最新大一高数上 PPT课件 第一章教学文稿
合集下载
大学高数第一章函数和极限ppt课件

16
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
高等数学课件第一章1

以,若用y 表示撑杆跳高高度,用t表示1900年以来的年
份数,则函数关系为 y 3.33 0.05 t ,图形如图1-10。
图1-9
图1-10
《高等数学》课件 (第一章第一节)
1.1.2 函数的几种特性 1. 函数的有界性
定义1-2 设 f (x) 是定义在数集 D上的函数,若
存在正数 M ,使得对于任何的 xD ,都满足 f (x) M ,
f (x) f (x),
则称 f 是偶函数.
若对于任意的 x D( f ) 总有
f (x) f (x),
则称 f 是奇函数。
《高等数学》课件 (第一章第一节)
例如函数 y cos x, y x 2 都是偶函数, y sin x, y x3 都是奇函数。
由定义知,偶函数的图形关于y 轴对称,奇函数的图
x
0,
x 0,
1, x 0.
其图形如右下图所示。
y
O
x
y
1
O
x
-1
《高等数学》课件 (第一章第一节)
(3)取整函数定义为
y x n, n x n 1, n 0, 1, 2, .
y
其图形如图所示.
4
3
2
1
-1 o 1 2 3 4 x
《高等数学》课件 (第一章第一节)
由图形或表格表示的函数有些可用公式表示,有些则 只能用近似公式表示. 转换的目的在于进一步了解由图形 或表格表示的函数的内在规律,同时也可用于近期预测.
记为 y f [(x)] 或 ( f )(x)
其中u 称为中间变量.
《高等数学》课件 (第一章第一节)
复合函数的中间变量可以不止一个, 并且复合函数
份数,则函数关系为 y 3.33 0.05 t ,图形如图1-10。
图1-9
图1-10
《高等数学》课件 (第一章第一节)
1.1.2 函数的几种特性 1. 函数的有界性
定义1-2 设 f (x) 是定义在数集 D上的函数,若
存在正数 M ,使得对于任何的 xD ,都满足 f (x) M ,
f (x) f (x),
则称 f 是偶函数.
若对于任意的 x D( f ) 总有
f (x) f (x),
则称 f 是奇函数。
《高等数学》课件 (第一章第一节)
例如函数 y cos x, y x 2 都是偶函数, y sin x, y x3 都是奇函数。
由定义知,偶函数的图形关于y 轴对称,奇函数的图
x
0,
x 0,
1, x 0.
其图形如右下图所示。
y
O
x
y
1
O
x
-1
《高等数学》课件 (第一章第一节)
(3)取整函数定义为
y x n, n x n 1, n 0, 1, 2, .
y
其图形如图所示.
4
3
2
1
-1 o 1 2 3 4 x
《高等数学》课件 (第一章第一节)
由图形或表格表示的函数有些可用公式表示,有些则 只能用近似公式表示. 转换的目的在于进一步了解由图形 或表格表示的函数的内在规律,同时也可用于近期预测.
记为 y f [(x)] 或 ( f )(x)
其中u 称为中间变量.
《高等数学》课件 (第一章第一节)
复合函数的中间变量可以不止一个, 并且复合函数
高等数学(上册)第一章函数、连续与极限课件

9
2.区间
第一章 函数、连续与极限
数集 x a x b 及x a x b 称为半开区间,分别记作 a,b 和 a,b (见图1-9
和图1-10).
[a,b)
(a,b]
a
图1-9
b
x
a
图1-10
b
x
以上这些区间都称为有限区间,数 b a 称为这些区间的长度. 从数轴上看,这些 区间是长度为有限的线段.
与 B 的并集(简称并),记作 A B ,即 A B {x | x A 或 x B};
A AB B
A AB B
图1-2
图1-3
5
1. 集合及其运算
第一章 函数、连续与极限
由包含于 A 但不包含于 B 的元素构成的集合(见图 1-4),称为 A 与
B 的差集(简称差),记作 A \ B ,即 A \ B {x | x A 且 x B} ;
2
课前导读
集合
具有某种确定性质的对象的全体称为集合(简称集),组成集合的个别 对象称为集合的元素. 习惯上,用大写英文字母 A, B,C, 表示集合,
用小写字母 a,b, c, 表示集合的元素. a A 表示 a 是集 A 的元素 (读作 a 属于 A ), a A 表示 a 不是集 A 的元素(读作 a 不属 于 A ). 集合按照元素的个数分为有限集和无限集 ,不含任何元素的
集合称为空集,记为 .
3
一、 集合的概念
第一章 函数、连续与极限
我们把自然数的全体组成的集合称为自然数集,记作 . 由整数的全体
构成的集合称为整数集,记为 . 用 Q 表示全体有理数构成的有理数集,R
表示全体实数构成的实数集. 显然有 Z Q R .
《高等数学》 课件 高等数学第一章

