第43讲机械振动简谐振动的基本概念第43讲机械振动简谐
机械振动——简谐运动的基本概念

旋转矢量引言:前面介绍了用数学表达式及曲线表示简谐运动中位移和时间的关系。
本节将介绍用旋转矢量表示位移和时间的关系。
引入旋转矢量的优点:1)形象地了解简谐运动的各个物理量;2)为简谐运动的合成提供了最简捷的研究方法。
一、 旋转矢量图示法:一长度为A 的矢量A在XOY 平面内绕O点沿逆时针方向旋转,其角速度为ω,在t=0时,矢量与X 轴的夹角为φ;这样的矢量称为旋转矢量。
在任意时刻,矢量A与X 轴的夹角为ϕω+ t ,A的矢端M 在轴上的投影为) cos(ϕω+=t A x 。
即:旋转矢量本身并不作简谐运动,而是旋转矢量的矢端在X 轴上的投影点在作简谐运动。
在旋转矢量的转动过程中,矢端作匀速圆周运动,此圆称为参考圆。
二、旋转矢量与简谐运动的关系:简谐振动的方程x=Acos(ωt+φ), 根据几何学原理可以把它看作一旋转着的矢量A 在x 轴上的投影。
振幅矢量转动一周,相当于振动一个周期。
当一矢量A 绕其一端点o 以角速度ω 旋转时,另一端点在x 轴或y 轴上的投影点上将作简谐振动。
设t =0时,A 与x 轴夹角为ϕ ,t 时刻,A 转过ω t 角,则矢量端点在x 轴上投影点坐标为x =Asin (ωt+φ)。
显然投影点作简谐振动的振幅、圆频率、初相与A 矢量大小、旋转角速度、初始A 与x 轴夹角一一对应。
当然,投影点的速度和加速度也与简谐振动的速度和加速度相对应。
A ←→ 振幅 ω←→ 圆频率 φ←→ 初相位ωt+φ←→ 相位三、旋转矢量的应用: 1.作振动图(演示):用旋转矢量A 来表示简谐振动形象直观,一目了然,在以后分析两个以上谐振动合成时十分有用和方便。
旋转矢量图及简诣运动的x-t 图2.求初相位:如图,质点在x=A/2处向右运动,3/πϕ-= 质点在x=A/2处向左运动,3/πϕ= 质点在x=-A/2处向右运动,3/2πϕ-=质点在x=-A/2处向左运动,3/2πϕ= 3.可以用来求速度和加速度:矢端M 的速度与加速度大小为A v M ω=、A a M 2ω=,在X 轴上的投影为)t cos() t cos()t sin() t sin(2ϕωωϕωϕωωϕω+-=+-=+-=+=A a a A v v M M -4.振动的合成(第6节内容)例:一个质点沿x 轴作简谐运动,振幅A=0.06m ,周期T=2s ,初始时刻质点位于x 0=0.03m 处且向x 轴正方向运动。
高三物理机械振动知识点

高三物理机械振动知识点在物理学中,机械振动是指物体在平衡位置附近做周期性的来回运动。
机械振动是物理学中重要的概念之一,了解机械振动的知识对于高三物理学习至关重要。
下面将介绍一些高三物理机械振动的知识点。
一、简谐振动简谐振动是指在一个恢复力作用下,物体做的振动。
振动的周期只与恢复力的作用有关,而与振幅无关。
简谐振动的特点是周期性、与外界无关以及振幅与周期无关。
简谐振动的物体可以是弹簧、摆锤等。
二、受迫振动受迫振动是指在外力作用下,物体做的振动。
外力的作用使得振动的周期与自由振动不再相同。
当外力与物体运动方向相同时,称为共振;当外力与物体运动方向相反时,称为反共振。
三、阻尼振动阻尼振动是指在存在阻力的情况下,物体做的振动。
阻尼力的作用会逐渐减小振幅,使得振动逐渐衰减。
阻尼振动的特点是振幅逐渐减小、周期不变以及振幅与阻尼力的大小有关。
四、共振共振是指外力与物体的振动频率相同时,物体的振幅达到最大值的现象。
共振的发生会导致物体的损坏,因此在实际应用中需要尽量避免共振的发生。
五、波动方程波动方程描述了机械振动的数学表达式。
一维机械振动的波动方程为\[ \frac{{\partial^2y}}{{\partial t^2}} = -\omega^2 y \]其中,\(y\)为位移函数,\(t\)为时间,\(\omega\)为振动的角频率。
六、谐振频率谐振频率是指物体做简谐振动时的频率。
谐振频率与弹簧的劲度系数和物体的质量有关。
谐振频率可以通过以下公式计算:\[ f = \frac{1}{{2\pi}} \sqrt{\frac{k}{m}} \]其中,\(f\)为谐振频率,\(k\)为弹簧的劲度系数,\(m\)为物体的质量。
七、机械能守恒在没有摩擦力和阻力的情况下,机械振动过程中机械能守恒。
也就是在振动过程中,动能和势能之间的转化不会导致能量损失。
八、振动波振动波是指机械振动在空间中的传播。
振动波可以是横波或纵波,横波是指振动方向垂直于波的传播方向,纵波是指振动方向与波的传播方向一致。
机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。
2.振幅:振动的最大偏离量,表示振动的幅度大小。
3.周期:振动完成一次往复运动所经历的时间。
4.频率:单位时间内振动的循环次数。
5.角频率:单位时间内振动的循环角度。
6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。
7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。
二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。
2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。
3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。
三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。
2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。
3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。
4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。
四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。
2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。
3.机械波分为横波和纵波。
横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。
五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。
2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。
3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。
六、机械波的特性1.超前传播:波的传播速度比振动速度快。
2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。
3.波的衍射:波通过孔隙或物体边缘时发生的现象。
4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。
机械振动简谐振动和波动

