凝血酶激活
血液凝固过程

血液凝固过程血液凝固是人体内一项重要的生理过程,主要起到止血和修复受伤组织的作用。
当血管受损时,血液凝固过程将被启动,以形成血栓来阻止血液的进一步流失。
本文将介绍血液凝固过程的主要步骤和相关因素,以及凝血过程在人体中的重要性。
一、血液凝固的主要步骤血液凝固过程是一个复杂的生物化学反应链,涉及多种细胞和蛋白质因子的相互作用。
下面是血液凝固过程的主要步骤:1. 血管收缩:当血管受损时,血管壁会迅速收缩,以减少出血量。
此过程由血管平滑肌的收缩引起。
2. 血小板聚集:损伤的血管内壁接触到血液后,血小板会迅速聚集到伤口处,形成血小板栓。
这一过程通过血小板表面的特殊受体与血管壁上的细胞因子相互作用而实现。
3. 凝血因子激活:损伤的血管壁会释放一系列的凝血因子,包括凝血酶原、纤维蛋白原等。
这些凝血因子与聚集的血小板相互作用,触发凝血酶的生成。
4. 凝血酶生成:在凝血因子的作用下,凝血酶原会被激活生成凝血酶。
凝血酶是血液凝固过程的核心物质,能够将溶解在血浆中的纤维蛋白原转化为纤维蛋白。
5. 纤维蛋白生成:凝血酶催化纤维蛋白原转化为纤维蛋白,形成一种纤维网状结构,即血栓。
血栓能够在伤口处形成一个稳定的堵塞物,阻止血液继续流失。
二、血液凝固过程的调控因素血液凝固过程需要一系列的调控因素,以确保在受伤组织修复完成后,血栓能够被及时溶解。
以下是影响血液凝固过程的主要调控因素:1. 抗凝系统:人体内有多种抗凝因子,如抗凝酶、组织因子通路抑制物等。
它们能够限制凝血过程的发展,以避免形成大块血栓。
2. 纤溶系统:血栓形成后,纤溶系统会被启动以溶解血栓。
纤溶酶原是纤溶系统的重要物质,它能够将纤维蛋白溶解为溶解蛋白。
3. 血管内皮细胞:血管内皮细胞的表面覆盖有特殊的抗凝分子,如组织因子路径抑制物、载脂蛋白等。
这些抗凝分子能够阻止血小板在无需凝固的情况下聚集。
三、凝血过程在人体中的重要性血液凝固过程在人体中具有重要的生理学意义。
以下是凝血过程在人体中的几个重要作用:1. 止血:当血管受损时,血液凝固过程能够迅速形成血栓,阻止血液的流失。
凝血酶原激活物凝血酶原复合物

凝血酶原激活物凝血酶原复合物
凝血酶原激活物凝血酶原复合物是指参与凝血过程中的一种蛋白质复合物。
它在血液凝血的过程中发挥重要的作用。
以下是对其主要组成和功能的简要解释:
一、凝血酶原(Prothrombin):凝血酶原是一种血浆中的蛋白质,是凝血系统中的前体蛋白。
在凝血过程中,凝血酶原被激活为凝血酶,这是促使血浆中的纤维蛋白原转化为纤维蛋白的关键步骤。
二、凝血酶原激活物(Prothrombinase):凝血酶原激活物是一种酶复合物,能够将凝血酶原激活为凝血酶。
它包括活化的凝血酶原以及其他协同作用的蛋白质和磷脂。
三、凝血酶原复合物:在凝血酶原激活的过程中,形成了凝血酶原复合物,其中凝血酶原激活物与其他凝血蛋白质、细胞膜成分等结合在一起,形成一个复杂的结构。
这个复合物在血液凝血级联反应中起关键作用。
激活的凝血酶原能够将纤维蛋白原转化为纤维蛋白,形成血栓。
这是维持正常止血和修复受伤血管的重要过程。
同时,凝血过程也需要受到严格的调控,以防止异常的血栓形成。
总的来说,凝血酶原激活物凝血酶原复合物是在凝血级联反应中涉及的一个复杂蛋白质体系,它在维持血液凝血平衡和保障机体止血功能方面具有重要的生理作用。
凝血因子类型

凝血因子类型
凝血因子是一类存在于人体血液中的蛋白质,它们参与血液凝固过程。
凝血因子可以分为多个不同的类型,每个类型都有特定的功能。
以下是一些常见的凝血因子:
