基于uc3844的开关电源设计

基于uc3844的开关电源设计
基于uc3844的开关电源设计

要:介绍一种采用UC3844集成芯片实现的多路输出单端反激式IGBT驱动电源。根据设计要求给出了该电路的具体设计步骤及电路参数。实验结果表明,该电源的可靠性高,稳定性好,输出纹波小,能够适应电网电压10% 和负载20% 的波动。

近年来,随着电力电子技术的发展,各个应用领域对电源的体积、重量、效率等方面提出了越来越高的要求。单端反激式变换电路由于具有体积小、重量轻、效率高、线路简洁、可靠性高以及具有较强的自动均衡各路输出负载的能力等优点,非常适合用于设计大功率高频开关电源的辅助电源或功率开关的驱动电源。

开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,在其控制过程中,电源电路中的电感电流未参与控制,是独立变量,开关变换器为二阶系统,而二阶系统是一个有条件的稳定系统;后者是一个电压、电流双闭环控制系统,电感电流不再是一个独立变量,从而使开关变换器成为一个一阶无条件的稳定系统,因而很容易不受约束地得到大的开环增益和完善的小信号、大信号特性。为此,应用电流控制型芯片(峰值电流控制)UC3844设计了一种大功率高频开关电源功率开关(例如IGBT)驱动电源,其主要技术指标为:5路输出(各路均为20V/0.5A);输出电压纹波<±0.5% ;工作频率为40kHz;输入交流电压范围(1±10%)220V。

1 主电路设计

1.1 主电路拓扑

图1是所设计电源的原理图,主电路采用单端反激式变换电路,220 V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路,并通过电阻R1、C2为UC3844提供初始工作电压。为提高电源的开关频率,采用功率MOSFET作为功率开关管,在

UC3844的控制下,将能量传递到输出侧。为抑制电压尖峰,在高频变压器原边设置了RCD 缓冲电路。

1.2 变压器设计

变压器是开关电源的重要组成部分,它对电源的效率和工作可靠性,以及输出电气性能都起着非常重要的作用。在设计时要充分考虑转换功率容量、工作频率、主电路形式、输入和输出电压等级和变化范围、铁芯材料和形状、绕组绕制方式、散热条件、工作环境和成本等各方面的因素。而单端反激式变换电路中的变压器既有电抗器的功能又有变压器的工作特性,因而它的设计方法有它的特殊性。

如图1所示,当功率开关管受PWM脉冲激励而导通时,直流输入电压施加到高频变压器的原边绕组上,在变压器次级绕组上感应出的电压使整流二极管反向偏置而阻断,此时电源能量以磁能形式存储在电感中;当开关管截止时,原边绕组两端电压极性反向,副边绕组上的电压极性颠倒,使输出端的整流二极管导通,储存在变压器中的能量释放给负载。根据技术指标的要求,输入功率约为62.5W,则原边峰值电流为:

I pk=2P o/(V in(max)D max)=0.69A (1)

式中:Po为输出功率,50W;

V in(max)为交流电压的最大值(取240V)经过整流后得到的直流电压的数值,取288V;

D max为最大占空比,取0.5。

变压器的初级电感量为:

Lp=V in(max)×D max/(I pk×f)=4.02 mH (2)

式中:Vin(max)为交流电压的最小值(取185V)经过整流后得到的直流电压的数值,取222V;

Dmax为最大占空比,取0.5;

f为工作频率,40 kHz。

利用AP法选择最小尺寸的磁芯

Ae×Ac=Lp×Lpk×106/(j×K e×K c×△B max ) = 15.7×103mm4(3)

式中:Lp为前面计算的变压器初级电感量;

Ipk为原边峰值电流;

j为电流密度(A/mm2 ),这里取为3;

Ke为铁芯截面有效系数,选用铁氧体铁芯,Ke=0.98;

Kc为铁芯窗口的有效利用系数,取0.3;

△B max为磁通密度的最大变化量,取0.2

据此可选EI33型磁芯,其

Ae=9.7×12.7=123.19mm2,Ac=7.3×19.2=140.16mm2(其

Ae×Ac=17.3×103mm4)

导线截面积为

Sx=I in(max)/j=0.28/3=0.09 mm2(4)

可选择直径为0.41 mm的漆包线。初级匝数为:

Np= Vs×ton/(△Bac×Ae)=123 (5)

