物理学习中的常见运动模型

合集下载

高中物理课堂中的模型建构

高中物理课堂中的模型建构

高中物理课堂中的模型建构在高中物理课堂中,模型建构是一个重要的教学方法,旨在帮助学生理解抽象的物理概念,并将其应用到实际问题中。

本文将探讨高中物理课堂中的模型建构方法和其对学生的益处。

一、模型建构的定义模型建构是指通过构建各种物理模型来描述和解释物理现象、规律或定律的过程。

它可以是一个实际的物体模型、一个图示模型或一个数学模型,通过这些模型,学生可以更加直观地理解抽象的物理概念。

二、物理模型的种类在高中物理课堂中,常见的物理模型包括实物模型、示意图模型、数学模型等。

1. 实物模型实物模型是指将抽象的物理概念用具体的物体来表示。

例如,在讲解牛顿第一定律时,可以使用一个滑轮和一块滑块来展示物体在惯性状态下的运动。

这种方法能够让学生亲自操作实物,通过实际观察和实验来探究物理规律,增强学生的实践能力。

2. 示意图模型示意图模型是指通过图示的方式来呈现物理概念。

例如,在讲解光的反射和折射时,可以使用射线图来表示光的传播方向和路径。

示意图模型能够帮助学生更直观地理解物理过程,加深对物理规律的认识。

3. 数学模型数学模型是指通过数学公式和方程来描述和解释物理现象。

例如,在讲解运动学时,可以使用速度-时间图和位移-时间图来表示物体的运动情况。

数学模型能够培养学生的逻辑思维和分析问题的能力,使他们能够用数学语言描述物理现象。

三、模型建构对学生的益处模型建构在高中物理教学中具有许多益处,它能够提高学生的学习兴趣、促进他们的思维发展以及加深他们对物理概念的理解。

1. 提高学习兴趣通过模型建构,学生能够参与到实际操作和实验中,这种亲身体验能够激发他们对物理学科的兴趣。

学生在实践中感受到物理规律的奇妙和实用性,从而激发出对物理学的热爱。

2. 促进思维发展模型建构要求学生观察、分析和解释物理现象,培养了他们的观察力、逻辑思维和问题解决能力。

学生通过构建模型,能够将抽象的物理概念转化成具体的形式,从而培养了他们的抽象思维和空间想象力。

常见的物理模型

常见的物理模型

图4
练习:肇庆二模35题、深圳二模36题
二、传送带模型
传送带问题是高中物理中常见的题型。它牵
涉到运动学,牛顿运动定律和能量动量等知 识,由于物块在传送带上滑动,既有对地位 移,又有相对传送带运动,形成了学习的难 点。
常用方法 1、受力和运动分析:受力分析中关键是注意摩擦 力突变(大小、方向)——发生在V物与V带相同的 时刻;运动分析中关键是相对运动的速度大小与方 向的变化——物体和传送带对地速度的大小与方向 比较。 2、二是功能分析:注意功能关系: WF=△EK+△EP+Q,式中WF为传送带做的功: WF=F· S带 (F由传送带受力情况求得),△EK、 △EP为传送带上物体的动能、重力势能的变化,Q 是由于摩擦产生的内能: Q=f· S相对。
常见的物理模型
轻弹簧模型
(一)特点:
1、质量不计,既能承受拉力也能承受压力;
2、内部弹力处处相等; 3、当弹簧与物体相连接时,弹簧的形变和由
形变产生的弹力不会发生突变。
1、连体问题几个特殊状态
①压缩至最短:弹性势能最大;动能最小;弹力
最大。 ②恢复至原长:弹性势能为0;动能最大;弹力 为0 ③拉伸至最长:弹性势能最大;动能最小;弹力 最大。
C:对木块和子弹分别利用动能定理。
1 2 1 1 1 2 2 2 fx子 (嵌入 ) mv - mv 0 ; (穿出) mv1 mv 0 2 2 2 2 1 1 2 fx木 Mv 2 - 0; Mv 2 -0 则s 相对 x子 x木 2 2
如图 V0 V x木 X

二、倾斜放置运行的传送带
处理这类问题,同样是先对物体进行受力分
析,再判断摩擦力的大小与方向,这类问题 特别要注意:若传送带匀速运行,则不管物 体的运动状态如何,物体与传送带间的摩擦 力不会消失.

