=0(x)⋅y i+∑g ini=0(x)⋅m i其中ℎi(x)和g i(x)是满足以下条件的基函数: - ℎi(x j)=δij,其中δij是克罗内克(Kronecker)符号,当i=j时取值为1,否则为0。

- g i(x j)=0对所有i,j成立。

基于这些条件,我们可以求解出基函数ℎi(x)和g i(x)的表达式,并将其代入埃尔米特插值多项式的公式中。

5. 插值误差估计在实际应用中,我们通常需要估计插值多项式的误差。

通过使用泰勒展开和拉格朗日余项定理,可以得到以下插值误差的估计公式:f(x)−P n(x)=f(n+1)(ξ)(n+1)!(x−x0)(x−x1)...(x−x n)其中f(n+1)(ξ)是函数f(x)在x0,x1,...,x n之间某个点ξ处的(n+1)阶导数。

6. 示例假设我们有以下数据点:(0,1),(1,2),(2,−1)。

我们希望通过这些数据点构造一个埃尔米特插值多项式。

艾米特插值

艾米特插值

若 αi ( x ) , βi ( x )( i = 0,1) ,满足
αi (x j ) = δi j
1 i = j = , , α i′( x j ) = 0 0 i ≠ j (i = 0 , 1)
β i ( x j ) = 0 , β i′( x j ) = ( x ) = ( − 2 l ( x j ) x + 1 + 2 x l ( x j )) l ( x )
' j ' j j 2 j
= (1 − 2 ( x − x j ) l ( x j )) l ( x )
' j 2 j
其中 l ( x j ) ∑ =
' j
n
k =0 k≠ j
由于
′ α 0 ( x 0 ) = 1, α 0 ( x 0 ) = 0 2.2 (2.6.2) ′ α 0 ( x1 ) = 0, α 0 ( x1 ) = 0 , (2.6.3) 2.3
由(2.6.3)可设
α0 ( x) = ( x − x1 ) a ( x − x0 ) + b ,
2.4 埃尔米特(Hermite)插值
• Hermite插值问题的提出 • 三次 Hermite 插值 • 2n+1 次Hermite 插值多项式 • Hermite插值余项 • 数值实例
一、 Hermite插值问题的提出
由于理论与实践的需要,在构造插值函数 时,不但要求在节点上函数值相等,而且还要求 它的(高阶)导数值也相等(即要求在节点上具 有一定的光滑度),使得插值函数与被插函数贴 近程度更好,满足这种要求的插值多项式就是 Hermite 插值多项式,有时也称为具有重节点插 值。
2
再由(2.6.2)可求得

分段线性及三次埃尔米特插值通用程序

分段线性及三次埃尔米特插值通用程序







结 束
计算方法课程设计
分段线性及三次埃尔米特插值通用程序
-----------数学101 张学阳 陈 洋 刘 睿
分段线性插值在每个小区间上可表示为
I h ( x) x xk 1 x xk f k f k 1 , xk x xk 1 , k 0,1,, n 1. xk xk 1 xk 1 xk








M = -5:0.01:5; output = zeros(1,length(M)); n = 1; for i=2:N+1 for x=-5:0.01:5 if x<xx(i) && x>=xx(i-1) lx(1)=ff(i-1)*(x-xx(i))/(xx(i-1)-xx(i)); lx(2)=ff(i)*(x-xx(i-1))/(xx(i)-xx(i-1)); output(n) = lx(1)+lx(2); n = n+1; end end end


end
end end ezplot(f,[-5,5]) hold on A =-5:0.01:5; plot(A,output,'r'); end if B~=1&&B~=2 disp('输入有误,请重新输入') end c=input('是否继续(1为继续):'); close end