式中:Vs为原边所加的直流电压的平均值,取264V;

ton为最大占空比下的开通时间,为1.2×12.5×10-6s。

次级匝数为

Ns=Np×U2/U1=24.6,取25。

式中:U2/U1为变压器原副边的电压比,根据经验数值以及所选开关管的耐压值(500 V),设定原副边的电压比为5:1)。

1.3 变压器原边缓冲电路设计

每当开关管由导通变为截止时,在变压器的一次绕组上就会产生尖峰电压和感应电压。其中的尖峰电压是由于高频变压器存在漏感而形成

的,它与直流高压和感应电压叠加后很容易损坏开关管。为此,加入RCD缓冲电路,对尖峰电压进行箝位或吸收。

缓冲电容要满足当开关管集电极电流达到0时,其集电极电压不能超过Vceo的70% ,即C=1/2×I ptf/0.7Vceo =8nF,取10nF/400V (6)

式中:Ip是原边电流(0.28A);

tf是集电极电流下降时间(20us);

Vceo是所用晶体管的Vceo额定值(500V)。

按在Tr最小导通时间里电容能充分放电来选择缓冲器放电电阻(R)。最小导通时间在最大输人电压Vsmax、最小负载电流Iomin时发生。为使C在ton时能完全充分放电,电

阻不能过大。因此,按RC时间常数等于0.5 toff(min)(toff(min)取2.5us)来计算R值,即

R=0.5toff(min)/C×102=12.5 kΩ,取15 kΩ(7)

电阻上消耗的功率为:

P=1/5CV c2f=2.79W (8)

式中:Vc为整流后的直流电压264V;

f为工作频率40 kHz。

为保证此电源能长时间工作,电阻的额定功率应留有一定余量,故选用5w 的功率电阻。

2 控制电路设计

2.1 UC3844外围电路设计

UC3844内部主要由5.0V基准电压源、振荡器(用来精确地控制占空比调节)、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。

UC3844的典型外围电路如图2所示,图中脚7是其电源端,芯片工作的开启电压为16V,欠压锁定电压为10V,上限为34V,这里设定20V给

它供电,用稳压二极管稳压,同时并联电解电容滤波,其值为10uF。开始时由原边主电路向其供电,电路正常工作以后由副边供电。原边主电路向其供电时需加限流电阻,考虑发热及散热条件,其值取为62kΩ/5W,为了防止输出电压不稳定时较高的电压直接灌人稳压二极管,导致其过压烧坏,在输出端给UC3844供电的线路与稳压管相连接处串入一只二极管。

脚4接振荡电路,产生所需频率的锯齿波,工作频率为=1.8/CTRT,振荡电阻RT和电容CT的值分别为100kΩ、200pF。脚8是其内部基准电压(5V),给光耦副边的三极管提供偏压。脚2及脚1为内部电压比较器的反相输入端和输出端,它们之间接一个15 kΩ的电阻构成比例调节器,这里采用比例调节而不用PI调节的目的是为了保证反馈回路的响应速度。脚6是输出端,经一个限流电阻(22Ω/0.25 w)限流后驱动功率MOSFET(IRF840),为保护功率MOSFET,在脚6并联一支15V的稳压二极管。

2.2 电流反馈电路设计

UC3844采用的是峰值电流控制模式,脚3是电流比较器同相输入端,接电流取样信号输入,即电流内环,由R3,Rf以及脚3组成。如图2所示,从脚3引入的电流反馈信号与脚1的电压误差信号比较,产生一个PWM(脉宽调制)波,由于电流比较器输入端设置了1V的电流阈值,当电流过大而使电阻R3上的电压超过1 V(即脚3电平大于1V)时,将关断PWM脉冲,反之,则保持此脉冲。

由于电阻R3检测出的是峰值电流,因此它可以精确地限制最大输出电流,被检测的峰值电流为imax=1/R3。这里上端采样电阻Rf取为1kΩ),下端电流检测电阻R3,取为0.55Ω。滤波电容取为470pF/1.2V的电解电容。

2.3 电压反馈电路设计

采用三端可控基准源TL431反馈误差电压,并将误差电压放大,驱动线性光耦PC817的原边发光二极管,而处在电源高压端的光耦副边三极管得到反馈电压,输入到UC3844的内部误差放大器(脚1和脚2),进而调整开关管的开通、关断时间。