热点专题系列3 动力学中三种典型物理模型

热点专题系列3 动力学中三种典型物理模型

2.如图甲,若 0≤v0<v 且 μ<tanθ:物块以向下的加速度 a=gsinθ- μgcosθ 运动。
3.如图甲,若 v0>v 且 μ>tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动再以速 度 v 向上匀速运动。 4.如图甲,若 v0>v 且 μ<tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动,再以 a=gsinθ-μgcosθ 向上匀减速运动,最后以 a=gsinθ-μgcosθ 向下匀加速 运动。
4.如图乙,若 v0>v 且 μ<tanθ:物块一直以 a=gsinθ-μgcosθ 向下匀 加速运动。
总结:物块在倾斜传送带上的运动情形还有很多,但分析思路大体相 同:
(1)判断物块相对于传送带的运动方向,从而判断滑动摩擦力方向。 (2)列牛顿第二定律方程,判断 a 的方向和大小。 (3)根据临界条件 v 物=v 带确定临界状态的情况,根据 μ 与 tanθ 的关系 判断之后的运动情形。
C.0~t2时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
答案
[解析] 小物块对地速度为零时,即t1时刻,向左离开A处最远;t2时 刻,小物块刚好与传送带共速,此后不再相对传送带滑动,所以t2时刻, 它相对传送带滑动的距离达到最大,A错误,B正确。0~t2时间内,小物块 受到的摩擦力为滑动摩擦力,方向始终向右,大小不变;t2时刻以后小物 块相对传送带静止,与传送带一起以速度v1匀速运动,不再受摩擦力作 用,C、D错误。

高中物理力学模型的归类与总结

高中物理力学模型的归类与总结

高中物理力学模型的归类与总结福建省沙县金沙高级中学365500物理模型是高中物理知识的重要载体,其中绝大多数内容都是以物理模型为基础和载体向学生传递知识的。

物理模型不仅是学生获得物理知识的一种基本方法,更是一种培养学生应用能力和创新能力的重要工具。

本文主要讲述了物理模型的概念及分类方法,并结合整个高中物理中的重点和难点知识对物理模型进行分类与总结,最后指出运用物理模型教学的意义。

解决物理问题最重要的方法是建立物理模型,可以将物理问题总结为这样的一句话:处于某种物理状态或某种物理过程中的某物理研究对象在某物理条件下的问题。

在物理学中,不论是解决什么样的问题,都应遵循以下的四个原则:其一,明确研究和学习的对象。

其二,明确研究和学习的对象所处的状态。

其三,明确状态的变化过程及此过程中的特征。

其四,选择正确的方式解决该物理问题。

由以上对物理问题的特点及解决物理问题方法的思考,拟分高中物理模型为以下三类:1.对象模型:对象模型是由用来代替实际物体的具体物质组成,且能代表研究对象本质的实物系统。

2.条件模型:高中物理模型中的条件模型就是将研究对象所处的外部条件理想化,舍去条件中的非本质因素,抓住其本质因素,将所研究的问题化难为易而建立起来的一种模型。

3.过程模型:过程模型是将物理过程理想化、纯粹化后抽象出的新的物理过程。

分清影响物理过程的主要因素和次要因素,只保留其中的主要因素,忽略次要因素,即得到了过程模型。

根据以上对物理模型的分类,本文从力学从以上三种模型对高中物理模型进行归类与总结。

一、在力学中常见的对象模型1.质点:把物体看成是没有质量,只有大小的点。

在研究物理问题时,若物体的形状和大小对所研究的问题影响很小或没有影响时,我们就可以把所研究的对象看成质点。

那么,在何种的情况下,物体的形状和大小是不是对所研究的问题影响很小或没有影响呢?通过观察可以发现,在以下的三种情况下可以将研究的对象看成质点:(1)物体只做平动;(2)只研究物体的平动,而不考虑其转动效果;(3)物体的位移远远大于物体本身的尺寸,如远航的巨轮,人造卫星等。

