南邮信号与系统课后答案第二章
南邮信号与系统课后答案精选精品PPT课件

如图所示,试求该系统的零状态响应。
xk
hk
4
3 2
4
2 1
-2 -1 0 1 2 3 k
-2
-1 0 1 2 3 4 k
-1
解: xk 4, 2,3,2 hk 4,,1,2,1
4 2 3 2 4 1 2 1
4 2 3 2 8 4 6 4 4 2 3 2 16 8 12 8 16 12 22 5 2 7 2
k
1
uk
4 3
1k 1
8 3
0.5k 1 u k
2 3
1k 2
4 3
0.5k 2
k 1
k 1
2 3
1k
2
4 3
0.5k 2
4 3
1k
1
8 3
0.5k 1
uk
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
uk
21k 0.5k uk
2-25 计算下列卷积
2 2 e3tut
hh00
1 0 2 1
c1c1 0.02.55cc22
0 1
c1
c2
2
3 4
3
h0
k
2 3
1k
4 3
0.5k
uk
1
hk h0 k 2 2h0 k 1
2 3
1k 2
4 3
0.5k 2
uk
1
2
2 3
1k 1
4 3
0.5k 1 u k
2 3
1k 2
4 3
0.5k 2
第二章 信号与系统的时域分析
作业
1
南京邮电学院《信号与系统》第一次习题课

此时F1() 与F2(t-)无重叠, F1(t) *F2(t) =0;
b.当-1≤t-0.5(头部进入)并且t-3.5<-1(尾部
没有进入)时,即 -0.5≤t<2.5,如图④
图④ F2(t-)
F1()
此时
-3.5+t -1 0 -0.5+t
t 0.5
y(t) 1
F10 ( )F 2[(t 1) (t 1)]
-1 0 1 tt
F2(t) 3
01 4 t
F2 (t)
(t 1)[ (t 1) (t 4)]
F3(t) 2 24
0
t
-2
F3(t) 2t[(t) (t 1)] 2(t 2)[(t 1) (t 3)] 2(t 4)[(t 3) (t 4)]
四、已知函数的波形如图所示:
f1(t) 1
0 123
f2(t)
(1)
(1)
1
t
t
-0.5 (1)
1.5
求: (a) f 1(t) f 2(t)
f3(t)
(1)
(1)
-1 0 1
t
(b) f 1(t) f 3(t) f 3(t)
(c) {[ f 1(t) f 3(t)][(t 1) (t 3)]} f 3(t)
c.当t-3.5≥-1(尾部进入)并且t-0.5<3(头部 没有出来)时,即 2.5≤t<3.5,如图⑤
图⑤
F2(t-) F1()
-1 –3.5+t-0.5+t 3
此时
t 0.5
y(t) t3.5 F10 ( )F20 (t )d
d.当t-3.5<3(尾部没有出来),t-0.5≥3(头 部已出来)时,即 3.5≤t<6.5,如图⑥
《信号与系统》第二章习题解答

yt xt ht
(b) If d y t dctontains only three
value of a?
discontinuities,what is the
Solution :
yt
a
0 a 1 1+a t
5
Chapter 2
Problems Solution
2.11 Let xt ut 3 ut 5 ht e3tut
a
u0 tcostdt
cost
1
t0
b
5
0
sin2t t 3dt 0
c
5
5
u1 1
cos2
d
1 t
6 4
u1tcos2 1tdt
1cos2t 0 t 0
8
Chapter 2
Problems Solution
2.22a
xt ht
e e
tut
信号与系统 第二章习题 王老师经典解法(青岛大学)小白发布

2-16 已知 f1 (t ) =
画出下列各卷积的波形。 (1) s1 (t ) = f1 (t ) ∗ f 2 (t ) ; (2) s2 (t ) = f1 (t ) ∗ f 2 (t ) ∗ f 2 (t ) ; (3) s3 (t ) = f1 (t ) ∗ f 3 (t ) 。
2-17 求题图 2-17 所示电路在 e(t ) = (1 + 2e
第二章
连续时间系统的时域分析
2-1 电路如题图 2-1 所示,列写求 vo (t ) 的微分 方程。
L1 1H R1 2Ω + e(t) i 1 (t )
R2 1Ω + L2 2H 题图 2-1
C
1F
i 2 (t )
vo(t)
2-2 电路如题图 2-2 所示, 列写求 i2 (t ) 的微分方 程。
题图 2-18
−2 t
− 1)U (t ) , 试利用卷积的性质求题
1 0 -1
e2(t)=tU(t) 1 t 0
e3(t)
t 0 1
2-19 一线性时不变的连续时间系统,其初始状态一定,当输入 e1 (t ) = δ (t ) 时,其全响应
r1 (t ) = −3e − tU (t ) ; 当 输 入 e2 (t ) = U (t ) 时 , 其 全 响 应 r2 (t ) = (1 − 5e − t )U (t ) 。 求 当 输 入 e(t ) = tU (t ) 时的全响应。
2-14 计算卷积 f (t ) = f 1 (t ) ∗ f 2 (t ) ,其中 f1 (t ) = sgn(t − 1) , f 2 (t ) = e 2-15 求下列卷积 (1) f1 (t ) = e
南京邮电学院《信号与系统》第二次习题课PPT课件