TL431的参考端(REF)和阳极(ANODE)间是稳定的2.5V基准电压,它将取样电阻上的电压稳在2.5V。当输出电压增大,经R10,R11分压后得到的取样电压(即R-A间的电压)大于2.5V时,流过TL431的电流增大,其阴极电压下降,光耦原边二极管发光,传递到副边三极管,进而使得开关管的导通时间减少,从而降低输出电压。

基于上述分析,TL431下端采样电阻为R=2.5V/1mA=2.5 kΩ 。实际的检测电流为I=2.5V/2.7kΩ=0.96mA。TL431分压网络上端的电阻值为

R=(20-2.5)/0.96×10-3=18.22 kΩ (取18 kΩ)

另外,为降低误差放大器的高频增益,TL431的R—C间接入一个22 nF的CBB电容。同时在LED原边二极管两侧并联一个1 kΩ的电阻,它的

作用是保证LED导通时电流从零开始增加。

3 实验分析

实验电路主要参数为:5路输出,总的输出功率50 w,每路20 V/0.5 A,开关频率40 kHz,变压器原副边变比5:1,变压器原边电感量3.76 mH,主开关管为IRF840。分别在轻载150Ω和满载100Ω情况下考核了此电路,下面分别就这两种情况给出说明。

图3为开关管的驱动波形,从图2中可以看出,上升沿和下降沿比较陡峭,驱动电平适中,符合要求,有良好的驱动能力;轻载时占空比非常小,满载时稍大,但均远小于50% ,保证了电路工作在完全能量转换方式。

图4为开关管的漏源电压波形,从图3中可以看出,电压尖峰很小,但有一定的过冲,保证了响应速度,说明缓冲电路的设计是合理的;电流断续,当变压器原边电压在理论上降为零时,实际情况是发生振荡,其原因是变压器释放完了所有能量,开关管的漏源电压从较高的值下降到等于输入电压的值的电平上,这一转变激发了谐振回路,它由杂散电容和原边电感构成,从而产生了一个衰减的振荡波形,并持续到开关管再次导通为止。另一方面,从图4中还可明显地看出,电路不论轻载还是满载均工作在完全能量转换方式,而且轻载时的断续时间较满载时的断续时间长,符合反激式变换器的工作原理。

图5为输出电压纹波波形,从图中可以看出,满载时输出电压的纹波除了少数的毛刺,其主要部分小于0.1V,与输出电压(20V)相比,不到其0.5% ,说明此电路的输出纹波很小,达到了设计指标的要求;而轻载时毛刺也很少,工作情况很理想。

4 结语

实验结果表明,本文设计的单端反激式开关电源,具有体积小、重量轻、输出电压纹波小等优点,且稳定性好,轻载和满载均能可靠运行,电网电压浮动时,电源也能正常工作,因此,作为IGBT的驱动电源,达到了满意的效果。另外,实验过程中遇到了以下两个问题,希望

能为以后设计反激式电源的同行提供一些帮助:

1)3844的脚1和脚2接的电压反馈电路的逻辑及各个元器件的参数需要仔细推敲。

2)TL431的R-C间未接电容时,其上电压有很多尖峰毛刺,导致TL431不能正常工作,所以必须接这个电容。

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

东元 海利普开关电源电路分析

两例变频器开关电源电路实例 ——兼论电容C23在电路中的重要作用 先看以下电路实例: 图1 东元7200PA 37kW变频器开关电源电路 CN4 图2 海利普HLPP001543B型15kW变频器开关电源电路