1、凝血酶原(Factor I):凝血酶原是血液凝块形成过程中最重要的凝血因子之一。
它在凝血级联反应中被激活为凝血酶,促使纤维蛋白原转化为纤维蛋白,形成血栓。
2、纤维蛋白原(Factor II):纤维蛋白原是血液凝块的主要成分,它在凝血酶作用下转化为纤维蛋白,使血液凝结。
3、丙种凝血因子(Factor III):丙种凝血因子是一种磷脂复合物,它与其他凝血因子相互作用,促进凝血过程。
4、血管收缩酶(Factor V):血管收缩酶是一种辅助凝血因子,它在凝血级联反应中与其他凝血因子相互作用,促进血栓形成。
5、血管收缩素(Factor VIII):血管收缩素是一种在血小板聚集和纤维蛋白形成过程中发挥重要作用的凝血因子。
这些凝血因子在正常情况下相互协作,使得血液能够在受伤部位迅速形成凝块,阻止出血。
然而,如果某些凝血因子存在异常或缺乏,就会导致出血障碍或凝血疾病。
凝血仪原理

凝血仪原理
凝血仪是一种用于检测血液凝血功能的仪器,它可以帮助医生诊断出各种凝血
系统的疾病,如血友病、血栓性疾病等。
凝血仪原理主要是通过一系列复杂的生物化学反应来检测血液的凝血功能,下面我们将详细介绍凝血仪的原理。
首先,凝血仪通过一种叫做凝血酶时间(PT)的检测方法来评估凝血功能。
在这个过程中,凝血仪会向被测试的血液样本中添加一种叫做凝血酶的物质,它可以激活凝血过程中的一系列酶和蛋白质。
然后,凝血仪会监测血液中凝血蛋白质的活化时间,从而得出血液的凝血功能状态。
其次,凝血仪还可以通过测定凝血酶原时间(PTT)来评估凝血功能。
在这个
过程中,凝血仪会向被测试的血液样本中添加一种叫做活化部分凝血活酶时间的物质,它可以激活凝血过程中的另一组酶和蛋白质。
然后,凝血仪会监测血液中凝血蛋白质的活化时间,从而得出血液的凝血功能状态。
除了以上两种方法,凝血仪还可以通过测定凝血酶原浓度来评估凝血功能。
在
这个过程中,凝血仪会向被测试的血液样本中添加一种叫做凝血酶原的物质,它可以与血液中的其他凝血蛋白质发生反应。
然后,凝血仪会监测这些反应的速度和强度,从而得出血液的凝血功能状态。
总的来说,凝血仪的原理是通过一系列的生物化学反应来评估血液的凝血功能。
它可以帮助医生及时发现和诊断凝血系统的疾病,为患者提供更好的治疗和护理。
希望通过本文的介绍,您对凝血仪的原理有了更深入的了解。
简述血栓的概念

简述血栓的概念血栓是由血液凝固而形成的一种固体结构,它主要由纤维蛋白和血小板组成。
血栓的形成是机体在面临外伤或创伤时的一种自然保护机制,它可以帮助我们止血和修复受伤的组织。
然而,血栓也可能在没有明显的外伤或创伤的情况下形成,这种情况就被称为异常血栓形成。
血栓在心血管系统中的形成是一种常见的情况,它可能导致心肌梗塞和中风等危及生命的疾病。
同时,血栓也可能在其他部位形成,比如静脉血栓可能在腿部形成,导致深静脉血栓形成。
血栓形成的过程主要包括以下几个步骤:1. 损伤或刺激:当血管受到损伤或刺激时,内皮细胞会释放一些物质来促进血小板聚集和血管收缩。
2. 血小板聚集:血小板是一种血液中的细胞,它主要起着血栓形成的作用。
在损伤或刺激的部位,血小板会聚集在一起,形成血小板栓,阻止血流。
3. 凝血酶原激活:在损伤或刺激的部位,凝血酶原会被激活,转化为凝血酶。
凝血酶是一种酶,可以将纤维蛋白原转化为纤维蛋白,从而形成纤维蛋白网。
4. 纤维蛋白网形成:在血小板栓上,纤维蛋白会形成一个网状的结构,将血小板栓牢牢地固定在一起,形成一个稳定的血栓。
在正常情况下,血栓会在伤口愈合后被瓦解,然后被身体的清除系统(比如肝脏和脾脏)清除。
