第三章 专题强化四动力学中三种典型物理模型
专题(19)动力学中三种典型物理模型(解析版)

2021年高考物理一轮复习考点全攻关专题(19)动力学中三种典型物理模型(解析版)命题热点一:“传送带”模型【例1】(多选)如图所示,x 轴与水平传送带重合,坐标原点O 在传动带的左端,传送带右端A 点坐标为X A =8m ,匀速运动的速度V 0=5m/s ,一质量m =1kg 的小物块,轻轻放在传送带上OA 的中点位置,小物块随传动带运动到A 点后,冲上光滑斜面且刚好能够到达N 点处无机械能损失,小物块与传送带间的动摩擦因数μ=0.5,斜面上M 点为AN 的中点,重力加速度g =10m/s 2。
则下列说法正确的是( )A .N 点纵坐标为y N =1.25mB .小物块第一次冲上斜面前,在传送带上运动产生的热量为12.5JC .小物块第二次冲上斜面,刚好能够到达M 点D .在x =2m 位置释放小物块,小物块可以滑动到N 点上方 【答案】AB【解析】小物块在传送带上匀加速运动的加速度a=μg =5 m/s 2 ,小物块与传送带共速时,所用的时间,运动的位移,故小物块与传送带达到相同速度后以v 0=5 m/s 的速度匀速运动到Q ,然后冲上光滑斜面到达N 点,由机械能守恒定律得,解得 y N =1.25 m ,选项A 正确;小物块与传送带速度相等时,传送带的位移x=v 0t =5×1=5m ,传送带受摩擦力的作用,小物块在传送带上运动产生的热量Q =f (x -△x )=μmg (x -△x )=0.5×10×2.5=12.5J ,选项B 正确;物块从斜面上再次回到A 点时的速度为5m/s ,滑上传送带后加速度仍为5m/s 2,经过2.5m 后速度减为零,然后反向向右加速,回到A 点时速度仍为5m/s ,则仍可到达斜面上的N 点,选项C 错误;在x =2m位置释放05s 1s 5v t a ===202512.5m 4m 2522A v x X a ====⨯<2012N mv mgy =小物块,则小滑块在传送带上仍滑动2.5m 后与传送带相对静止,则到达A 点时的速度等于5m/s ,则小物块仍可以滑动到N 点,选项D 错误。
动力学问题中三种典型物理模型

专题强化四动力学中三种典型物理模型专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题.2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.1.两种模型(如图1)2.等时性的证明设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=g sin α,位移为x=d sin α,所以运动时间为t0=2xa=2d sin αg sin α=2dg.即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.例1如图2所示,PQ为圆的竖直直径,AQ、BQ、CQ为三个光滑斜面轨道,分别与圆相交于A、B、C三点.现让三个小球(可以看作质点)分别沿着AQ、BQ、CQ轨道自端点由静止滑到Q点,运动的平均速度分别为v1、v2和v3.则有:()A.v2>v1>v3B.v1>v2>v3C.v3>v1>v2D.v1>v3>v2变式1如图3所示,竖直半圆环中有多条起始于A点的光滑轨道,其中AB通过环心O并保持竖直.一质点分别自A点沿各条轨道下滑,初速度均为零.那么,质点沿各轨道下滑的时间相比较()A.无论沿图中哪条轨道下滑,所用的时间均相同B.质点沿着与AB夹角越大的轨道下滑,时间越短C.质点沿着轨道AB下滑,时间最短D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短1.水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v0>v,可能一直减速,也可能先减速再匀速②v0=v,一直匀速③v0<v,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端.若v0>v,返回时速度为v,若v0<v,返回时速度为v02.项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①可能一直匀速②可能一直加速3.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.4.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.例2(多选)(2019·福建泉州市5月第二次质检)如图4,一足够长的倾斜传送带顺时针匀速转动.一小滑块以某初速度沿传送带向下运动,滑块与传送带间的动摩擦因数恒定,则其速度v随时间t变化的图象可能是()变式2(多选)(2019·陕西榆林市第三次测试)如图5所示,绷紧的水平传送带足够长,且始终以v1=2 m/s 的恒定速率顺时针运行.