理论分布与抽样分布28
抽样调查的理论与方法参考答案

抽样调查的理论与方法参考答案一、填空题 1随机原则 概率估计 总体数量特征 非全面调查 2调查对象的全部单位 全及总体 有限总体 无限总体 3单位数目 30个 4总体数量特征 确定()∑-=N i Y Y i N 121 5样本数量特征 随机变量 ()∑-=-N i y y i n 1211统计量 6有顺序不重复抽样 无顺序不重复抽样 7比值比较 差值比较 8偶然性 规律性 9不可能事件 必然事件 10常数 统计规律性 11稳定性 稳定值 12随机因素 所有可能事件 13离散随机变量 连续随机变量 14非负 1 15统计量 样本平均数 16不重复抽样 重复抽样 17代表性误差 反比关系 18正比关系 反比关系 19概率度(平均误差μ的倍数) 固定 误差范围(允许误差,误差置信限) 20总体相应指标值 {}αθθθ-=≤≤121P 21精确程度 可靠程度 置信系数 可靠程度 22样本平均数 区间估计 所在区间 抽样调查资料对比全面调查资料 23总体均值 总体方差 24)1(2N n n -δ或)1(2Nn n S -, )1(1)1()1(N n n P P n P P ----或, )1()1(N n n P P Z --或)1(1)1(Nn n P P Z --- 25总体的方差 要求的概率保证程度 给定的抽样误差范围 26样本方差 27固定的顺序和间隔 选择排队标志 28有关标志排队法 无关标志排队法 29抽取样本方便易行 样本单位在总体中均匀地分布30随机原则 系统偏差 31随机原则 较好的代表性 32各系统样本内部方差的平均值sy ωα2 sy ωα2 各系统样本的内部方差 系统样本 内部各单位的差别 33各部分K 个个体 各个部分的差别 系统样本内部的差异 34单纯随机抽样 抽样原理 35总体在第i 层的权数或权重 每一层的总体单位数 总体单位数 36比较均匀 层内方差 37选择分层标志 调查的核心项目 与调查项目关系密切的项目 引起分散的主要原因 38各个单位标志值的差异 最小 该层标志变异指标 39越少 调查费用 40调查费用 抽样误差 41层内方差 层间方差 42调查变量 层数的选择 43单纯随机抽样 全面调查 44各群内部调查变量的各个标志值 各个群内部各个标志值 总体的群 45被调查总体 均匀 总体可能取到的值 46均匀分布在总体各个部分 低于 群内部差别大而群间差别小 47各个群内部单位数相等 总体单位 群平均数Y 随机抽样估计 48总体单位数 49大样本 50总体单位 抽样群数 抽样群数 51横向 纵向 52有偏 抽样分布 53增大相关系数ρ的值,X 、Y 的相关程度 54分别比估计 组合比估计55线性 回归方程 样本指标 总体指标56辅助变量的选择 较好的线性 有关资料57性质不同 密切线性关系 基期指标58回归系数b 样本相关系数 越高 59r=0 r ≠0 60等于 小于61小于 分别回归估计 组合回归估计 62居民家计调查 居民家庭 63三阶段系统抽样 系统抽样64抽取各阶段样本 实割实测 推算产量65近三年粮食平均亩产 当年预计亩产 相应总体各单位的累计播种面积 累计播种面积样本单位数66抽样误差 调查误差 实割实测67系统抽样68中轴对称 69多阶段抽样 系统抽样 双重抽样 70整群随机抽样 系统抽样二、单项选择题 1 C 2 A 3 B 4 D 5 A 6 B 7 A 8 B 9 C 10 C 11 B 12B 13 D14 B 15 C 16 C 17 B 18 C 19 C 20 C 21 B 22 B 23 C 24C 25 A 26 C 27 B 28 D 29 D 30 A 31 B 32 C 33 C三、简答题 1抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并依据概率估计原理,应用所得到的资料,对总体的数量特征进行推断的一种调查方法。
抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
理论分布和抽样分布的概念

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