然而,当血栓形成的过程受到某些影响时,就可能导致异常血栓形成的情况。
这些影响因素可能包括遗传因素、患有其他疾病(比如炎症性疾病和肿瘤)、长期卧床、手术后、怀孕和服用口服避孕药等。
异常血栓形成可能导致一系列危及生命的疾病,包括心肌梗塞、中风、深静脉血栓和肺栓塞等。
因此,对于高危人群来说,预防异常血栓形成是非常重要的。
一些预防异常血栓形成的方法包括:保持良好的生活习惯(包括戒烟、适量运动和健康饮食)、避免长期卧床、定期检查和筛查血栓形成的风险因素等。
当然,当异常血栓形成已经发生时,及时的治疗也是非常重要的。
根据情况不同,治疗异常血栓形成的方法可能包括:抗凝治疗(比如使用肝素和华法林类药物)、溶栓治疗(比如使用组织型纤溶酶原激活剂),以及手术治疗等。
血凝试验的原理和意义

血凝试验的原理和意义血凝试验是一种常见的临床检查方法,用于检测血液凝固功能的状态。
血液凝固是人体内一种重要的生理过程,它能够防止出血,并促进伤口愈合。
但是,当血液凝固功能出现异常时,就会对人体健康产生不良影响。
因此,了解血凝试验的原理和意义对于临床医学具有重要意义。
一、血凝试验的原理血凝试验是通过观察血液在一定条件下的凝固情况来判断血液凝固功能的状态。
血液凝固是一种复杂的生理过程,它涉及多种血液成分和生物化学反应。
在正常情况下,血液凝固是由多种凝血因子的协同作用而完成的。
血液凝固过程可以分为三个阶段:凝血因子激活阶段、凝血酶形成阶段和纤维蛋白形成阶段。
在凝血因子激活阶段,血液中的凝血因子被激活,形成凝血酶前体。
在凝血酶形成阶段,凝血酶前体被激活成为凝血酶,促使纤维蛋白聚集并形成血栓。
在纤维蛋白形成阶段,血栓形成完成,止血作用得以实现。
血凝试验可以通过不同的方法来检测血液凝固功能的状态。
常用的血凝试验有凝血酶时间(PT)、活化部分凝血时间(APTT)、血小板计数和纤维蛋白原测定等。
二、血凝试验的意义血凝试验可用于诊断和监测多种疾病,具有广泛的临床应用。
以下是血凝试验在临床医学中的常见意义:1. 诊断凝血系统疾病血凝试验可以用于诊断凝血系统的疾病,如出血性疾病、血栓性疾病和凝血因子缺乏等。
例如,PT和APTT的延长可以提示凝血因子缺乏或异常,而纤维蛋白原测定可以提示纤维蛋白溶解功能的异常。
2. 监测抗凝治疗抗凝治疗是一种常见的治疗方法,用于预防和治疗血栓性疾病。
血凝试验可以用于监测抗凝治疗的效果。
例如,PT和INR可以用于监测华法林治疗的效果,而APTT可以用于监测肝素治疗的效果。
3. 评估手术风险血凝试验可以用于评估手术风险。
手术过程中,血液凝固功能的异常可能会导致术后出血或血栓形成等并发症。
因此,在手术前进行血凝试验可以帮助医生评估手术风险,并采取相应的措施,如调整术前用药方案等。
4. 监测孕妇的凝血功能孕妇的凝血功能可能会发生变化,因此需要进行定期检测。
凝血级联反应过程

凝血级联反应过程一、凝血级联反应的概述凝血级联反应是机体对血管受损后的一种生理性修复反应。
该过程包括一系列的生物化学反应和酶促反应,旨在形成血栓以阻止血液流失,并促进损伤血管的修复。
本文将对凝血级联反应的过程进行全面、详细、完整和深入地探讨。
二、凝血级联反应的步骤凝血级联反应可以分为内源性凝血途径和外源性凝血途径。
下面将详细介绍这两个途径的步骤。
2.1 内源性凝血途径1.损伤血管的修复:当血管受到损伤时,血管内皮细胞会释放出细胞因子,引发凝血级联反应。
此阶段主要涉及到血小板的黏附和激活,形成血小板聚集。
2.凝血酶的形成:损伤血管会暴露在凝血因子XII(Hageman因子)的作用下。