初速度大小为v2=3 m/s的小墨块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小墨块滑上传送带开始计时,小墨块在传送带上运动5 s后与传送带的速度相同,则() A.小墨块未与传送带速度相同时,受到的摩擦力方向水平向右B.小墨块的加速度大小为0.2 m/s2C.小墨块在传送带上的痕迹长度为4.5 mD.小墨块在传送带上的痕迹长度为12.5 m1.模型特点“滑块—木板”模型类问题中,滑动摩擦力的分析方法与“传送带”模型类似,但这类问题比传送带类问题更复杂,因为木板受到摩擦力的影响,往往做匀变速直线运动,解决此类问题要注意从速度、位移、时间等角度,寻找各运动过程之间的联系.2.解题关键(1)临界条件:使滑块不从木板的末端掉下来的临界条件是滑块到达木板末端时的速度与木板的速度恰好相同.(2)问题实质:“板—块”模型和“传送带”模型一样,本质上都是相对运动问题,要分别求出各物体相对地面的位移,再求相对位移.例3(2019·贵州毕节市适应性监测(三))一长木板置于粗糙水平地面上,木板右端放置一小物块,如图6所示.木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4.t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1 s时,木板以速度v1=4 m/s与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反.运动过程中小物块第一次减速为零时恰好从木板上掉下.已知木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:(1)t=0时刻木板的速度大小;(2)木板的长度.变式3(2019·江西宜春市模拟)如图7所示,在倾角θ=37°的固定斜面上放置一质量M=1 kg、长度L=0.75 m的薄平板AB.平板的上表面光滑,其下端B与斜面底端C的距离为4 m.在平板的上端A处放一质量m =0.6 kg的滑块,开始时使平板和滑块都静止,之后将它们无初速度释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为μ=0.5,通过计算判断无初速度释放后薄平板是否立即开始运动,并求出滑块与薄平板下端B到达斜面底端C的时间差Δt.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)1.如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为圆周的最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环A、B、C分别从a、b、c处由静止开始释放,用t1、t2、t3依次表示滑环A、B、C到达d点所用的时间,则()A.t1<t2<t3B.t1>t2>t3C.t3>t1>t2D.t1=t2=t32.(2020·广东东莞市质检)如图2所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1C.3∶1 D.1∶33.(多选)(2019·湖北黄冈市模拟)机场使用的货物安检装置如图3所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运动,AB 为传送带水平部分且长度L =2 m ,现有一质量为m =1 kg 的背包(可视为质点)无初速度地放在水平传送带的A 端,可从B 端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,下列说法正确的是( )A .背包从A 运动到B 所用的时间为2.1 s B .背包从A 运动到B 所用的时间为2.3 sC .背包与传送带之间的相对位移为0.3 mD .背包与传送带之间的相对位移为0.1 m4.(多选)(2019·河南周口市上学期期末调研)如图4所示,质量M =2 kg 的足够长木板静止在光滑水平地面上,质量m =1 kg 的物块静止在长木板的左端,物块和长木板之间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.现对物块施加一水平向右的恒力F =2 N ,则下列说法正确的是( ) A .物块和长木板之间的摩擦力为1 N B .物块和长木板相对静止一起加速运动 C .物块运动的加速度大小为1 m/s 2 D .拉力F 越大,长木板的加速度越大5.(多选)(2019·江西上饶市重点中学六校第一次联考)如图5所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( ) A .0 B.2μg 3 C.μg2D.F 2m -μg46.(多选)(2019·河南天一大联考上学期期末)如图6甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( ) A .滑块与木板间的动摩擦因数为0.4 B .木板与水平地面间的动摩擦因数为0.2 C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 27.如图7甲所示,倾角为37°足够长的传送带以4 m/s的速度顺时针转动,现使小物块以2 m/s的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s内小物块与传送带之间的划痕为多长.。