数F3()。
18
解:(1)对于f1(t),求其导数f1’(t)
f1(t) 1
f1(t) ()S( a 2)•ej 2ejT
0
1 Tt
f1’(t)
Sa()•ej2 ejT
1
T
f1(t)F1()
2
j
0 1 (1) t
19
由图可看出
f2(t)f1( tT)
f1(t)
F 2 () F 1 ()• e j T
35
(五(1 ))求[下( 列 信5 号) 的傅( 氏 反5 变)换• ]co s
5
解:由公式 ( t 5 ) ( t 5 ) 1 0 S a 5
由对称性 1 0 S a 5 t 2 ( 5 ) ( 5 )
由公式 co s 5 5 tS a5 t ( ( 5 )5 ) ( ( 55 ) ) (t 5)(t 5) 2cos5 36
周期矩形脉冲:幅高A,周期 T,脉宽
Fn
A
T
Sa(n0)
2
…
-2T
f(t)
A
-T
-/2 /2
T
…
2T
4
(二)非周期信号
1. 傅里叶变换 正反变换的定义式;
2. 频谱密度F()的物理意义;
3. 周期信号fT (t) 的复系数 Fn 与非周期信号 f (t ) 的频谱密度F()的关系;
F ()
cost[(t1)(t1)] 则
2 fa(t)
1
fa ( t) fa 0 ( t 2 ) fa 0 ( t) fa 0 ( t 2 )
(t 1 ) (t 1 ) 1 •2 S( a •2 ) 2 S( a )
fa0(t) S( a 2) 2 S( a 2)
南邮信号与系统课后答案第二章 ppt课件

xk
yk
h1k
h3 k
h2k
解: hkkh1kh2kh3kh3kh1kh3kh2kh3k
1kukuk1kukk11kuk
2
2
2
2kuk22kuk2k1uk12uk2k1uk1
2k2uk12k1uk12k22k1uk1
1 k 2
4 3
0.5k 2
k 1
k 1
2 3
1k 2
4 3
0.5k 2
4 3
1k 1
8 3
0
.5
k
1
u
k
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
u k
2 1k 0.5k uk
2-25 计算下列卷积
2 2e3tut
解原 : 式 e3tut2e3tut2ut
1 uk 1 1 uk 3
n 1
n 1
kuk 1 k 2uk 3
k k 1 k 2 uk 3 k 2uk 3
k k 1 k k 2 2uk 3
k k 1 k k 2 2uk 3
k 1
k2
k 1 2 k 2 2uk 3
k 1 2uk 2
(1)yk10.5ykxk1,xk1kuk
3
解: 设h0k 10.5h0k k
特征方程: 0.5 0 特征根: 0.5
h0k c10.5k uk 1
h011 0.5c1 c2 h0k20.5kuk1
h k h 0 k 1 2 0 . 5 k 1 u k 0 . 5 k u k
ykxkh k 1 kuk0 .5 kuk
3
k
信号与系统第二章习题与答案

第二章习题与答案1.求以下序列的z 变换并画出零极点图和收敛域。
分析:Z 变换概念∑∞-∞=-==n nzn x z X n x Z )()()]([,n 的取值是)(n x 的有值范围。
Z 变换的收敛域 是知足∞<=∑∞-∞=-M zn x n n)(的z 值范围。
解:(1) 由Z 变换的概念可知:∞====<<<<z z az a z az a z a az ,0 1, 11,1 零点为:极点为:即:且收敛域:)(21)()2(n u n x n⎪⎭⎫⎝⎛=)1(21)()3(--⎪⎭⎫⎝⎛-=n u n x n)1(,1)()4(≥=n nn x 为常数)00(0,)sin()()5(ωω≥=n n n n x 10,)()cos()()6(0<<+=r n u n Ar n x n Φω)1||()()1(<=a an x nnn nzaz X -∞-∞=⋅=∑)(nn n nn n z a za-∞=---∞=-∑∑+=1nn n nn n z a z a -∞=∞=∑∑+=01))(1()1()1)(1(1111212a z az a z a az az a za az az ---=---=-+-=-解:(2) 由z 变换的概念可知:n n nz n u z X -∞-∞=∑=)()21()( ∑∞=-=0)21(n n n z 12111--=z 211121><⋅z z 即:收敛域: 0 21==z z 零点为:极点为:解:(3)nn n z n u z X -∞-∞=∑---=)1()21()(∑--∞=--=1)21(n n n z∑∞=-=12n n n z zz212--= 12111--=z 21 12 <<z z 即:收敛域:0 21 ==z z 零点为:极点为: 解: (4) ∑-⋅∞==11)(n nz n z X∑∞--=-=•••11)(1)(n n z n n dz z dX 21)(11z z z n n -=-=∑∞=-- ,1||>z。
信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。
(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。
解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。