该因子会被活化成凝血酶,进而激活凝血因子XI(Pta波因子)。
3.形成凝血酶的产物:凝血酶能够将原纤维蛋白原转化为纤维蛋白,形成血栓网。
纤维蛋白是一种不溶性蛋白质,能够在损伤血管表面形成网状结构,加固血栓。
4.血小板和纤维蛋白的聚集:血小板细胞聚集在损伤血管表面,形成血小板栓。
同时,纤维蛋白在血栓网中填充空隙,进一步加固血栓。
2.2 外源性凝血途径1.损伤组织的释放:当组织受到损伤时,细胞内部的组织因子(TF)会暴露在血液中。
TF是一种细胞膜上的磷脂蛋白质,与凝血因子VII(组织因子)相结合,形成复合物。
2.凝血酶的形成:组织因子复合物可以激活凝血因子X,进而形成凝血酶。
3.形成凝血酶的产物:凝血酶同样会将纤维蛋白原转化为纤维蛋白,形成血栓网。
此时,血小板和纤维蛋白开始聚集,形成血小板栓和纤维蛋白栓。
三、凝血级联反应的调控机制凝血级联反应是一个复杂而精密的过程,需要严密的调控机制来保持血液在正常条件下流动,同时防止过度凝血的发生。
3.1 抗凝机制1.组织因子通路抑制物(TFPI):TFPI能够抑制组织因子复合物的形成,从而减慢凝血级联反应的进行。
2.抗凝血酶:抗凝血酶是一种体液蛋白,能够抑制凝血酶的活性,阻止纤维蛋白的形成和血栓的产生。
血液凝固分析的实验报告

一、实验目的1. 了解血液凝固的基本过程和原理。
2. 掌握影响血液凝固的因素及其作用机制。
3. 通过实验验证不同因素对血液凝固速度的影响。
二、实验原理血液凝固是血液由流动状态转变为凝胶状态的过程,其基本原理是凝血因子在一系列反应中逐步激活,最终使纤维蛋白原转变为纤维蛋白,形成凝胶状血块。
血液凝固过程分为三个阶段:凝血酶原激活、凝血酶形成和纤维蛋白形成。
三、实验材料与仪器1. 实验材料:家兔血液、生理盐水、凝血酶、纤维蛋白原、肝素、抗凝剂等。
2. 实验仪器:恒温水浴器、秒表、量筒、试管、滴定管、试管架等。
四、实验方法1. 取家兔血液,加入抗凝剂,充分混匀,制成抗凝血。
2. 将抗凝血分成若干份,分别加入不同浓度的凝血酶、纤维蛋白原、肝素等试剂。
3. 将各试管放入恒温水浴器中,控制水温在37℃。
4. 使用秒表记录血液凝固所需时间。
5. 对比分析不同试剂对血液凝固速度的影响。
五、实验结果与分析1. 凝血酶对血液凝固速度的影响:随着凝血酶浓度的增加,血液凝固时间逐渐缩短。
说明凝血酶在血液凝固过程中起到关键作用。
2. 纤维蛋白原对血液凝固速度的影响:随着纤维蛋白原浓度的增加,血液凝固时间逐渐缩短。
说明纤维蛋白原在血液凝固过程中起到重要作用。
3. 肝素对血液凝固速度的影响:随着肝素浓度的增加,血液凝固时间逐渐延长。
说明肝素具有抗凝作用,可抑制血液凝固。
4. 抗凝剂对血液凝固速度的影响:与肝素类似,抗凝剂也具有抗凝作用,可延长血液凝固时间。
六、实验结论1. 凝血酶、纤维蛋白原是血液凝固的关键因素,其浓度对血液凝固速度有显著影响。
2. 肝素和抗凝剂具有抗凝作用,可抑制血液凝固。
3. 实验结果与血液凝固的基本原理相符。
七、实验讨论1. 实验过程中,温度对血液凝固速度有较大影响。
在37℃下,血液凝固速度最快。
这可能与人体正常体温相近有关。
2. 实验中使用的抗凝剂和肝素浓度对血液凝固速度有显著影响,过高或过低浓度都会影响实验结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝血酶激活血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。