课时作业3:专题强化四 动力学中三种典型物理模型

专题强化四动力学中三种典型物理模型1.(2018·广东东莞质检)如图1所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()图1A.2∶1B.1∶1C.3∶1D.1∶ 3答案 B2.如图2所示,水平方向的传送带顺时针转动,传送带速度大小恒为v=2 m/s,两端A、B间距离为3 m.一物块从B端以初速度v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g取10 m/s2.物块从滑上传送带至离开传送带的过程中,速度随时间变化的图象是图中的()图2答案 B3.(多选)如图3所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从木板的左端以速度v0水平向右滑行,木板与滑块之间存在摩擦,且最大静摩擦力等于滑动摩擦力,则滑块的v-t图象可能是下列图中的()图3答案 BD4.(多选)如图4所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )图4A.水平恒力F 的大小为10 NB.铁块放上木板后,木板的加速度为2 m/s 2C.铁块在木板上运动的时间为1 sD.木板的长度为1.625 m答案 AC解析 未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C. 5.如图5所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g .关于粮袋从A 到B 的运动,以下说法正确的是( )图5A.粮袋到达B 端的速度与v 比较,可能大,可能小也可能相等B.粮袋开始运动的加速度为g (sin θ-μcos θ),若L 足够大,则以后将以速度v 做匀速运动C.若μ≥tan θ,则粮袋从A 端到B 端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a ≥g sin θ答案 A解析 若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B 端时的速度小于v ;若传送带较长,μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v 相同;若μ<tan θ,则粮袋先做加速度为g (sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g (sin θ-μcos θ)的匀加速运动,到达B 端时的速度大于v ,选项A 正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a =mg sin θ+μmg cos θm=g (sin θ+μcos θ),选项B 错误;若μ≥tan θ,粮袋从A 到B 可能是一直做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.6.如图6所示,倾角为θ=37°的传送带始终保持以v =5 m/s 的速率顺时针匀速转动,AB 两端距离d =15.25 m.现将一物块(可视为质点)无初速度从A 端放上传送带,物块与传送带间的动摩擦因数μ=0.5,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求物块到达B 端时的速度大小和物块从A 端运动到B 端所用的时间.图6答案 9 m/s 2.5 s解析 设物块由静止运动到传送带速度v =5 m/s 的过程,其加速度为a 1,运动时间为t 1,位移为x 1,由牛顿第二定律和运动学规律有mg sin θ+μmg cos θ=ma 1v =a 1t 1x 1=12a 1t 12 代入数据解得a 1=10 m/s 2,t 1=0.5 s ,x 1=1.25 m由于x 1=1.25 m<d =15.25 m ,当物块的速度等于传送带速度时,因为mg sin 37°>μmg cos 37°,物块将继续向下做匀加速运动.