高中物理模型总结归纳

高中物理模型总结归纳

高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。

通过模型,我们可以更好地理解和描述自然现象。

本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。

第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。

它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。

通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。

2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。

其中包括了质点力学、刚体力学和弹性力学等内容。

通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。

3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。

它包括了弹簧劲度系数、振动周期和频率等概念。

通过这个模型,我们可以更好地理解和计算弹簧的振动特性。

第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。

其中包括了库仑定律和电场强度等概念。

通过这个模型,我们可以预测和计算电荷之间的相互作用力。

2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。

其中包括了洛伦兹力和磁感应强度等概念。

通过这个模型,我们可以解释和计算磁场对物体的作用力。

3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。

其中包括了法拉第电磁感应定律和楞次定律等概念。

通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。

第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。

其中包括了折射定律、焦距和成像等概念。

通过这个模型,我们可以解释和计算光的传播路径和成像特性。

2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。

其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。

通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。

第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。

统考版高考物理总复习 专题三 动力学中的“传送带”和“滑块—滑板”模型

统考版高考物理总复习 专题三 动力学中的“传送带”和“滑块—滑板”模型
到木板左端时二者速度相等,则位移关
系为xB=xA+L
物块A带动长为L的木板B,物块恰好不
从木板上掉下的临界条件是物块恰好滑
到木板右端时二者速度相等,则位移关
系为xB+L=xA
例2. [2021·全国乙卷,21](多选)水平地面上有一质量为m1的长木板,
木板的左端上有一质量为m2的物块,如图(a)所示.用水平向右的拉力
专题三
动力学中的“传送带”和“滑块—滑板”模型
关键能力·分层突破
关键能力·分层突破
模型一
“传送带”模型
1.模型特点
传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因,
例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力
等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该
F作用在物块上,F随时间t的变化关系如图(b)所示,其中F1、F2分别
为t1 、t2 时刻F的大小.木板的加速度a1 随时间t的变化关系如图(c)所
示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因
数为μ2.假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大
小为g.则(
)
A.F1=μ1m1g
央.空香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与
传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以对香皂
盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设最大静摩擦

力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 2 ,试求:
跟进训练
1.如图所示,物块M在静止的足够长的传送带上以速度v0匀速下滑时,传送带突
然启动,方向如图中箭头所示,在此传送带的速度由0逐渐增加到2v0后匀速运动