在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。
血纤维交织成网,将很多血细胞网罗在内,形成血凝块。
血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。
血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。
血浆内具备了发生凝血的各种物质,所以将血液抽出放置于玻璃管内即可凝血。
血浆内又有防止血液凝固的物质,称为抗凝物质(anticoagulant)。
血液在血管内能保持流动,除其他原因外,抗凝物质起了重要的作用。
血管内又存在一些物质可使血纤维再分解,这些物质构成纤维蛋白溶解系统(简称纤溶系统)(fibrinloytic system)。
在生理止血中,血凝、抗凝与纤维蛋白溶解相互配合,既有效地防止了失血,又保持了血管内血流畅通。
(一)血液凝固凝血因子血浆与组织中直接参与凝血的物质,统称为凝血因子(blood clotting factors),其中已按国际命名法用罗马数字编了号的有12种(表3-4)。
此外,还有前激肽释放酶、高分子激肽原以及来自血小板的磷脂等直接参与凝血过程。
除因子Ⅳ与磷脂外,其余已知的凝血因子都是蛋白质,而且因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ以及前激肽释放酶都是蛋白酶。
这些蛋白酶都属于内切酶,即每一种酶只能水解某两种氨基酸所形成的肽键。
因而不能将某一知肽链分解成很多氨基酸,而只能是对某一条肽链进行有限的水解。
通常在血液中,因Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ都是无活性的酶原,必须通过有限水解在其肽链上一定部位切断或切下一个片段,以暴露或形成活性中心,这些因子才成为有活性的酶,这个过程称为激活。
被激活的酶,称为这些因子的“活性型”,习惯上于该因子代号的右下角加一“a”字来表示。
如凝血酶原被激活为凝血酶,即由因子Ⅱ变成因子Ⅱa。
因子Ⅶ是以活性型存在于血液中的,但必须有因子Ⅲ(即组织凝血激酶)同时存在才能起作用,而在正常时因子Ⅲ只存在于血管外,所以通常因子Ⅶ在血流中也不起作用。
按国际命名法编号的凝血因子编号同义名因子Ⅰ纤维蛋白原(fibrinogen)因子Ⅱ凝血酶原(prothrombin)因子Ⅲ组织凝血激素(tissue thromboplastin)因子ⅣCa2+因子Ⅴ前加速素(proaccelerin)因子Ⅶ前转变素(proconvertin)因子Ⅷ抗血友病因子(antihemophilic factor,AHF)因子Ⅸ血浆凝血激酶(plasma thromboplastin component,PTC)因子ⅩStuart-Prower因子因子Ⅺ血浆凝血激酶前质(plasma thromboplastin antecedent,PTA)因子Ⅻ接触因子(contact factor)因子ⅩⅢ纤维蛋白稳定因子(fibrin-stabilizing factor)凝血过程凝血过程基本上是一系列蛋白质有限水解的过程,凝血过程一旦开始,各个凝血因子便一个激活另一个,形成一个“瀑布”样的反应链直至血液凝固。
凝血过程大体上可分为三个阶段(图3-4):即因子χ激活成χa;因子Ⅱ(凝血酶原)激活成Ⅱa(凝血酶);因子Ⅰ(纤维蛋白原)转变成Ⅰa(纤维蛋白)。
因子χ的激活可以通过两种途径。