图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。 开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。 电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。以上电路为振荡电路。D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。 5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。以此调整输出电压使之稳定。 这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。 在由3844(42/43/34)PWM脉冲芯片为核心构成的开关电源电路,大行其道的今天,像图1、图2这样由两只双极型晶体管构成的开关电源电路(对比于集成器件,或称之为分立元件构成的开关电源),仍占有一席之地,在数个变频器厂家的产品中,得到应用。难道是厂家技术人员有怀旧情结吗?还是为了降低生产成本?其实都不是!采用分立元件做开关电源,设计人员肯定有更全面和深入的考虑。 而我的维修经验而论,我比较倾向和首肯于由分立元件构成的开关电源,理由是其工作可靠性高,故障率低,使用和维修都比较让人放心。电路的质量,并不取决于采用集成器件或分立元件,也不取决于电路采用元器件的数量多少,这些都是形式而非本质。相对于分立元件组成的电路,集电器件是否就具有技术上的先进性和工作上的可靠性?则真的是一个问号,不可一概而论。比较二者电路的设计难度,分立元件的电路,恐怕难度要更高一些。 与分立元件的电源相比,用3844做成的电源电路,更像一个“傻瓜型”电路,有固定的电路模式,与成型外围作成一个电路单元,可以应急取代任意开关电源电路,达到修复目的(有的技术人员已经这样做了)。 电路的元件数量愈少,电路结构越是精简,电路的故障率就越低,这是一个被实践验证的法则。实际维修中,采用图1电路形式的开关电源,故障率和可靠性,要优于用集成器件做成的开关电源。个别电源,停电时还好好儿的,一上电,开关管就炸掉了,说明即使“傻瓜型”电路,在设计上也不可掉以轻心,关

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

典型半导体案例失效分析

典型半导体案例失效分析 Author:朱秋高 光宝电子(东莞)有限公司 E-mial: Collins.zhu@https://www.360docs.net/doc/301362750.html, 摘要: 开关电源与地之间走线的电感对主开关Mosfet 驱动影响和失效案例 关键词: PWM 驱动信号的布线要点: 在开关转换期间,某些走线 (PCB上的敷铜线路) 电流会瞬间停止,而另外一些走线电流同时瞬间导通(均在开关转换时间100ns 之内发生). 这些走线被认为是开关调整器PCB布线的”关键走线”. 每个开关转换瞬时,这些走线中都产生很高的Di/dt .如图1-1所示,整个线路混杂着细小但不低的电压尖峰.由经验可知,不难理解这是方程V=L*Di/dt 在走线中起作用,L是PCB走线的寄生电感.根据经验,每英寸走线的寄生电感约为20nH 图1-1 确定三种拓扑中的关键走线 噪声尖峰一旦产生,不仅传递到输入/输出(影响电源性能),而且渗透到IC控制单元,使控制功能失稳失常,甚至使控制的限流功能失效,导致灾难性后果. 199

引言: 设计开关调整器PCB时,需知最终产品的好坏完全取决于它的布线,当然,有些开关IC可能会比其他开关IC对干扰更敏感.有时,从不同供应商购得的 “ 同类” 产品也可能有完全不同的噪声敏感度,.此外,某些开关IC结构本身也会比其他IC对噪声更敏感(如电流模式控制芯片比电压模式控制芯片”布线敏感度”高很多). 事实上,用户必须面对这样的现实: 半导体器件生产商不会提供其产品噪声敏感度的资料. 而作为设计人员,往往对布线不够重视,结果将似乎可稳定工作的IC弄得波形震荡,易受干扰,以致误动作,甚至导致灾难性的后果(开关烧掉). 另外,这些问题在调试后期往往很难纠正或补救,因此开始阶段就正确布线非常重要. 试验方法: 1. MOSFET 的驱动信号通常由IC内的驱动级产生,故MOSFET的源极应接至IC接地端.但MOSFET的实际表现并不由施加在栅极与参考间的电压所决定, 而是取决于栅极与源极间的电压,即完全取决于实际的V GS. 实例1,如果源极与地之间的走线有点长的话,在开关转换瞬间它上面会出现很大的电感反冲, 不严重的话只是降低开关转换的速度,严重时会使MOSFET错误地开通或关断,导致管子毁坏. 图1-2 是在关断瞬间可能发生的相当安全的情形.栅极控制MOSFET关断,但源极的PCB走线阻抗刚才也流过了电流,并产生小电压源(尖峰) 以阻止电流减小,电流持续流动直到能量消耗光.这使V GS波形发生改变从而使开关转换速度降低.然而,这种降低转换速度的方法并不值得推荐,根据我所知其结果不可预知,因为它本质上是基于寄生参数的. 图 1-2 关断时源极寄生电感的影响 2. 实例2, 图1-3 是一款使用在网络产品上的电源布线图,我们不难发现驱动信号到MOSFET的栅极之间的走线过长,(约为63mm) .且高频电感离驱动信号非常近,而导致在系统使用时,不时发生MOSFET 烧毁和PCB板大面积烧黑的现象, 200

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析)