机械振动简谐振动和波动机械振动:简谐振动和波动机械振动是物体在外力作用下沿某个方向上的周期性运动。
简谐振动是机械振动的一种特殊形式,它是指物体在恢复力作用下,其加速度与其位移成正比且方向相反。
简谐振动的数学描述可以用以下公式表示:x(t) = A * sin(ωt + φ)其中,x(t)是物体在时间t时刻的位移,A是振幅,ω是角频率,φ是初相位。
简谐振动具有以下几个特点:1. 周期性:简谐振动的运动是周期性的,即物体在一个周期内重复相同的位移和速度变化。
2. 等幅振动:简谐振动的振幅保持不变,即振幅A是一个常量。
3. 谐波运动:简谐振动的位移和速度随时间变化呈正弦函数关系。
4. 对称性:简谐振动的振动曲线关于平衡位置对称。
除了简谐振动,机械振动还包括其他形式的振动,如阻尼振动和强迫振动。
阻尼振动是在有阻力存在的情况下的振动,外力会通过摩擦或空气阻力对物体的振动进行阻尼。
强迫振动是外力对振动系统施加周期性扰动,使系统执行非自由振动。
与简谐振动相比,波动是一种沿介质传播的幅度和能量传递的周期性变化。
波动可分为机械波和电磁波两种形式。
机械波是指通过一种介质的振动传播的波动,如水波、声波等。
电磁波是指由电场和磁场相互垂直且相互作用的波动,如光波、电磁辐射等。
波动具有以下特点:1. 传播性:波动是通过媒介或空间传播的,能够传递能量和动量。
2. 反射和折射:波动在传播过程中遇到界面时会发生反射和折射现象。
3. 干涉和衍射:当两个或多个波动相遇时,会发生干涉和衍射现象,形成新的波动模式。
4. 周期性:波动是周期性的,其振幅和频率可以随时间和空间的变化而改变。
机械振动和波动在物理学中扮演着重要的角色。
它们不仅存在于自然界中,也广泛应用于工程、医学、地球科学等领域。
对机械振动和波动的深入理解可以帮助人们解释自然界中的现象,同时也对技术和科学的发展产生重要影响。
简谐振动的概念

简谐振动的概念
简谐运动随时间按余弦(或正弦)规律的振动,或运动。
又称简谐振动。
简谐运动是最基本也最简单的机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。
它是一种由自身系统性质决定的周期性运动。
(如单摆运动和弹簧振子运动)实际上简谐振动就是正弦振动。
故此在无线电学中简谐信号实际上就是正弦信号。
扩展资料
简谐振动位移公式:x=Asinωt
简谐运动恢复力:F=-KX=-md^2x/dt^2=-mω^2x
ω^2=K/m
简谐运动周期公式:T=2π/ω=2π(m/k)^1/2
如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
R是匀速圆周运动的半径,也是简谐运动的振幅;ω是匀速圆周运动的角速度,也叫做简谐运动的圆频率,ω=√(k/m);
φ是t=0时匀速圆周运动的物体偏离该直径的角度(逆时针为正方向),叫做简谐运动的初相位。
在t时刻,简谐运动的位移x=Rcos(ωt+φ),简谐运动的速度v=-ωRsin(ωt+φ),简谐运动的加速度a=-(ω^2)Rcos(ωt+φ),这三个式子叫做简谐运动的方程。
机械振动和简谐振动