高中物理模型大全

高中物理模型大全

高中物理模型大全引言在高中物理学习中,模型是我们理解和解释自然现象的重要工具。

通过建立模型,我们可以更好地理解物理规律和现象,并预测未知情况下的结果。

本文将介绍一些高中物理学习中常用的模型,帮助同学们更好地掌握物理知识。

1.简谐振动模型简谐振动模型是描述振动现象的重要模型。

在简谐振动模型中,假设振动系统回复力与位移成正比,且方向相反。

例如弹簧振子、摆钟等都可以使用简谐振动模型进行分析和计算。

2.牛顿第二定律模型牛顿第二定律模型是描述物体运动的基本模型。

根据牛顿第二定律,物体的加速度与受到的合外力成正比,与物体的质量成反比。

这个模型被广泛应用于解决各种运动问题,如自由落体、斜抛运动等。

3.热传导模型热传导模型是描述热传导现象的模型。

在热传导模型中,假设热量从高温物体传递到低温物体,传递速率与温度差成正比,与材料的热导率和截面积成反比。

这个模型可以用于解释热传导过程和计算热传导速率。

4.光的折射模型光的折射模型是描述光线在介质中传播时发生折射现象的模型。

根据斯涅尔定律,入射角、折射角和介质折射率之间存在一定的关系。

这个模型被应用于解决各种光学问题,如光的折射、全反射等。

5.电路模型电路模型是描述电流和电压分布的模型。

通过欧姆定律、基尔霍夫定律等原理,我们可以建立电路模型来分析电路中的电流和电压变化。

这个模型被广泛应用于解决电路中的各种问题,如串联电路、并联电路等。

6.引力模型引力模型是描述物体之间引力相互作用的模型。

根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

这个模型可以用于解释行星运动、地球引力等现象。

7.声音传播模型声音传播模型是描述声音在介质中传播的模型。

根据声波传播原理,声音的传播速度与介质的性质有关,一般来说,声速在固体中最大,在气体中最小。

这个模型可以应用于解释声音的传播和计算声音的传播速度。

8.磁场模型磁场模型是描述磁场分布和磁力作用的模型。

通过安培环路定理和洛伦兹力定律,我们可以建立磁场模型来分析磁场中的磁感应强度和磁力变化。

高中物理圆周运动模型_概述及解释说明

高中物理圆周运动模型_概述及解释说明

高中物理圆周运动模型概述及解释说明1. 引言1.1 概述在高中物理学习中,圆周运动是一个非常重要的概念。

它涉及到物体在环形轨道上运动过程中所受到的力和速度的变化,以及与之相关的各种数学描述和公式推导。

通过深入理解圆周运动模型,我们可以更好地理解自然界中许多现象和实际问题,并能够应用这些知识来解决相应的物理问题。

本文将对高中物理课程中关于圆周运动模型的基本概念进行概述和解释说明,旨在帮助读者更加全面和深入地理解圆周运动这一重要物理概念,并能够应用相关知识解决实际问题。

1.2 文章结构本文分为五个主要部分。

首先是引言部分,简要介绍了本文的主题和目标。

其次是圆周运动模型的基本概念部分,包括对圆周运动简介、特点以及在圆周运动中物体受力分析等内容进行阐述。

第三部分涉及到圆周运动的数学描述与公式推导,具体包括角度与弧长关系、角速度与线速度关系以及加速度与半径、角速度之间的关系的推导过程。

第四部分是实例解析,通过求解常见的圆周运动问题,演示不同类型问题的解题方法和思路。

最后一部分是结论与总结,对圆周运动模型进行认识与理解、应用与意义以及局限性和未来研究方向进行讨论。

1.3 目的本文旨在向读者介绍并详细解释高中物理课程中涉及到的圆周运动模型,帮助读者全面理解圆周运动概念的含义和特点,并且能够应用相应知识解决实际问题。

通过本文内容的学习,读者可以更好地把握物体在圆周运动中所受到力和速度变化规律,并能够利用这些知识来分析和解决相关问题。

同时,对于未来进一步研究圆周运动模型以及其在现实生活中应用领域的读者来说,本文还可以为其提供一定的参考和启发。

2. 圆周运动模型的基本概念:2.1 圆周运动简介:圆周运动是物体围绕某一固定点以圆形轨迹进行的运动。

这种运动常见于日常生活中,如旋转的车轮、风扇叶片的转动等。

2.2 圆周运动的特点:在圆周运动中,物体围绕固定点做匀速或变速旋转,具有以下特点:首先,圆周运动中物体离心加速度恒定,大小与距离固定点的距离成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学习中的常见运动模型
高中物理知识就是在初中物理知识基础上进行延伸与发展的,其主要就是从表面的物理现象转向更加深入的物理研究。