M = -5:0.01:5; output = zeros(1,length(M)); n = 1; for i=2:N+1 for x=-5:0.01:5 if x<xx(i) && x>=xx(i-1) lx(1)=ff(i-1)*(x-xx(i))^2/(xx(i-1)-xx(i))^2*(1+2*(x-xx(i1))/(xx(i)-xx(i-1))); lx(2)=ff(i)*(x-xx(i-1))^2/(xx(i)-xx(i-1))^2*(1+2*(xxx(i))/(xx(i-1)-xx(i))); lx(3)=ff1(i-1)*(x-xx(i))^2/(xx(i-1)-xx(i))^2*(x-xx(i-1)); lx(4)=ff1(i)*(x-xx(i-1))^2/(xx(i)-xx(i-1))^2*(x-xx(i)); output(n) = lx(1)+lx(2)+lx(3)+lx(4); n = n+1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+
mi −1βi −1 ( x)
+
miβi (x)
其中,
αi−1
(
x)
=
⎛⎜1 + ⎝
2
x xi
− xi−1 − xi−1
⎞⎛ ⎟⎜ ⎠⎝
x − xi xi−1 − xi
⎞2 ⎟ ⎠
,
αi
(
x)
=
⎛ ⎜1
+

2
x − xi xi−1 − xi
⎞ ⎟ ⎠
⎛ ⎜ ⎝
x xi
− −
xi−1 xi−1
⎞2 ⎟ ⎠
f (1) = 0, f (2) = 0.693147, f ′(2) = 0.5.
试用埃尔米特插值法计算 f (1.5) 的近似值。 重点讲解基函数的构造和计算过程。
2.5.2 构造差商表的方法 如果插值条件中不仅出现了一阶导数,还出现了高阶导数,那么利用构造差
商表的方法十分有效。方法如下:
(1).在利用插值条件构造差商表时,把具有一阶导数要求的节点看成是二 重节点(即两个节点),把具有二阶导数要求的节点看成是三重节点(即三个节
( xk
)
=
[1 −
2( xk

xi
)li' (xi
)]li2
( xk
)
=
⎧1, k ⎨⎩0, 0. βi (xk ) = 0.
βi'
(
xk
)
=
⎧1, k ⎨⎩0, k
= ≠
i, i.
利用上述性质,构造埃尔米特插值多项式:
n
∑ H2n+1(x) = [ yiαi (x) + miβi (x)] 。 i=0
2.6.2 分段低次插值法
最基本的分段低次插值是分段线性插值,就是通过相邻两个插值点作插值来
构造分段插值多项式的。即在区间[xi−1, xi ](i = 1, 2,L, n) 上,有
f
(
x)

P(i) 1
(
x)
x − xi xi−1 − xi
yi−1 +
x − xi−1 xi − xi−1
yi
从几何上看,分段线性插值就是用连接插值点的折线代替被插函数。 因为每一段上的截断误差为
满足插值条件(2.9)埃尔米特插值多项式,则对任何 x ∈[a,b] ,插值余项
R2n+1(x) =
f (x) − H2n+1(x) =
1 (2n + 2)!
f
(2n+2)


2 n+1
(
x)
(2.10)
其中ξ ∈ (a,b) 依赖于 x 。
§2.6 分段低次插值法
2.6.1 龙格现象 构造未知函数或复杂函数的插值多项式,并不是次数越高越好。
,
βi−1
(x)
=
(x

)⎛
xi−1 ⎜ ⎝
x − xi xi−1 − xi
⎞1 ⎟ ⎠
,
βi
(
x
)
=
(
x

xi
)
⎛ ⎜ ⎝
x xi
− −
xi −1 xi −1
⎞2 ⎟ ⎠
,
因为截断误差:
|
f
(x) −
H
(i 3
)
(
x)
|=
1| 4!
f
(4) (ξ )(x

xi−1)2 (x −
xi )2
|≤
1 384
(2.9)
因为该插值条件包含 2n+2 个独立等式,所以一定可以确定唯一一个 2n+1 次的
多项式 H (x) 满足上述条件。记之为 H2n+1(x) 。
1
2.5.1 构造基函数的方法
类似于拉格朗日插值多项式的构造方法,用具有特殊性质的基函数来构造 埃尔米特插值多项式。利用插值节点构造如下两类特殊的 2n+1 次多项式:
|
f
(4) (ξ ) | h4
其中
h
=
max {|
1≤i≤n
xi