理论分布和抽样分布

所构成,其中事件A包含有m个基本事件,
则事件A的概率为m/n,即
P(A)=m/n
这样定义的概率称为古典概率。
13
2.1 概率的统计学意义
例如,在有两个孩子的家庭中,孩子性别
的组成有四种类型。即:男男、男女、女
男、女女。它们是四个基本事件,而且是
互不相容且等可能的,那么两个男孩的事
件A1为四个基本事件(n)中的一个(m) , A1的概率
27
第二章 理论分布和抽样分布
将Y的一切可能y1值 y2 , ,…,以及取得这些 值的概率p( y1) 、p( y2 ) …,排列起来, 就构成了 离散型随机变量的概率分布(probabiit distribution)。
表2-2 离散型随机变量的概率分布表。
Y
y1
y2
…
P(yi) p( y1 ) p( y2 )
本章在介绍概率论中最基本的两个概念——事件、概 率的基础上,重点介绍生物科学研究中常用的几种随 机变量的概率分布:间断性变数总体的理论分布:二 项分布、泊松分布;连续性变数总体的理论分布,即 正态分布; 从这两类理论分布中抽出的样本统计数的
分布,即抽样分布和t分布。
2
2.1 概率的统计学意义
一、事 件 1. 必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种
这里的0.05或0.01称为小概率标准,生物 试验研究中通常使用这两个小概率标准。
21
2.3 理论分布
事件的概率表示了一次试验某一个结果发 生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能 结果发生的概率,即必须知道随机试验的 概率分布(probability distribution)。为 了深入研究随机试验 ,我们先引入随机变 量(random variable)的概念。
抽样分布知识点总结

抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。
抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。
在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。
一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。
抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。
1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。
样本统计量能够提供有关总体参数的估计和推断。
1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。
当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。
抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。
二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。
中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。
2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。
大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。
2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。
置信区间对于统计推断的可信度和精度有着重要的作用。
三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。
通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。
3-理论分布与抽样分布

68-95-99.7规则