2 函数的极限
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.
高等数学 (上册) -01-PPT课件

3. xlim 左右极限存在并相等 x ƒ(x) 的存在性 当x<xo时,x→ x 0 ,极限 xlim ƒ(x)= -ƒ(xo-0) 左极限 x
0
0
当x>xo时,x→ x 0 ,极限 xlim ƒ(x)= -ƒ(xo+0) 左极限 x
0
应用-----主要用于分段函数 分段点处求极限
x x0 2
证明: 对 >0要使|sinx-sinxo |=2|sin 2|sin
x x0 2
cos
x x0 |<ε 2
x x0 cos 2
|≤2|sin
x x0 2
|
当 x 很 小 时,|sinx| < |x| 2|sin
x x0 2
|<|2
x x0 2
| = |x-x0|<ε
(1)、ε-x定义:
if 对 >0, x>0,st 当 |x|>x 时 , 有 |ƒ(x)-a|<ε so 称 a 为 ƒ(x) 当 x→∞时的极限 先有ε,再找x
(2)、ε-定义 if对 >0, st当0<|x-xo|< 时,有|ƒ(x)-a|<ε成立,则 limƒ(x)=a 称a是ƒ(x)当x→xo 的极限,记为 x x
iii) 极限过程可以变,但必须是型,且x一模一样 1/(x-1) =1 如:1) lim x 1 [1+(x-1)] 1 .2 x 1 1 2 x lim(1 ) = e1/2 2) lim (1+ ) = x 2 x x 2x 3) lim (1+ x 4) lim ) x = e2 x (1+
高等数学第一章复习课ppt课件.ppt

3.极限的性质
定理 设 lim f ( x) A,lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
推论1 如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
1 o 1
x
(5) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的
数l,使得对于任一 x D,有 x l D .且 f(x+l)=f(x)
恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通
常说周期函数的周期是指其最小正周期).
T 1
y
y x [x]
1
o
1
x
3.反函数
由y f ( x)确定的y f 1( x)称为反函数.
y sinh x
4.隐函数
y f 1( x) ar sinh x
由方程F ( x, y) 0所确定的函数 y f ( x)称为隐函数.
5.反函数与直接函数之间的关系
设函数f ( x)是一一对应
函数, 则
y y f 1( x)
3.连续的充要条件
定理 函数f ( x)在 x0 处连续 是函数f ( x)在 x0 处 既左连续又右连续.
4.间断点的定义
函数f ( x)在点x0处连续必须满足的三个条件: (1) f ( x)在点x0处有定义;
(2) lim f ( x)存在; x x0
(3) lim x x0
f (x)
f ( x0 ).
2.函数的性质
高一数学:人教版高一数学上学期第一章) PPT课件 图文