如果只是损伤血管内膜或抽出血液置于玻璃管内,完全依靠血浆内的凝血因子逐步使因子χ激活从而发生凝血的,称为径内源性激活途径(intrinsic route);如果是依靠血管外组织释放的因子Ⅲ来参与因子χ的激活的,称为外源性激活途径(extrinxic route),如创伤出血后发生凝血的情况。
1.内源性途径一般从因子Ⅻ的激活开始。
血管内膜下组织,特别是胶原纤维,与因子Ⅻ接触,可使因子Ⅻ激活成Ⅻa。
Ⅻa可激活前激肽释放酶使之成为激肽释放酶;后者反过来又能激活因子Ⅻ,这是一种正反馈,可使因子Ⅻa大量生成。
Ⅻa又激活因子Ⅺ成为Ⅺa。
由因子Ⅻ激活到Ⅺa形成为止的步骤,称为表面激活。
表面激活过程还需有高分子激肽原*参与,但其作用机制尚不清楚。
表面激活所形成的Ⅺa再激活因子Ⅸ生成Ⅸa,这一步需要有Ca2+(即因子Ⅳ)存在。
Ⅸa再与因子Ⅷ和血小板3因子(PF3)及Ca2+组成因子Ⅷ复合物,即可激活因子Χ生成Χa。
血小板3因子可能就是血小板膜上的磷脂,它的作用主要是提供一个磷脂的吸附表面。
因子Ⅸa和因子χ分别通过Ca2+而同时连接于这个磷脂表面,这样,因子Ⅸa即可使因子χ发生有限水解而激活成为χa。
但这一激活过程进行很缓慢,除非是有因子Ⅷ参与。
因子Ⅷ本身不是蛋白酶,不能激活因子х,但能使Ⅸa激活因子χ的作用加快几百倍。
所以因子Ⅷ虽是一种辅助因子,但是十分重要。
遗传性缺乏因子Ⅷ将发生甲型血友病(hemophilia A),这时凝血过程非常慢,甚至微小的创伤也出血不止。
先天性缺乏因子Ⅸ时,内源性途径激活因子χ的反应受阻,血液也就不易凝固,这种凝血缺陷称为B型血友病(hemophilia B)。
2.外源性途径由因子Ⅶ与因子Ⅲ组成复合物,在有Ca2+存在的情况下,激活因子χ生成χa。
因子Ⅲ,原名组织凝血激酶,广泛存在于血管外组织中,但在脑、肺和胎盘组织中特别丰富。
因子Ⅲ为磷脂蛋白质。
Ca2+的作用就是将因子Ⅶ与因子χ都结合于因子Ⅲ所提供的磷脂上,以便因子Ⅶ催化因子χ的有限水解,形成χa。
Χa又与因子Ⅴ、PE3和Ca2+形成凝血酶原酶复合物,激活凝血酶原(因子Ⅱ)生成凝血酶(Ⅱa)。
在凝血酶原酶复合物中的PF3也是提供磷脂表面,因子Χa和凝血酶原(因子Ⅱ)通过Ca2+而同时连接于磷脂表面,χa催化凝血酶原进行有限水解,成为凝血酶(Ⅱa)。
因子Ⅴ也是辅助因子,它本身不是蛋白酶,不能催化凝血酶原的有限水解,但可使χa的作用增快几十倍。
因子χ与凝血酶原的激活,都是在PF3提供的磷脂表面上进行的,可以将这两个步骤总称为磷脂表面阶段。
在这一阶段中,因子Ⅱ(凝血酶原)、因子Ⅶ、因子Ⅸ和因子χ,都必须通过Ca2+连接于磷脂表面。
因此,在这些因子的分子上必须有能与Ca2+结合的部位。
现已知,因子Ⅱ、Ⅶ、Ⅸ、х都是在肝中合成。
这些因子在肝细胞的核糖体处合成肽链后,还需依靠维生素K的参与,使肽链上某些谷氨酸残基于γ位羧化成为γ-羧谷氨酸残基,构成这些因子的Ca2+结合部位。
因此,缺陷维生素K,将出现出血倾向。
凝血酶(thrombin)有多方面的作用。
它可以加速因子Ⅶ复合物与凝血酶原酶复合物的形成并增加其作用,这也是正反馈;它又能激活因子ⅩⅢ生成ⅩⅢa;但它的主要作用是催化纤维蛋白原的分解,使每一分子纤维蛋白原从N-端脱下四段小肽,转变成为纤维蛋白单体(fibrin monomer),然后互相连接,特别是在ⅩⅢa作用下形成牢固的纤维蛋白多聚体(fibrin polymers),即不溶于水的血纤维。
上述凝血过程可见图3-5表示。
一般来说,通过外源性途径凝血较快,内源性途径较慢,但在实际情况中,单纯由一种途径引起凝血的情况不多。