➢ 正态分布有其特定的数据分布规则: ▪ 平均值为, 标准差为σ的正态分布 ▪ 68%的观察资料落在的1σ之内 ▪ 95%的观察资料落在的2σ之内 ▪ 99.7%的观察资料落在的3σ之内
19
20
三、68-95-99.7规则
68.26% 的资料 95.45% 的资料 99.73% 的资料 -3 -2 -1 0 1 2 3 -3s -2s -s +s +2s +3s
体称为样本平均数的抽样总体。其平均数和标准差分
别记为 和 。x
s x
是样s x本平均数抽样总体的标准差,简称标准误 (standard error),它表示平均数抽样误差的大小。统 计学上已证明x总体的两个参数与x 总体的两个参数有 如下关系:
u=(x-μ)/σ
x~N(0,1)
上一张 下一张 主 页 退12出
3.3.3 正态分布的概率计算 1. 标准正态分布的概率计算
设u服从标准正态分布,则u在[u1,u2 )内取 值的概率为:
=Φ(u2)-Φ(u1)
(3-16)
Φ(u1)与Φ(u2)可由附表1查得。
上一张 下一张 主 页 退13出
例如,u=1.75时,由附表1可以查出 Φ(1.75)=0.95994
图3-6 μ相同而σ不同的3个正态分布比较大 8
(6)分布密度曲线与横轴所围成的区间面积为1, 即:
(7) 正态分布的次数多数集中在平均数μ的附 近,离均数越远,其相应次数越少,在3σ以外的 极少,这就是食品工业控制中的3σ 原理的基础。
上一张 下一张 主 页 退 9出
3.3.2 标准正态分布
上一张 下一张 主 页 退16出
(1) P(u<-1.64)=0.05050 (2) P (u≥2.58)=Φ(-2.58)=0.024940 (3) P (|u|≥2.56)
统计学考研复习指导常考分布与抽样理论梳理

统计学考研复习指导常考分布与抽样理论梳理统计学是考研复习中的一门重要科目,而分布与抽样理论是统计学中的基础知识之一。
掌握分布与抽样理论对于考研复习非常重要,因此本文将对常考的分布与抽样理论进行梳理。
以下是各个分布与抽样理论的详细内容。
1. 正态分布正态分布是统计学中最常用的概率分布之一,也被称为高斯分布。
它具有许多特性,例如其形状对称、均值、方差决定了整个分布的特征等。
正态分布在统计学中的应用广泛,例如用于描述实际数据的分布情况、进行假设检验等。
2. t分布t分布是用于小样本情况下的概率分布。
在实际应用中,由于通常无法获得大样本数据,因此需要使用t分布进行统计推断。
t分布与正态分布有一定的关联,其形状与自由度有关。
在考研复习中,需要了解t分布的特性、应用以及与正态分布的关系。
3. 卡方分布卡方分布是用于分析分类数据的概率分布,常用于检验两个变量之间的独立性。
卡方分布的形状与自由度有关,自由度越大,分布越接近正态分布。
在考研复习中,需要掌握卡方分布的性质、应用以及与正态分布的关系。
4. F分布F分布是用于分析方差比较的概率分布,常用于方差分析等统计方法。
F分布的形状与两个自由度参数有关,具有右偏分布且不对称的特点。
在考研复习中,需要了解F分布的特性、应用以及与正态分布、卡方分布的关系。
5. 抽样与抽样分布抽样是指从总体中选取样本的过程,而抽样分布是指统计量在不同样本中的分布情况。
了解抽样与抽样分布非常重要,因为统计推断是建立在样本上的,而不是在总体上。
在考研复习中,需要掌握不同抽样方法的特点、抽样分布的基本概念以及与统计推断的应用。
总结:通过对常考的分布与抽样理论进行梳理,我们可以更好地理解统计学考研复习中的重要内容。
掌握分布与抽样理论,对于进行统计分析、假设检验以及进行统计推断非常重要。
在考研复习过程中,建议系统学习各个分布的特性、应用以及与其他分布的关系,同时理解抽样与抽样分布的基本概念和应用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3连续型随机变量的概率分布
换句话说,当n→+∞、i→0时,频率分布折
线的极限是一条稳定的函数曲线。 对于样本
是取自连续型随机变量的情况 ,这条函数曲
线将是光滑的。这条曲线排除了抽样和测量
的误差,完全反映了基础母羊体重的变动规
律。这条曲线叫概率分布密度曲线,相应的