其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}
大一高数上ppt课件

xD,变量 y 按照一定法则总有确定的数值和 x对应,则称 y 是 x 的函数,记作y=f(x)。
定义中,数集D叫做这个函数的定义域, x 叫做自变量,y叫做因变量。
函数符号: 函数y=f(x)中表示对应关系的记号f 也可改
用其它字母,例如j 、F 等。此时函数就记作 y=j(x),y=F(x)。
精选课件ppt
y=f(x)的图形在
直线y=K1的下方。
y=f(x)
O如果存在数K2,使对任一xX,有f(x)K2, 则称函数f(x)在X上有下界,而称K2为函数f(x) 在X上的一个下界。 图形特点:函数 y=f(x) 的图形在直线 y=K2
的上方。
y
y=f(x)
O
x
y=K2
精选课件ppt
26
精选课件ppt
4
参考书目
<工科数学分析基础> 马知恩 等编 (高教出版社)
<高等数学释疑解难> 工科数学课委会编(高教出版社)
<高等数学辅导> 盛祥耀 等编(清华大学出版社)
<高等数学解题方法及同步训练>
同济大学编(同济大学出版社)
精选课件ppt
5
第一章 函数与极限
精选课件ppt
6
§1.1 函 数
精选课件ppt
19
例2. 函数 y=2。 函数的定义域为D = (-, +)。 函数的值域为Rf ={2}。 函数的图形为一条平行于x 轴的直线。
y
2
y=2
O
精选课件ppt
x
20
例3. 函数 y=|x|= x, x0 称为绝对值函数。 -x, x<0
函数的定义域为D=(-, +)。 函数的值域为Rf =[0, + )。
定义中,数集D叫做这个函数的定义域, x 叫做自变量,y叫做因变量。
函数符号: 函数y=f(x)中表示对应关系的记号f 也可改
用其它字母,例如j 、F 等。此时函数就记作 y=j(x),y=F(x)。
精选课件ppt
y=f(x)的图形在
直线y=K1的下方。
y=f(x)
O如果存在数K2,使对任一xX,有f(x)K2, 则称函数f(x)在X上有下界,而称K2为函数f(x) 在X上的一个下界。 图形特点:函数 y=f(x) 的图形在直线 y=K2
的上方。
y
y=f(x)
O
x
y=K2
精选课件ppt
26
精选课件ppt
4
参考书目
<工科数学分析基础> 马知恩 等编 (高教出版社)
<高等数学释疑解难> 工科数学课委会编(高教出版社)
<高等数学辅导> 盛祥耀 等编(清华大学出版社)
<高等数学解题方法及同步训练>
同济大学编(同济大学出版社)
精选课件ppt
5
第一章 函数与极限
精选课件ppt
6
§1.1 函 数
精选课件ppt
19
例2. 函数 y=2。 函数的定义域为D = (-, +)。 函数的值域为Rf ={2}。 函数的图形为一条平行于x 轴的直线。
y
2
y=2
O
精选课件ppt
x
20
例3. 函数 y=|x|= x, x0 称为绝对值函数。 -x, x<0
函数的定义域为D=(-, +)。 函数的值域为Rf =[0, + )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Oa
bx
[a, b)={x|ax<b}及 (a, b]={x|a<xb}称为
半开区间。
[a, b)
Oa
bx
(a, b]
Oa
bx
上述区间都是有限区间,其中a 和 b 称为 区间的端点,b-a 称为区间的长度。
以下区间称为无限区间:
[a,+)
[a, +) ={ x|ax},
Oa
x
(- , b]
(-, b] ={ x|xb},
O a-
a+ x
去心邻域:
U
(a,)
={x
|0<|
x-a
|<}。
O a- a a+ x
二、函数的概念
1. 常量与变量
在观察自然现象或技术过程时,常会遇到各种不 同的量,其中有的量在过程中不起变化始终只取同 一数值,这种量叫做常量。
还有一些量在过程中是变化着的,也就是可以取 不同的数值,这种量叫做变量。
y = - r2 - x2 及y = r2 - x2 。 如果自变量在定义域内任取一个数值时, 对应的函数值只有一个,这种函数叫做单值 函数,否则叫做多值函数。 以后凡是没有特别说明时,函数都是指单 值函数。
例2. 函数 y=2。 函数的定义域为D = (-, +)。 函数的值域为Rf ={2}。 函数的图形为一条平行于x 轴的直线。
4. 函数的图形 在坐标系xOy内,集合 C={(x, y) | y=f(x),xD}
所对应的图形称为函数y=f(x)的图形。
y
Rf y
y=f(x)
(x, y) C
O
x
x
D