机械振动和简谐振动机械振动是自然界和工程实践中常见的现象,而简谐振动则是机械振动中最为基本和重要的模型。
本文将介绍机械振动和简谐振动的概念、特点以及一些应用。
一、机械振动的概念和特点机械振动是物体围绕平衡位置做周期性的往复运动。
它可以是机械系统中的部件振动,也可以是整个机械系统的振动。
机械振动往往由质点或弹簧等弹性元件的弹力引起。
其特点如下:1. 周期性:机械振动的运动是周期性的,当物体围绕平衡位置做一次完整的往复运动后又回到同样的位置和状态。
这一周期性使得机械振动具有可预测性和可重复性。
2. 频率:机械振动的频率是其运动的重要特征,代表了单位时间内振动的次数。
频率与振动周期的倒数成正比,可以通过实验或计算得到。
3. 幅度:机械振动的幅度代表了振动的最大位移或最大速度。
幅度与振动的能量大小相关,可以通过实验或计算得到。
4. 阻尼和驱动力:机械振动中常常存在阻尼和外加驱动力。
阻尼消耗了振动的能量,而驱动力则为物体提供了能量,影响了振动的稳定性和特性。
5. 谐振现象:在机械振动中,当外加力的频率接近物体的固有频率时,会出现谐振现象。
谐振时,振动幅度最大,能量传递效率高。
二、简谐振动的概念和特点简谐振动是机械振动中最简单的一种形式,其模型假设了无阻尼和驱动力的作用。
简谐振动具有以下特点:1. 一维振动:简谐振动在物理模型中往往被假设为一维振动,即物体围绕一个平衡位置在一条直线上往复振动。
2. 束缚性:简谐振动在一个有限范围内进行,物体保持在某个平衡位置附近做往复运动,不会无限制地扩散或发散。
3. 固有频率:简谐振动的频率与物体的固有特性有关,而与外界的驱动力无关。
物体的固有频率可以通过实验或计算得到。
4. 振幅和相位:简谐振动的振幅和相位是其两个重要的参数。
振幅代表振动的最大位移或速度,而相位则代表振动的位置关系。
5. 能量守恒:在简谐振动中,能量在势能和动能之间周期性转换,总能量保持不变,体现了能量守恒定律。
大学物理机械振动课件

03 阻尼振动
阻尼振动的定义与特点
定义
阻尼振动是指振动系统受到阻力 作用,使得振动能量逐渐减少的
振动过程。
特点
随着时间的推移,振幅逐渐减小, 频率逐渐降低,直至振动停止。
阻尼力
阻尼振动过程中,系统受到的阻力 称为阻尼力,它与振动速度成正比, 方向与振动速度方向相反。
阻尼振动的描述方法
微分方程
阻尼振动的运动方程通常表示为二阶常微分方程,形式为 `m * d²x/dt² + c * dx/dt + k * x = 0`,其中 m、c、k 分别为质量、
振动压路机
利用共振原理来提高压实效果。
振动输送机
利用共振来输送物料,提高输送效率。
受迫振动与共振的能量转换
能量转换过程
外界周期性力对系统做正 功,系统动能增加;阻尼 使系统能量耗散,系统势 能减小。
转换关系
在振动过程中,外界对系 统的总能量输入等于系统 动能和势能的变化之和。
影响因素
阻尼系数、驱动力频率、 物体固有频率等。
能量耗散途径
阻尼振动的能量耗散途径 主要包括与周围介质之间 的摩擦、空气阻力、内部 摩擦等。
能量耗散的意义
阻尼振动的能量耗散有助 于减小系统振幅,避免因 过大振幅导致的结构破坏 或噪声污染等问题。
04 受迫振动与共振
受迫振动的定义与特点
定义:在外来周期性力的持 续作用下,物体发生的振动
称为受迫振动。
确定各简谐振动的振幅、相位差和频 率,在复平面内绘制振动相量,通过 旋转和位移操作找到合成振动的相量 表示。
振动合成的能量法
描述
能量法是通过分析各简谐振动的能量分布和转化,来研究振 动合成过程中的能量传递和平衡。
43机械振动(习题)