函数叫 概率分布密度函数 。
究随机试验 ,我 们 先引入随机变量(random variable)
的概念。
PPT文档演模板
理论分布与抽样分布28
1.1 随机变量
n 作一次试验,其结果有多种可能。每一种可能结果都 可用一个数来表示,把这些数作为变量 x 的取值范围, 则试验结果可用变量 x 来表示。
n 【例3.3】 对100头病畜用某种药物进行治疗,其可能
理论分布与抽样分布28
2.1贝努力试验及其概率公式
又由于以上各种方式中,任何二种方式都是互 不相容的,按概率的加法法则,在4 次试验中, 事件A恰好发生2次的概率为
P4(2) = P(
) + P(
) + …+ P(
)
=
PPT文档演模板
理论分布与抽样分布28
2.1贝努力试验及其概率公式
一般,在n重贝努利试验中,事件A恰好发生k (0≤k≤n) 次的概率为
PPT文档演模板
理论分布与抽样分布28
1.3连续型随机变量的概率分布
126头基础母羊的体重的次数分布表
组别
组中值 次数(f)
36.0
37.5
1
39.0
40.5
1
42.0
43.5
6
45.0
46.5
18
48.0
49.5
26
51.0
52.5
27
54.0
55.5
26
57.0
58.5
12
60.0
PPT文档演模板
理论分布与抽样分布28
2 二项分布
2.1 贝努利试验及其概率公式
n 将某随机试验重复进行n次,若各次试验结果
互不影响 , 即每次试验结果出现的概率都不
依赖于其它各次试验的结果,则称这n次试验
是独立的。
PPT文档演模板
理论分布与抽样分布28
2.1贝努力试验及其概率公式
n 对于n次独立的试验,如果每次试验结果出现
到这类事件,样本含量 n 必须很大 。
n 在生物、医学研究中,服从波松分布的随机变量是 常见的。如,畜群中遗传的畸形怪胎数, 每升饮水 中大肠杆菌数,计数器小方格中血球数, 单位空间 中某些野生动物或昆虫数等,都是服从波松分布的。
PPT文档演模板
理论分布与抽样分布28
3.1 泊松分布的定义及特点
3.1.1泊松分布的定义
PPT文档演模板
理论分布与抽样分布28
1.2离散型随机变量的概率分布
x1 x2 … xn …. p1 p2 … pn …
显然,离散型随机变量的概率分布具有以下 两个基本性质:
1. pi≥0 2. Σpi=1
PPT文档演模板
理论分布与抽样分布28
1.3连续型随机变量的概率分布
连续型随机变量 (如体长、体重、蛋重)的概 率分布不能用分布列来表示,因为其可能取 的值是不可数的。我们改用随机变量 x 在某 个区间内取值的概率 P(a≤x<b) 来表示。下面 通过频率分布密度曲线予以说明。
k=0,1,2…,n 若把上式与二项展开式
相比较就可以发现,在n重贝努利试验中,事件A发
生k次的概率恰好等于展开式中的第k+1项,所以也
把上式称作二项概率公式 。
PPT文档演模板
理论分布与抽样分布28
2.2 二项分布的意义及性质
2.2.1 二项分布定义
设随机变量x所有可能取的值为零和正整数:
0,1,2,…,n,且有
μ=np
σ=
PPT文档演模板
理论分布与抽样分布28
2.5二项分布的平均数与标准差
(2)当试验结果以事件A发生的频率k/n表示时
也称为总体百分数标准误,当 p 未知时,常以样 本百分数 来估计。此时上式改写为:
= 称为样本百分数标准误。
PPT文档演模板
理论分布与抽样分布28
3 泊松分布
n 波松分布是一种可以用来描述和分析随机地发生在 单位空间或时间里的稀有事件的概率分布。要观察
结果是“0头治愈”、“1头治愈”、“2头治愈”、
“…”、“100头治愈”。若用 x 表示治愈头数,则x
的取值为0、1、2、…、100。
PPT文档演模板
理论分布与抽样分布28
1.1 随机变量
n 【例3.4】 孵化一枚种蛋可能结果只有两种,即“孵 出小鸡”与“未孵出小鸡”。 若用变量 x 表示试验 的两种结果,则可令x=0表示“未孵出小鸡”,x=1 表示“孵出小鸡”。
n 如果表示试验结果的变量 x ,其可能取值为某范围内
的任何数值 ,且 x 在其取值范围内的任一区间中取
值时,其概率是确定的,则称 x 为 连续型随机变量