5. 函数举例 例1. 在直角坐标系中,由方程x2+y2=r2确
定了一个函数。 对于任意x(-r, r),对应的函数值有两个:
等数学有很大的不同,因此高等数学呈现出 以下显著特点:
理论性更强 概念更复杂 表达形式更加抽象 推理更加严谨
因此在学习高等数学时,应当认真阅读和 深入钻研教材的内容,一方面要透过抽象的 表达形式,深刻理解基本概念和理论的内涵 与实质,以及它们之间的内在联系,正确领 会一些重要的数学思想方法,另一方面也要 培养抽象思维和逻辑推理的能力。
任取 xD,与 x对应的 y的数值称为函数 y=f(x)在点 x处的函数值,记为 f(x)。
值域:Rf={y | y=f(x),xD}。
求函数的定义域举例:
求 函 数 y = 1 - x 2 - 4 的 定 义 域 。 x
解: 要使函数有意义, 必须x0, 且x2-40。 解不等式得|x|2。
函数的定义域为 D={x| |x|2}, 或D=(-, -2][2, +)。
元素: 组成集合的事物称为集合的元素。a 是集 合M的元素表示为aM。 集合的表示:
(1) A={a, b, c, d, e, f, g}。 (2) M={(x, y) | x,y为实数,x2+y2 =1}。
几个数集: R表示所有实数构成的集合,称为实数集。 Q表示所有有理数构成的集合,称为有理集。 Z表示所有整数构成的集合,称为整数集。 N表示所有自然数构成的集合, 称为自然数集。
学习数学,必须做一定数量的习题,做习 题不仅是为了掌握数学的基本运算方法,而且 也可以帮助我们更好地理解概念、理论和思想 方法。但我们不应该仅仅满足于做题,更不能 认为,只要做了题,就算学好了数学。
高等数学中几乎所有的概念都离不开极限, 因此极限概念是高等数学的重要概念,极限理 论是高等数学的基础理论,极限是高等数学的 精华所在,是高等数学的灵魂。因此很好地理 解极限概念是学习好微积分的关键,同时也是 从初等数学迈入高等数学的一个重要阶梯。
y
2
y=2
O
x
例3. 函数 y=|x|= x, x0 称为绝对值函数。 -x, x<0
O
bx
(a,+)
(a, +) ={ x|a<x}, (-, b) ={ x|x<b},
Oa
x
(- , b)
O
bx
(-,+) = R
3. 邻域: 以点 a 为中心的任何开区间称为点 a 的邻域,记
作U(a)。
设>0,则称区间(a-, a+)为点a 的邻域,记作 U(a, ),即 U(a, ) ={x|a-<x<a+} ={x| |x-a|<}。 其中点 a 称为邻域的中心, 称为邻域的半径。
子集: 若xA,则必有xB,则称A是B 的子集, 记
为AB(读作A包含于B)。 显然,N Z ,Z Q <x<b}称为开区间,记为(a, b), 即 (a, b)={x|a<x<b}。
(a, b)
Oa
bx
[a, b]={x|axb}称为闭区间。
[a, b]
定义中,数集D叫做这个函数的定义域, x 叫做自变量,y叫做因变量。
函数符号: 函数y=f(x)中表示对应关系的记号f 也可改
用其它字母,例如j 、F 等。此时函数就记作 y=j(x),y=F(x)。
定义域: 在数学中,有时不考虑函数的实际意义,
而抽象地研究用算式表达的函数。这时约定函 数的定义域就是自变量所能取的使算式有意义 的一切实数值。 函数值:
参考书目
<工科数学分析基础> 马知恩 等编 (高教出版社)
<高等数学释疑解难> 工科数学课委会编(高教出版社)
<高等数学辅导> 盛祥耀 等编(清华大学出版社)
<高等数学解题方法及同步训练>
同济大学编(同济大学出版社)
第一章 函数与极限
§1.1 函 数
一、集合及其运算
1.集合
集合(简称集): 集合是指具有某种特定性质的事 物的总体。集合用A,B,M等表示。
2. 举例
圆的面积的计算公式为A=pr2,半径r可取
(0, +)内的任意值。
由落体下落距离的计算公式为s= 1- gt2,t
可取[0, T]内的任意值。
2
圆内接正n边形的周长的计算公式为
Sn=2nr
sin p-
n
,
n可取3,4,5,
。
3. 函数的定义 设 D 是一个给定的数集。如果对于每个数
xD,变量 y 按照一定法则总有确定的数值和 x对应,则称 y 是 x 的函数,记作y=f(x)。
大一高数上 PPT课件 第一 章
高等数学研究的主要对象是函数,主要研
究函数的分析性质(连续、可导、可积等)和 分析运算(极限运算、微分法、积分法等)。 那么高等数学用什么方法研究函数呢?这个方 法就是极限方法,也称为无穷小分析法。从方 法论的观点来看,这是高等数学区别于初等数 学的一个显著标志。
由于高等数学的研究对象和研究方法与初