我们在对其进行学习的时候,可以清楚感受到物理运动知识的逐渐深入。

本文就结合实际的例题,对高中物理中常见的一些运动模型进行分析。

物理这门学科中的知识点就是建设在现实客观事物上的,所以我们在对其进行学习的时候需要学习观察与思考,在实际中逐渐地总结经验,对一些物理的定义以及定律进行深入了解与掌握。

这样才能够对运动相关的问题进行有效解答,并以此提升自己的解题效率与物理学习水平。

圆周运动模型
圆周运动就是曲线运动中十分关键的一个部分,我们在对其进行学习的时候已经先对曲线运动的相关规律进行了理解,在学习与解答圆周运动时就比较简单。

而匀速圆周运动就是圆周运动知识点中比较常见的部分,在对其进行学习的时候我们要掌握线速度、角速度以及周期等相关的概念与之间的关系,这样才能够将定律使用到实际的例题中。

在这里主要就是将匀速圆周运动作为例子进行讲解。

例题1:在地球的表面上有纬度不同的两个点,其分别就是a与b。

若就是将地球当做一个球体,则ab两个点随着地球进行自转,同时进行匀速性的圆周运动,那么?@两个点在下面
哪个方面的大小就是一样的?
A、线速度
B、角速度
C、加速度
D、轨道半径
解析:这道题目就是一道十分典型的运动问题,我们在对这种题型进行解答的时候,要首先对这种运动的相关规律进行理解。

我们在学习匀速圆周运动的时候就知道:线速度V、角速度,周期T以及频率f之间的相互关系,在物理教材中也有详细的描写:v=2πr/T,ω=2π/T=2πf,v=rω等等相关的式子。

因此在解答这道题目的时候我们就能够根据V=rω来断定AC都不正确,因此正确的答案只有B选项。

直线运动模型
高中物理中的直线运动分成了匀速直线运动与匀变速
直线运动。

我们在对其进行学习的时候首先就需要对相关的基础性定义进行理解。

例如其中将速度不变的直线运动称之为匀速直线运动,其特点就是物体在任何时间中经过的路程与时间的比值就是一定的,其中瞬时速度的大小与方向都不变,速度也不会发生变化,其中合外力就是零,公式就是:s=vt。

但就是在实际生活化中就是不存在绝对匀速直线运动的,其只就是将一个实际运动进行相似的处理,这就是一种被理想化的运动模型。

在这里主要就是将匀速直线运动进行阐述。

例题2:在一个匀速行驶的大巴中,一位同学正在往各个方向使用一样的力进行立定跳远,根据这个现象在以下选项中找出正确的说法。

A、朝着与大巴行驶方向一致跳的最远
B、朝着与大巴行驶方向相反进行立定跳最远
C、朝着与大巴行驶方一致跳的最近
D、朝各个方向跳都就是一样的距离
解析:我们在对这道题进行解答的时候,首先需要了解的就是大巴与人一起进行了匀速直线运动,而人在进行竖直跳
的时候,因为受到了惯性的原因,人在空中的时候还需要在水平方向上与大巴用一样的速度进行运动,而这个时候与人站
在静止大巴上就是相同的。

因此我们就可以将题目中的运动当做就是在静止的大巴上进行运动,在这种情况下朝着各个
方向跳的距离都就是一样的,所以正确的答案就是D。

平抛运动模型
例题3:标准排球场总长度就是18米,女排比赛网就是2、24m,在一场市级比赛中,女排运动员A在后排起跳强攻位置正好在距离网3米的正上方。

之后A击球速度不管多大,不就是下网则就是出界,试着分析出现这个现象的原因。

我们在对高中物理中一些运动规律与知识定义进行学
习的时候,要多在实际的例题基础上进行锻炼,对一些常见的运动模型问题进行深入的解析,研究其中运动现象产生的原因。

然后综合相关的定义来对题目进行解析,在解答的过程中我们就能够更加深入地对相关的概念进行记忆,进而真正达
到学习的最终目的。

相关文档
最新文档