设物块此后运动的加速度为a 2,运动时间为t 2,位移为x 2,到B 端的速度为v B ,由牛顿第二定律和运动学规律,有mg sin θ-μmg cos θ=ma 2x 2=d -x 1=v t 2+12a 2t 22 v B =v +a 2t 2代入数据解得a 2=2 m/s 2,t 2=2 s ,v B =9 m/s物块从A 端运动到B 端所用时间为t ,有t =t 1+t 2=2.5 s7.(2018·青海西宁调研)图7甲为一转动的传送带AB ,传送带以恒定的速率v 逆时针转动.在传送带的左侧边缘的B 点有一滑块,若让滑块以初速度v 1=3 m/s 冲上传送带,滑块运动的v -t 图象如图乙中a 所示,若让滑块以初速度v 2=6 m/s 冲上传送带,滑块运动的v -t 图象如图乙中b 所示.g 取10 m/s 2,试求:图7(1)传送带的长度l 和传送带与物块之间的动摩擦因数μ;(2)滑块以初速度v 1=3 m/s 冲上传送带时,滑块返回B 点的时间.答案 (1)32 m 0.05 (2)12.5 s解析 (1)根据v -t 图象,滑块以初速度v 2=6 m/s 冲上传送带时,在t =8 s 时刻,到达A 点,所以传送带的长度l =12×(6+2)×8 m =32 m 根据图线a 或者图线b ,滑块的加速度大小为a =Δv Δt=0.5 m/s 2 根据牛顿第二定律得μmg =ma解得传送带与滑块之间的动摩擦因数μ=0.05(2)滑块在0~6 s 和6~t s 内的位移大小相等,方向相反12×6×3 m =12×(t -6+t -10)×2 m 滑块返回B 点的时间t =12.5 s.8.如图8所示,质量M =1 kg 的木板A 静止在水平地面上,在木板的左端放置一个质量m =1 kg 的铁块B (大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木板长L =1 m ,用F =5 N 的水平恒力作用在铁块上,g 取10 m/s 2.图8(1)若水平地面光滑,计算说明铁块与木板间是否会发生相对滑动;(2)若木板与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木板右端所用的时间.答案 见解析解析 (1)A 、B 之间的最大静摩擦力为 F fm >μ1mg =0.3×1×10 N =3 N 假设A 、B 之间不发生相对滑动则 对A 、B 整体:F =(M +m )a 对B :F f AB =ma解得:F f AB =2.5 N因F f AB <F fm ,故A 、B 之间不发生相对滑动(2)A 、B 之间发生相对滑动,则 对B :F -μ1mg =ma B对A :μ1mg -μ2(M +m )g =Ma A据题意:x B -x A =L ;x A =12a A t 2;x B =12a B t 2 解得:t = 2 s.。
热点专题系列(3) 动力学中三种典型物理模型

热点专题系列(三)动力学中三种典型物理模型热点概述:动力学中三种典型物理模型分别是等时圆模型、传送带模型和滑块—木板模型,通过本专题的学习,可以培养审题能力、建模能力、分析推理能力。
[热点透析]等时圆模型1.模型分析如图甲、乙所示,质点沿竖直面内圆环上的任意一条光滑弦从上端由静止滑到底端,可知加速度a=g sinθ,位移x=2R sinθ,由匀加速直线运动规律有x=12,2at 得下滑时间t=2R,即沿竖直直径自由下落的时间。
图丙是甲、乙两图的组合,g不难证明有相同的结论。
2.结论模型1质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示;模型2质点从竖直面内的圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示;模型3两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图丙所示。
3.思维模板其中模型3可以看成两个等时圆,分段按上述模板进行时间比较。
如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A点。
竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心。
已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点;c球由C点自由下落到M点。
则()A.a球最先到达M点B.b球最先到达M点C.c球最先到达M点D.b球和c球都可能最先到达M点解析由等时圆模型知,a球运动时间小于b球运动时间,a球运动时间和沿过CM的直径的下落时间相等,所以从C点自由下落到M点的c球运动时间最短,故C正确。
答案 C传送带模型传送带模型的特征是以摩擦力为纽带关联传送带和物块的运动。
这类问题涉及滑动摩擦力和静摩擦力的转换、对地位移和二者间相对位移的区别,需要综合牛顿运动定律、运动学公式、功和能等知识求解。