第 43 讲:机械振动课时规范训练(限时:30 分钟)一、选择题1.简谐运动的平衡位置是指( ) A.速度为零的位置B.回复力为零的位置C.加速度为零的位置D.位移最大的位置2.(2010·全国Ⅰ·21)一简谐振子沿x 轴振动,平衡位置在坐标原点.t=0 时刻振子的位移x 4=-0.1 m;t=3 s 时刻x=0.1 m;t=4 s 时刻x=0.1 m.该振子的振幅和周期可能为( ) A.0.1 m 8 s B.0.1 m,8 s,38C.0.2 m s D.0.2 m,8 s,33.悬挂在竖直方向上的弹簧振子,周期为2 s,从最低点的位置向上运动时开始计时,它的振动图象如图1 所示,由图可知( )图1 A.t=1.25 s 时振子的加速度为正,速度为正B.t=1.7 s 时振子的加速度为负,速度为负C.t=1.0 s 时振子的速度为零,加速度为负的最大值D.t=1.5 s 时振子的速度为零,加速度为负的最大值4.图2 甲是一个弹簧振子的示意图,在B、C 之间做简谐运动,O 是它的平衡位置,规定以向右为正方向,图乙是它的速度v 随时间t 变化的图象.下面的说法中正确的是( )甲乙图2A.t=2 s 时刻,它的位置在O 点左侧4 cm 处B.t=3 s 时刻,它的速度方向向左C.t=4 s 时刻,它的加速度为方向向右的最大值D.它的一个周期时间为8 s5.如图3 所示,小球在B、C 之间做简谐运动,O 为BC 间的中点,B、C 间的距离为10 cm,则下列说法正确的是( )A.小球的最大位移是10 cmB.只有在B、C 两点时,小球的振幅是5 cm,在O 点时,小球的图3振幅是0C.无论小球在任何位置,它的振幅都是 5 cmD.从任意时刻起,一个周期内小球经过的路程都是20 cm6.如图4 所示,将小球甲、乙、丙(都可视为质点)分别从A、B、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D,丙沿圆弧轨道从C 点运动到D,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) 图4A.甲球最先到达D 点,乙球最后到达D 点B.甲球最先到达D 点,丙球最后到达D 点C.丙球最先到达D 点,乙球最后到达D 点D.甲球最先到达D 点,无法判断哪个球最后到达D 点二、非选择题7. 有一弹簧振子在水平方向上的B,C 之间做简谐运动,已知B,C间的距离为20 cm,振子在2 s 内完成了10 次全振动.若从某时刻1振子经过平衡位置时开始计时(t=0),经过4周期振子有正向最大图5加速度.(1)求振子的振幅和周期;(2)在图5 中作出该振子的位移—时间图象;(3)写出振子的振动方程.8.一质点做简谐运动,其位移和时间关系如图6 所示.(1)求t=0.25×10-2s 时的位移;(2)在t=1.5×10-2s 到2×10-2s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?图6(3)在t=0 到8.5×10-2s 时间内,质点的路程、位移各多大?课时规范训练1.B2.ACD3.C4.BCD5.CD6.A7.(1)A=10 cm T=0.2 s (2)见解析图(3)x=-10sin 10πt cm解析(2)1由振子经过平衡位置时开始计时,经过4周期振子有正向最大加速度,可知振子此时在负方向最大位移处.所以位移—时间图象如图所示.8.(1)- 2 cm (2)变大变大变小变小变大(3)34 cm 2 cm0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第43讲:机械振动——简谐运动的基本概念
内容:§14-1,§14-2
1.简谐运动(50分钟)
2.描述简谐运动的物理量(50分钟)要求:
1.掌握描述简谐运动的特征量——振幅、周期、频率、相位的物理意义,并能熟练地确定振动系统的特征量,从而建立简谐运动方程;
2.掌握描述简谐运动的旋转矢量方法与图示法的特点,并会应用于简谐运动规律的讨论与分析。
重点与难点:
1.简谐运动的动力学方程和运动学方程;
2.振幅与初相位的确定;
作业:
问题:P35:1,2,7,8
习题:P37:2,5,8,11
预习:§14-3,§14-4,§14-5
harmonic Oscillator),它是一个理想化的模型。
考虑物体的惯性和作用在物体上的弹性力:
:弹性力向左,加速度向左,加速,O点,加速度为零,速度最大;
:弹性力向右,加速度向右,减速,C点,加速度最大,速度为零;
:弹性力向右,加速度向右,加速,O点,加速度为零,速度最大;。