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析) PI公司的众多LED驱动电源解决方案中,高效率、低功耗,外围简单、可调光、高稳定性是最大的特点,涉及工业、商业、家用等应用领域。不管是应客户需求设计,还是按相关标准设计,还是基于对行业发展趋势把握所做的前瞻性设计,都同样的出色,其方案、设计、想法具有行业指引性。 其众多的驱动电源参考设计中蕴含很多电源基本理论,就算不用其公司的IC也可以作为设计参考,对工程师有超强的指导意义。 1.开关电源设计软件- PI Expert? 操作/设计指南 PI Expert可提供构建和测试工作原型所需的所有必要信息。这些信息包括完整的交互式电路原理图、物料清单(BOM)、电路板布局建议以及详细的电气参数表。PI Expert还可提供完整的变压器设计,包括磁芯尺寸、线圈圈数、适当的线材规格以及每个绕组所用的并绕线数。此外,还可生成详细的绕组机械装配说明。该程序可以将设计时间从数天缩短至几分钟。 2.采用LYTSwitch的带功率因数校正(PFC)的23 W T8电源设计 适用于430 mA V (50 V) T8灯管的隔离式、低输入电压、超薄驱动器设计(DER-338)现已推出。这款新设计采用了PI新推出的LYTSwitch? LED驱动器系列器件LYT4215E。 3.一款高功率因数、可控硅调光的非隔离LED驱动器 PI推出了一份新的设计报告((DER-364),介绍的是一款使用广受好评的LYTSwitch IC设计的高功率因数、可控硅调光的非隔离LED驱动器。其效率额定值高达85%以上,具有无闪烁调光和单向快速启动(<200 ms)的特性。 4.针对T10灯管的最新24 W LED驱动器设计 PI的一款效率达92%的24 W T10灯LED驱动器设计(DER-356)。该设计可极大简化离线式、带功率因数校正的LED电源的生产。 5.适用于可控硅调光A19灯的全新10 W PFC LED驱动器设计 PI发布的关于针对可调光A19灯的全新10 W驱动器设计(DER-328) 6.元件数最少的T8灯管LED驱动器设计–高效率、低THD PI现已推出DER-345–一款针对T8 LED灯的低输入电压、非隔离、高效率、高功率因数LED驱动器设计。 7.适用于A19替换灯的14.5 W可控硅调光的非隔离LED驱动器 Power Integrations的LED设计(DER-341) –适用于A19 LED灯的非隔离式、高效率、高功率因数(PF) LED驱动器。这款新的LED驱动器采用LinkSwitch-PH系列IC中的LNK407EG器件设计而成。

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

详解自激开关电源电路图

详解自激开关电源电路图 该文章讲述了详解自激开关电源电路图. 自激开关电源电路 图,STR41090电源属于自激式并联型开关电源,适应电网电压能力为150-280V。 振荡过程 C808上约300V直流电压经R811加到N801的(2)脚内部开关管的B极,同时经T802的(1)、(3)绕组加到N801的(3)脚内部开关管的C极,开关管开始导通,电流流过T802的(1)、(3)绕组,在(1)、(3)绕组产生感应电压,极性为(3)正(1)负,经耦合,在(6)、(7)绕组也产生感应电压,极性为(7)正(6)负,此正反馈电压经C819、R817、R816送回到N801的(2)脚,使开关管电流进一步增大,雪崩的过程使开关管迅速饱和。开关管饱和期间,T802(1)、(3)绕组的电流线性增大,VD821、VD822截止,T802储存磁场能量。由于C819不断被充电,使N801的(2)脚电压不断下降,到某一时刻,N802(2)脚上的电压不能维持内部开关管的饱和,开关管退出饱和状态,C极电流减小,T802各绕组的感应电压极性全部翻转,反馈绕组(6)、(7)脚的电压极性为(6)正(7)负,经C819、R817、R816送到N801的(2)脚,使N801(2)脚电压进一步减小,又一雪崩过程使开关管迅速截止。开关管截止期间,VD821导通,在C822电容上形成112V电压;VD822也导通,在C824电容上形成18V电压,T802储存的磁场能量被释放。另一方面,C819上的电压经R817、R816、VD812、VD813放电,同时300V电压经R811给C819反向充电,这两个因素使C819左端的电压回升,即N801(2)脚的电压回升,当(2)脚电压上升0.6V以上

相关文档
最新文档