题型一:物块在水平传送带上题型概述:物块在水平传送带上可分为两种情形:一是物块轻放在水平传送带上;二是物块以一定的初速度冲上水平传送带。
高考物理一轮复习课件第三章专题探究四动力学中的典型模型

在学习过程中,我发现通过对比和总结各模型之间的联系和区别,可以加深对知识点的理解和记忆。同时,多做典型 例题和练习题也是提高解题能力的有效途径。
后续学习计划
在接下来的学习中,我将继续加强对动力学部分知识点的掌握和应用能力,特别是针对高考考点的解题 策略和技巧。同时,我也将注重培养自己的物理思维和创新能力,为高考和未来的学习打下坚实的基础 。
图像呈现
通过速度-时间图像(v-t图)可以直观地展示碰撞过程中物体速度的变化。在完全弹性碰撞中,v-t图 呈现为两条直线,分别表示碰撞前后两物体的速度;在非完全弹性碰撞中,v-t图呈现为一条曲线,表 示碰撞过程中物体速度的连续变化。
解题方法与技巧
解题方法
在解决碰撞问题时,首先要明确碰撞类型(完全弹性碰撞、非完全弹性碰撞或完全非弹性碰撞),然后根据动量 守恒定律和能量守恒定律列出方程求解。对于复杂的多物体、多次碰撞问题,可以采用分步求解的方法,逐步分 析每一次碰撞的过程和结果。
适用条件
适用于研究物体间相互作用时间短、作用力大且作用前后物体运动状态发生明显变化的 情况。
运动过程分析与图像呈现
运动过程分析
在碰撞过程中,物体间的相互作用力远大于它们所受的外力,因此可忽略外力的影响,认为系统动量 守恒。根据动量守恒定律和能量守恒定律,可以分析碰撞前后物体的速度、动能等物理量的变化。
4. 根据题目要求,对求解结果进行分析和讨论。
03
典型模型二:斜面滑块模型
模型描述及适用条件
模型描述
斜面滑块模型描述了一个滑块在斜面上滑动的过程,其中涉 及到重力、摩擦力、支持力等多种力的作用。
适用条件
适用于斜面光滑或粗糙、滑块有初速度或无初速度、滑块带 电荷或不带电荷等不同条件。
2021新高考物理选择性考试B方案一轮复习课件:——动力学中三种典型物理模型

2.结论 模型 1 质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑 到环的最低点所用时间相等,如图甲所示; 模型 2 质点从竖直面内的圆环上最高点沿不同的光滑弦由静止开始 滑到下端所用时间相等,如图乙所示; 模型 3 两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿 不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图丙所示。
3.如图甲,若 v0>v 且 μ>tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动再向上 匀速运动。 4.如图甲,若 v0>v 且 μ<tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动再以 a =gsinθ-μgcosθ 向上匀减速运动,最后向下匀加速运动。
第三章 牛顿运动定律
热点专题系列(三) ——动力学中三种典 型物理模型
热点概述:动力学中三种典型物理模型分别是等时圆模型、传送带模 型和滑块—木板模型,通过本专题的学习,可以培养审题能力、建模能力、 分析推理能力。
热点透析
等时圆模型 1.模型分析 如图甲、乙所示,质点沿竖直 面内圆环上的任意一条光滑弦从上 端由静止滑到底端,可知加速度 a =gsinθ,位移 x=2Rsinθ,由匀加速直线运动规律 x=12at2,得下滑时间 t =2 Rg,即沿竖直直径自由下落的时间。图丙是甲、乙两图的组合,不难 证明有相同的结论。
B.t2 时刻,小物块相对传送带滑动的距离达到最大
C.0~t2 时间内,小物块受到的摩擦力方向先向右后向左
2024届高考物理复习讲义:专题强化四 动力学中两种典型物理模型

专题强化四动力学中两种典型物理模型学习目标1.会分析物体在传送带上的受力情况和运动情况,并会相关的计算。
2.理解什么是“板—块”模型,并会运用动力学的观点正确处理“板—块”模型问题。
模型一“传送带”模型1.水平传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速先加速后匀速v 0<v 时,一直加速v 0<v 时,先加速再匀速v 0>v 时,一直减速v 0>v 时,先减速再匀速滑动一直减速到右端滑块先减速到速度为0,后被传送带传回左端。
