初三圆的知识点总结
初三数学圆知识点总结

初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:(不考了)设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.(补考圆锥面积了)圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
九年级_圆_全章知识点总结

九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。
5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。
其中正确的有 (填序号)。
例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。
(完整版)初三《圆》知识点及定理

《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
初三圆知识点总结

初三圆知识点总结初三圆知识点总结11、圆的有关概念:(1)确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:圆弧的圆周角等于圆弧圆心角的一半。
推论1在同一圆或等圆内,同一圆弧或等圆弧的圆周角相等,等圆周角的圆弧也相等。
推论2半圆或直径的圆周角都相等,都等于90°。
圆周角为90°的弦是圆的直径。
推论3如果三角形一边的中线等于这条边的一半,那么这个三角形就是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。
性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
九年级数学圆的知识点总结大全

第三章:《圆》一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;A2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。
这个距离称为圆的半径,而给定的那个点叫做圆心。
1.2 相关术语(1)圆心:圆的中心点。
(2)半径:圆心到圆上任一点的距离。
(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。
(4)弧长:圆上一部分的长度。
(5)圆周:圆的边界。
(6)扇形:由圆心和圆上两点组成的区域。
(7)弦:圆上连接两点的线段。
(8)切线:与圆相切的直线。
1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。
二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。
它的值是一个无理数,约等于3.14159。
圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。
2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。
(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。
2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。
(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。
(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。
(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。
2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。
(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。
三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。
(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。
九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图:有五个元素,“知二可推三”;需记忆其中四个定理,
即“垂径定理”“中径定理” “弧径定理”“中垂定理”.
几何表达式举例:
∵CD过圆心
∵CD⊥AB
2.平行线夹弧定理:
圆的两条平行弦所夹的弧相等.
几何表达式举例:
3.“角、弦、弧、距”定理:(同圆或等圆中)
“等角对等弦”; “等弦对等角”;
7.切线长定理:
从圆外一点引圆的两条切线,
它们的切线长相等;圆心和这一
点的连线平分两条切线的夹角.
几何表达式举例:
∵PA、PB是切线
∴PA=PB
∵PO过圆心
∴∠APO =∠BPO
8.弦切角定理及其推论:
(1)弦切角等于它所夹的弧对的圆周角;
(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;
(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)
O是圆心,等弧出平行和相似.
作AN⊥BC,可证出:
.
几何表达式举例:
(1)∵BD是切线,BC是弦
∴∠CBD =∠CAB
(2)
∵ED,BC是切线
∴∠CBA =∠DEF
9.相交弦定理及其推论:
(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;
(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.
几何表达式举例:
(1)∵PA·PB=PC·PD
(2)∵PB、PD是割线
∴PA·PB=PC·PD
11.关于两圆的性质定理:
(1)相交两圆的连心线垂直平分两圆的公共弦;
(2)如果两圆相切,那么切点一定在连心线上.
(1) (2)
几何表达式举例:
(1)∵O1,O2是圆心
∴O1O2垂直平分AB
(2)∵⊙1、⊙2相切
∴O1、A、O2三点一线
12.正多边形的有关计算:
规则图形折叠出一对全等,一对相似.
圆的外切四边形对边和相等.
若AD∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.
等腰三角形底边上的的高必过内切圆的圆心 和切点,并构造相似形.
RtΔABC的内切圆半径:r= .
补全半圆.
AB= .
AB= .
PC过圆心,PA是切线,构造
双垂、RtΔ.
(1)经过半径的外端并且垂直于这条
半径的直线是圆的切线;
(2)圆的切线垂直于经过切点的半径;
※(3)经过圆心且垂直于切线的直线必经过切点;
※(4)经过切点且垂直于切线的直线必经过圆心.
几何表达式举例:
(1)∵OC是半径
∵OC⊥AB
∴AB是切线
(2)∵OC是半径
∵AB是切线
∴OC⊥AB
(3) ……………
(1)中心角n,半径RN,边心距rn,
边长an,内角n,边数n;
(2)有关计算在RtΔAOC中进行.
公式举例:
(1)n= ;
(2)
2.关于圆的常见辅助线:
已知弦构造弦心距.
已知弦构造RtΔ.
已知直径构造直角.
已知切线连半径,出垂直.
圆外角转化为圆周角.
圆内角转化为圆周角.
构造垂径定理.
构造相似形.
两圆内切,构造外公切线与垂直.
∴AB是直径
(4)∵CD=AD=BD
∴ΔABC是RtΔ
5.圆内接四边形性质定理:
圆内接四边形的对角互补,并且任何一个外
角都等于它的内对角.
几何表达式举例:
∵ABCD是圆内接四边形
∴∠CDE =∠ABC
∠C+∠A =180°
6.切线的判定与性质定理:
如图:有三个元素,“知二可推一”;
需记忆其中四个定理.
(3)“等弧对等角”“等角对等弧”;
(4)“直径对直角”“直角对直径”;(如图)
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)
(1) (2)(3) (4)
几何表达式举例:
(1)∵∠ACB= ∠AOB
∴……………
(2)∵AB是直径
∴∠ACB=90°
(3)∵∠ACB=90°
∴………
(2)∵AB是直径
∵PC⊥AB
∴PC2=PA·PB
10.切割线定理及其推论:
(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;
(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.
几何表达式举例:
(1)∵PC是切线,平行.
两圆外切,构造内公切线与垂直.
两圆外切,构造内公切线与平行.
两圆同心,作弦心距,可证得AC=DB.
两圆相交构造公共弦,连结圆心构造中垂线.
PA、PB是切线,构造双垂图形和全等.
相交弦出相似.
一切一割出相似,并且构造弦切角.
两割出相似,并且构造圆周角.
双垂出相似,并且构造直角.
“等角对等弧”; “等弧对等角”;
“等弧对等弦”;“等弦对等(优,劣)弧”;
“等弦对等弦心距”;“等弦心距对等弦”.
几何表达式举例:
(1) ∵∠AOB=∠COD
∴AB = CD
(2) ∵AB = CD
∴∠AOB=∠COD
4.圆周角定理及推论:
(1)圆周角的度数等于它所对的弧的度数的一半;
(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)