在凝血的某些阶段,内源性途径与外源性途径之间存在着功能的交叉,也就是说,这两条途径之间具有某些“变通”的途径。
例如,外源性的因子Ⅶa和Ⅲ可以形成复合物直接激活因子Ⅸ,从而部分代替了因子Ⅺ和Ⅻa的功能。
这一机制得以解释为什么在因子Ⅸ缺乏时的出血倾向,较因子Ⅺ和Ⅻ缺乏时更为严重。
另一方面,内源性因子Ⅻ的裂解产物和因子Ⅸa也能激活外源性的因子Ⅶ。
(二)抗凝系统的作用正常人1ml血浆含凝血酶原约300单位,在凝血时通常可以全部激活。
10ml血浆在凝血时生成的凝血酶就足以使全身血液凝固。
但在生理止血时,凝血只限于某一小段血管,而且1ml血浆中出现的凝血酶活性很少超出8-10单位,说明正常人血浆中有很强的抗凝血酶活性。
现在已经查明,血浆中最重要的抗凝物质是抗凝血酶Ⅲ(antithrombinⅢ)和肝素,它们的作用约占血浆全部抗凝血酶活性的75%。
抗凝血酶Ⅲ是血浆中一种丝氨酸蛋白酶抑制物(serine protease inhibitor)。
因子Ⅱa、Ⅶ、Ⅸa、χa、Ⅻa的活性中心均含有丝氨酸残基,都属于丝氨酸蛋白酶(serine protease)。
抗凝血酶Ⅲ分子上的精氨酸残基,可以与这些酶活性中心的丝氨酸残基结合,这样就“封闭”了这些酶的活性中心而使之失活。
在血液中,每一分子抗凝血酶Ⅲ,可以与一分子凝血酶结合形成复合物,从而使凝血酶失活。
肝素是一种酸性粘多糖,主要由肥大细胞和嗜碱性粒细胞产生,存在于大多数组织中,在肝、肺、心和肌组织中更为丰富。
肝素在体内和体外都具有抗凝作用,肝素抗凝的主要机制在于它能结合血浆中的一些抗凝蛋白,如抗凝血酶Ⅲ和肝素辅助因子Ⅱ(heparin cofactorⅡ)等,使这些抗凝蛋白的活性大为增强。
当肝素与抗凝血酶Ⅱ的某一个ε-氨基赖氨酸残基结合,则抗凝血酶Ⅲ与凝血酶的亲和力可增强100倍,使两者结合得更快,更稳定,使凝血酶立即失活。
当肝素与肝素辅助因子Ⅱ结合而激活后者时,被激活的肝素辅助因子Ⅱ特异性地与凝血酶结合成复合物,从而使凝血酶失活,在肝素的激活作用下,肝素辅助因子灭活凝血酶的速度可以加快约1000倍。
肝素还可以作用血管内皮细胞,使之释放凝血抑制物和纤溶酶原激活物,从而增强对凝血的抑制和纤维蛋白的溶解。
此外,肝素能激活血浆中的脂酶,加速血浆中乳糜微粒的清除,因而减轻脂蛋白对血管内皮的损伤,有助于防止与血脂有关的血栓形成。
天然肝素是一种分子量不均一的混合物,分子量为3000-57000不等。
这种不均一是生物合成过程有差异所致。
不同分子量肝素的生物作用也不完全相同。
一般将分子量在7000以下肝素称为低分子量肝素。
低分子量肝素只与抗凝血酶Ⅱ结合,而分子量较大的肝素除了能与抗凝血酶Ⅲ结合外,还能与血小板结合,结果不仅抑制血小板表面凝血酶的形成,而且抑制血小板的聚集与释放。
由于分子量较大的肝素抗凝作用的环节较多,作用较为复杂,易引起出血倾向,而低分子时肝素具有半衰期较长,抗凝效果好和引起出血倾向少等优点,因而更适于作为外源性抗凝剂。
从化学本质看,凝血过程是一系列酶促反应链,其中主链是一系列丝氨酸蛋白酶的作用。
组成抗凝系统的一类物质是血浆中存在的多种丝氨酸蛋白酶抑制物。
上述抗凝血酶Ⅲ是其中最为重要的一种。
属于丝氨酸蛋白酶抑制物的抗凝物质还有能抑制补体第1成分和因子Ⅻa、Ⅺa、的C1抑制物(C1 inhibitor),广谱的蛋白酶抑制物a2-巨球蛋白(a2-macroglobulin)等。
抗凝系统中的另一类物质是辅因子抑制物,这类抑制物通过对凝血辅因子如因子Ⅴ和Ⅷ活性的抑制而实现抗凝作用。