若v 0<v 返回到左端时速度为v 0,若v 0>v 返回到左端时速度为v2.倾斜传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速(一定满足关系g sin θ<μg cos θ)先加速后匀速一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速若μ<tan θ,先以a 1加速,后以a 2加速v 0<v 时,一直加速(加速度若μ≥tan θ,先加速后匀速;若μ<tan θ,先以a 1加速,后为g sin θ+μg cos θ)以a 2加速v 0>v 时,一直加速或减速(加速度大小为g sin θ-μg cos θ)或μg cos θ-g sin θ若μ≥tan θ,先减速后匀速;若μ<tan θ,一直加速(摩擦力方向一定沿斜面向上)g sin θ>μg cos θ,一直加速;g sin θ=μg cos θ,一直匀速g sin θ<μg cos θ,一直减速先减速到速度为0后反向加速:若v 0<v ,到原位置时速度大小为v 0(类竖直上抛运动);若v 0>v ,先反向加速后匀速,反回原位置时速度大小为v角度水平传送带模型例1(2023·山东济宁高三月考)如图1所示,水平固定放置的传送带在电机的作用下一直保持速度v =4m/s 顺时针转动,两轮轴心间距L =10m 。
一个物块(视为质点)以速度v 0=8m/s 从左轮的正上方水平向右滑上传送带,经过t =2s 物块离开传送带,重力加速度g 取10m/s 2。
动力学中三类典型物理模型的分析

高考级横一^^教学参考第50卷第丨期2021年1月动力学中三类典型物理模型的分析康俊李明(河南省淮滨高级中学河南信阳464400)文章编号:l〇〇2-218X(2021)01-0038-05《普通高中物理课程标准(2020年修订)》课程 目标中明确提出学生要通过学习具有建构模型的 意识和能力;学业质量中进人高等院校相关专业学 习应达到的水平要求是4,能将实际问题中的对象 和过程转换成所学的物理模型,能对综合性物理问 题进行分析和推理,获得结论并作出解释。
《中国 高考评价体系》明确说明试题以生活实践问题情境 和学习探索问题情境为载体进行测量与评价。
通过对近年高考物理试题的研究发现,动力学 问题是每年高考必考内容之一。
“等时圆模型”“传 送带模型”“板块模型”是动力学中三类典型过程模 型,也是常考的问题情境。
本文选取这三类模型进 行深入分析,以期能在高考备考中提供一些参考。
_、等时圆模型1.真题统计(如表1)表1近十年高考物理“等时圆模型”相关试题统计年份题号命题角度2018浙江省11月选考卷13题光滑轨道2.模型分析如图1、2所示,质点沿竖直面内圆环上的任意 一条光滑弦从上端由静止滑到底端,受力分析可知 加速度a=0,位移:r=2J?sin 0,由匀加速直线运动规律:r=|加2,得出下滑时间i= 2 即沿竖直直径自由下落的时间。
图3是图1和图2的组合,不难证明有相同的结论。
图 1 图2中图分类号:G632.479文献标识码:B3.模型特征特征1质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑到环的最低点,或从最高点由静止滑到各光滑弦下端,所用时间都相等,如图1、2所示。
特征2两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图3所示。
4.思维模型此类问题的思维方法如图4所示:图45.典题示例例1(2018年浙江省11月选考卷13题)如图5所示为某一游戏的局部简化示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若滑块仍由静止释放,要想滑块能通过圆轨道的最高点C,求滑块在传送带 上释放的位置范围;
答案 见解析
(3)若将滑块在传送带中点处释放,同时沿水平方向给滑块一初速度,使滑块 能通过圆轨道的最高点C,求此初速度满足的条件.
答案 见解析
变式2 (2018·甘肃省兰州一中模拟)如图5甲所示,倾角为37°足够长的传送带
情景3
①传送带较短时,滑块一直减速到达左端 ②传送带较长时,滑块还要被传送带传回右端. 其中若v0>v,返回时速度为v,若v0<v,返回时 速度为_v_0_
2.倾斜传送带模型 项目
图示
情景1
情景2
滑块可能的运动情况
①可能一直加速 ②可能先 加速 后_匀__速___
①可能一直加速 ②可能先 加速 后__匀__速___ ③可能先以a1加速,后以a2加速
第三章 牛顿运动定律
专题强化四 动力学中三种典型物理模型
专题解读
1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择 题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题. 2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能 力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方 法的分析,能帮助同学们迅速提高解题能力. 3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有 关知识.