(continuous random variable)。
PPT文档演模板
理论分布与抽样分布28
1.2离散型随机变量的概率分布
n 要了解离散型随机变量 x 的统计规律,就必须知道它
理论分布与抽样分布28
1.3连续型随机变量的概率分布
n 连续型随机变量概率分布的性质: 1、分布密度函数总是大于或等于0,即 f(x)≥0; 2、当随机变量x取某一特定值时,其概率等于0;即
(c为任意实数)
3、 在一次试验中 随机变量 x 之取值必在[-∞, +∞]
范围内,为一必然事件。所以
上式表示分布密度曲线下、横轴上的全部面积为1。
3.1.2泊松分布的特点
n 泊松分布作为一种离散型随机变量的概率分布,理论 上已经证明其均值与方差相等、即μ=σ2=λ这是泊松 分布的一个显著特点。利用这个特点可以初步判断一 个随机变量是否服从泊松分布。
PPT文档演模板
理论分布与抽样分布28
3.1 泊松分布的定义及特点
3.1.2泊松分布的特点
PPT文档演模板
理论分布与抽样分布28
2.3 二项分布的概率计算
【例2.1】 纯种白猪与纯种黑猪杂交,根据孟德尔遗传理 论,子二代中白猪与黑猪的比率为3∶1。求窝产仔10 头,有7头白猪的概率。
解:根据题意,n=10,p=3/4=0.75,q=1/ 4=0.25。 设10头仔猪中白色的为x头,且x~B(10,0.75)
从大量观察中获得的比较稳定的数值;
(3)n个观察单位的观察结果互相独立,即每个观察
单位的观察结果不会影响到其它观察单位的观察结
果。
PPT文档演模板
理论分布与抽样分布28
2.5二项分布的平均数与标准差
统计学证明,服从二项分布 B(n,p) 的随机变
量之平均数μ、标准差σ与参数n、p有如下关
系: (1)当试验结果以事件A发生次数k表示时
PPT文档演模板
理论分布与抽样分布28
2.3 二项分布的概率计算
解:假设疫苗A完全无效,那么注射后的家畜感染的概 率仍为20%,则15头家畜中染病头数x=0的概率为
同理,如果疫苗B 完全无效,则15头家畜中最多有
1头感染的概率为
由计算可知,注射A 疫苗无效的概率为0.0352,比B
疫苗无效的概率0.1671小得多。因此,可以认为A
PPT文档演模板
理论分布与抽样分布28
2.2.2 二项分布的性质
二项分布具有概率分布的一切性质,即:
1、P(x=k)= Pn(k) (k=0,1,…,n)
2、二项分布的概率之和等于1,即
3、
4、
5、
PPT文档演模板
(m1<m2)
理论分布与抽样分布28
2.2.2 二项分布的性质
二项分布由n和p两个参数决定: 1、当 p 值较小且 n 不大时,分布是偏倚的。但随着n
61.5
7
63.0
64.5
2
合计
PPT文档演模板
126
•图中纵坐标取频率与组 距的比值 。可以设想 ,
如果样本取得越来越大 (n→+∞),组分得越来越 细(i→0),某一范围内的 频率将趋近于一个稳定值 ─概率。这时,频率分布 直方图各个直方上端中点 的联线 ─频率分布折线将 逐渐趋向于一条曲线。
若随机变量x(x=k)只取零和正整数值0,1,2,…, 且其概率分布为
, k=0,1,2,……
其中λ>0;e=2.7182… 是自然对数的底数,则
称 x 服从参数为λ的泊松分布(Poisson’s distribution),
记为 x~P(λ)。
PPT文档演模板
理论分布与抽样分布28
3.1 泊松分布的定义及特点
于是窝产10头仔猪中有7头是白色的概率为:
PPT文档演模板
理论分布与抽样分布28
2.3 二项分布的概率计算
【例2.2】设在家畜中感染某种疾病的概率为 20%,现有两种疫苗,用疫苗A 注射了15头家 畜后无一感染,用疫苗B 注射 15头家畜后有1 头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
PPT文档演模板
理论分布与抽样分布28
2.1贝努力试验及其概率公式
其中Ak(k=1,2,3,4)表示事件A在第k次试验发生; (k=1,2,3,4)表示事件A在第k次试验不发生。
由于试验是独立的,按概率的乘法法则,于 是有
P(Biblioteka )=P()=…= P(
)
= P( )·P( )·P( )·P( )=