xi−1
|} ,所以只要
f
(4) (x) 在插值区间上连续,且
h

0
时,那么
分段三次埃尔米特插值的截断误差也趋于零,即分段埃尔米特插值法是收敛的。
课堂小结
布置作业
参考文献
1. Burden R L, Faires J D.Numerical Ananlysis(Fourth Edition). Prindle, Boston, Weder and Schmidt,1989. 2. Stoer J.,Bulirsch R.,Introduction to Numerical Analysis, Second Edition, SpringerVerlag, NewYork, 1992. 3. 邓建中,刘之行. 计算方法(第二版).西安交通大学出版社,2001. 4. 韩旭里. 数值分析. 中南大学出版社,2003.
问题引入
如果插值条件要求插值多项式与被插函数在某些点的函数值和导数值分别 对应相等,这种插值多项式为埃尔米特(Hermite)插值多项式,构造埃尔米特 插值多项式的方法就是埃尔米特插值法。
§2.5 埃尔米特插值法
假设待构造的多项式 H (x) 需要满足如下插值条件:
H (xi ) = yi , H ' (xi ) = mi ,i = 0,1,L, n.
教案三 埃尔米特插值法和分段低次插值法
基本内容提要 1 埃尔米特插值法及基函数 2 龙格现象 3 分段低次插值法 教学目的和要求 1 掌握埃尔米特插值法及其相关概念 2 理解利用基函数构造埃尔米特插值多项式的思想 3 理解分段低次插值法的基本思想 教学重点 1 埃尔米特插值基函数及插值多项式的表达式 2 分段低次插值法的基本思想 教学难点 1 利用基函数的方法构造埃尔米特插值多项式的思想方法和过程 2 利用构造差商表的方法构造埃尔米特插值多项式的思想方法和过程 3 插值余项公式的证明思路 课程类型 新知识理论课 教学方法 结合提问,以讲授法为主 教学过程
例 2.6.1 给定函数
f (x) = 1 , −1 ≤ x ≤ 1 1+ 25x2
取等距节点
xi
=
−1+ ih, h
=
2 n
,构造
f
(x)

n
次拉格朗日插值多项式,并画
出 f (x) 和 Ln (x)(n = 4,10) 的图象。
利用本例说明龙格现象。 龙格现象说明前面介绍的插值方法未必收敛,即其截断误差并不一定随着 n 趋于无穷大而随之减小。
|
f
(x) −
P1i
|=
1 2
|
f
′′(ξ )(x

xi−1)(x −
xi ) |≤
1 8
|
f
′′(ξ ) | (xi

xi −1 ) 2

1 8
|
f
′′(ξ ) |
h2
其中 h
=
max {|
1≤i≤n
xi

xi−1
|} ,所以只要
f
′′( x)
在插值区间上连续,且
h

0
时,那么
分段线性插值的截断误差趋于零,即分段线性插值法是一种收敛方法。
4
如果还知道被插函数 f (x) 在每个节点处的导数值 mi ,那么我们就可以在区
3
间 [xi−1, xi ](i = 1, 2,L, n) 上构造三次埃尔米特插值多项式近似被插函数,即当
x ∈[xi−1, xi ]时,
f
(x)

H
(i 3
)
(
x)
=
yi −1α i −1 ( x)
+
yiαi (x)
由 于 H2n+1(x) 是 αi (x) 和 βi (x),i = 0,1,L, n, 的 线 性 组 合 , 组 合 系 数 为
yi , mi ,i = 0,1,L, n, 所以称αi (x) 和 βi (x) 为埃尔米特插值多项式的基函数,并把上 述求埃尔米特插值多项式的方法叫做构造基函数方法。 例 2.5.1 设 f (x) = ln x 。现已知 f (x) 的下列数据:
⎧α ⎨ ⎩
i
(
x) = βi
[1 − (x)
2( x = (x
− −
xi )li' (xi )]li2 xi )li2 (x),
(
x),
i = 0,1,L, n,
其中, li (x),i = 0,1,L, n, 是拉格朗日插值多项式的基函数。
可以验证,αi (x) 和 βi (x) 具有性质:
αi
点),以此类推。
显然,在计算重合节点的差商时,要利用公式
f
[ xi
,
xi ,L,
xi
]
=
1 n!
f
n
( xi
)
2
(2).根据所构造的差商表,按牛顿插值多项式的写法就能得到埃尔米特插 值多项式。
上述方法又称作推广的牛顿插值法。
定理 2.5.1 假设 f (2n+1) (x) 在[a, b] 上连续, f (2n+2) (x) 在 (a, b) 内存在。 H2n+1(x) 是
相关文档
最新文档