√A.无论沿图中哪条轨道下滑,所用的时间均相同
B.质点沿着与AB夹角越大的轨道下滑,时间越短 C.质点沿着轨道AB下滑,时间最短 D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短
图3
命题点二 “传送带”模型
1.水平传送带 水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度 为0)或反向. 在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦 力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传, 则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速运动,或由于 传送带不是足够长,在匀加速或匀减速过程中始终没达到共速. 计算物体与传送带间的相对路程要分两种情况: ①若二者同向,则Δs=|s传-s物|;②若二者反向,则Δs=|s传|+|s物|.
4.(多选)(2019·湖北省黄冈市模拟)机场使用的货物安检装置如图4所示,绷紧的
传送带始终保持v=1 m/s的恒定速率运动,AB为传送带水平部分且长度L=2 m,
现有一质量为m=1 kg的背包(可视为质点)无初速度的放在水平传送带的A端,
可从B端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g=10 m/s2,
图8
(2)在2.5 s时,滑块和长木板的速度分别是多少? 答案 13 m/s 9 m/s
课时作业
1.(2019·广东省东莞市质检)如图1所示,AB和CD为两条光滑斜槽,它们各自
的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.
设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间
2dsin α
2d
所以运动时间为 t0= 2ax= gsin α = g .
即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长
短无关.
二、“传送带”模型
1.水平传送带模型
项目
图示
情景1
情景2
滑块可能的运动情况 ①可能一直加速 ②可能先 加速 后__匀__速___ ①v0>v,可能一直减速,也可能先减速再匀速 ②v0=v,一直匀速 ③v0<v,可能一直 加速 ,也可能先 加速 再 _匀__速___
缘,二者共速是滑块滑离木板的临界条件
相关知识
运动学公式、牛顿运动定律、动能定理、功能关系等
例3 (2018·山西省长治、运城、大同、朔州、阳泉五地市联考)如图7所示,两 个完全相同的长木板放置于水平地面上,木板间紧密接触,每个木板质量M= 0.6 kg,长度l=0.5 m.现有一质量m=0.4 kg的小木块,以初速度v0=2 m/s从木 板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的 动摩擦因数μ2=0.1,重力加速度g=10 m/s2.求: (1)小木块滑上第二个木板的瞬间的速度大小;
三、“滑块—木板”模型
1.模型特点 滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在 摩擦力的作用下发生相对滑动. 2.两种位移关系 滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则 滑块的位移和木板的 位移之差 等于木板的长度;若滑块和木板向相反方向运 动,则滑块的位移和木板的 位移之和 等于木板的长度.
内容索引
NEIRONGSUOYIN
过好双基关 研透命题点 课时作业
回扣基础知识 训练基础题目 细研考纲和真题 分析突破命题点 限时训练 练规范 练速度
过好双基关
一、“等时圆”模型
1.两种模型(如图1)
图1
2.等时性的证明 设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿 光滑弦做初速度为零的匀加速直线运动,加速度为a= gsin α,位移为x= dsin α ,
行隔离分析,弄 法算出一起运动的加速度,再用隔离 看成其中一个物体“所需要”的摩 对整体进行受
力情况与运动过 擦力Ff;比较Ff与最大静摩擦力Ffm的 力分析和运动
程
关系,若Ff>Ffm,则发生相对滑动 过程分析
①两者速度达到相等的瞬间,摩擦力可能发生突变
临界条件 ②当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边
研透命题点
命题点一 “等时圆”模型
例1 如图2所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位
于同一圆周上,a点为圆周的最高点,d点为圆周的最低点.每根杆上都套着一个
小滑环(图中未画出),三个滑环A、B、C分别从a、b、c处由静止开始释放,用
t1、t2、t3依次表示滑环A、B、C到达d点所用的时间,则
2.倾斜传送带 物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶 端向下运动.解决倾斜传送带问题时要特别注意mgsin θ与μmgcos θ的大小和方向的 关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.
例2 (2018·安徽省安庆市二模)如图4所示,半径R=1.6 m的光滑半圆形轨道固定 于竖直平面内,下端与传送带相切于B点,水平传送带上A、B两端点间距L=16 m, 传送带以v0=10 m/s的速度顺时针运动,将质量m=1 kg的小滑块(可视为质点) 放 到传送带上,滑块与传送带间的动摩擦因数μ=0.4,取g=10 m/s2. (1)将滑块在传送带A端由静止释放,求滑块由释放到第一次经过B端时所需时间; 答案 见解析
解析 设包裹放到皮带上受到的滑动摩擦力为
图6
Ff,则:Ff=μmg=ma a=μg=5 m/s2
12345678
(2)包裹滑动的时间t; 答案 0.2 s 解析 包裹加速到与传送带速度相等的时间为 t=av=51 s=0.2 s
12345678
(3)包裹位移x的大小. 答案 0.1 m 解析 加速到与传送带相对静止的位移为 x=12at2=21×5×0.22 m=0.1 m.
度可能是(g取10 m/s2)
A.aA=6 m/s2,aB=2 m/s2
B.aA=2 m/s2,aB=6 m/s2
C.aA=8 m/s2,aB=4 m/s2
√D.aA=10 m/s2,aB=6 m/s2
图2
12345678
3.(2018·安徽省安庆市二模)如图3所示,物块A放在木板B上,A、B的质量均
以4 m/s的速度顺时针转动,现将小物块以2 m/s的初速度沿斜面向下冲上传
送带,小物块的速度随时间变化的关系如图乙所示,g=10 m/s2,sin 37°=0.6,
cos 37°=0.8,试求:
(1)小物块与传送带间的动摩擦因数为多大;
答案
7 8
图5
解析 根据 v-t 图象的斜率表示加速度,a=ΔΔvt =22 m/s2=1 m/s2
答案 1 m/s
图7
(2)小木块最终滑动的位移(保留3 位有效数字). 答案 0.670 m
变式3 (2019·黑龙江省哈尔滨市模拟)如图8甲所示,滑块与长木板叠放在光滑 水平面上,开始时均处于静止状态.作用于滑块的水平力F随时间t的变化图象如 图乙所示.已知滑块质量m=2 kg,木板质量M=1 kg,滑块与木板间的动摩擦因 数μ=0.2,g取10 m/s2.(已知滑块在2.5 s内没有滑离木板) (1)在0~0.5 s内,滑块和长木板之间的摩擦力大小是多少? 答案 2 N
12345678
7.(2018·江西省六校第五次联考)如图7所示,一倾角θ=37°的斜面底端与一传送
带左端相接于B点,传送带以v=7 m/s的速度顺时针转动,有一小物块从斜面
顶端以v0=4 m/s的初速度沿斜面下滑,当物块滑到斜面的底端点时速度恰好 为零,然后在传送带的带动下,运动到C点.已知斜面AB长度为L1=6 m,传送 带BC长度为L2=6 m,物块与传送带之间的动摩擦因数μ2=0.3(sin 37°=0.6, cos 37°=0.8,g=10 m/s2).求:
为m,A、B之间的动摩擦因数为μ,B与地面之间的动摩擦因数为
μ 3
.若将水平
力作用在A上,使A刚好要相对B滑动,此时A的加速度为a1;若将水平力作用
在B上,使B刚好要相对A滑动,此时B的加速度为a2,则a1与a2的比为(最大静
摩擦力等于滑动摩擦力)
A.1∶1
B.2∶3
√C.1∶3
D.3∶2
图3
12345678