MIMO技术的简介

合集下载

mimo技术的三种模式介绍,mimo技术作用,mimo技术种类

mimo技术的三种模式介绍,mimo技术作用,mimo技术种类

mimo 技术的三种模式介绍,mimo 技术作用,mimo 技
术种类
一、MIMO 定义
MIMO 即多入多出技术(MulTIple-Input MulTIple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。

它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。

二、MIMO 技术分类
空分复用
(spaTIal mulTIplexing)工作在MIMO 天线配置下,能够在不增加带宽的条件下,相比SISO 系统成倍地提升信息传输速率,从而极大地提高了频谱利用率。

在发射端,高速率的数据流被分割为多个较低速率的子数据流,不同的子数据流在不同的发射天线上在相同频段上发射出去。

如果发射端与接收端的天线阵列之间构成的空域子信道足够不同,即能够在时域和频域之外额外提供空域的维度,使得在不同发射天线上传送的信号之间能够相互区别,因此接收机能够区分出这些并行的子数据流,而不需付出额外的频。

MIMO 技术概述

MIMO 技术概述

MIMO信道容量
MIMO(Multiple Input Multiple Output)技术最早由Marconi 于1908 年提出,其初衷在于利用多天线来抑制信道衰落。

根据收发两端天线的数量,相对于SISO(Single Input Single Output)系统,MIMO 系统还可以包括SIMO(Single Input Multiple Output)系统和MISO (Multiple Input Single Output)系统。

这个技术可以被看做是一种多通道数据传输技术。

当然,MIMO 技术也可以被认为是一种新型的智能天线技术,因为无论是多个发射天线还是多个接收天线,其实都是给信号传输提供了一种新的自由度,多个发送/接收天线可以使用不同的发射功率,可以使用不同的天线极化方向,配置不同的天线参数,这为原有的“点对点”单通道通信开拓了新空间。

但研究MIMO 信道必须明确两个前提:首先MIMO 系统是一种功率受限系统,多天线不等于高功率,随着天线的个数的增加而提高功率是没有意义也是不允许的;其次MIMO 信道在空间构成的是“碟形”空间射频链路,这种“碟形”不是仅仅带来了空间多信道的优点,同时多信道也面临接收端接收来自各个天线上信号的一个识别问题。

5G通信技术的多用户MIMO技术

5G通信技术的多用户MIMO技术

5G通信技术的多用户MIMO技术是一种重要的无线通信技术,它可以大大提高频谱效率和数据传输速率。

本文将从技术原理、应用场景、优势以及挑战等方面介绍多用户MIMO技术。

一、技术原理多用户MIMO技术是指在同一时频资源上,多个用户使用不同的信号传输数据,通过在发送端和接收端使用多根天线,利用空间复用和空间分集等技术,提高信道容量和信号质量。

在5G通信中,多用户MIMO技术得到了广泛应用,它可以利用空间资源的特点,提高频谱效率和数据传输速率。

二、应用场景多用户MIMO技术适用于各种场景,如密集场景、高速移动场景等。

在密集场景下,由于用户数量众多,传统的无线通信技术难以满足需求,而多用户MIMO技术可以利用空间资源的特点,提高频谱效率和数据传输速率,满足用户需求。

在高速移动场景下,多用户MIMO 技术可以利用天线阵列的稳定性和适应性,提高信号质量和传输可靠性。

三、优势多用户MIMO技术具有以下优势:1. 提高频谱效率:通过利用空间资源的特点,多用户MIMO技术可以大大提高频谱效率,满足日益增长的数据传输需求。

2. 提高信号质量:通过利用天线阵列的稳定性和适应性,多用户MIMO技术可以提高信号质量,减少干扰和衰减,提高数据传输可靠性。

3. 降低成本:多用户MIMO技术可以利用现有的无线通信基础设施,无需额外投资建设新的基站和天线设备,降低了建设和运营成本。

四、挑战虽然多用户MIMO技术在5G通信中具有广泛应用前景,但也存在一些挑战:1. 天线数量和复杂性:多用户MIMO技术需要更多的天线和复杂的算法来实现空间复用和分集等技术,增加了设备复杂性和成本。

2. 信号干扰和衰减:在复杂环境中,多个用户之间的信号干扰和衰减问题难以避免,需要采用相应的干扰抑制和信号增强技术来解决。

总之,多用户MIMO技术是5G通信中的一项重要技术,它可以提高频谱效率和数据传输速率,适用于各种场景。

虽然存在一些挑战,但随着技术的不断发展和完善,多用户MIMO 技术的应用前景将更加广阔。

通俗易懂的MIMO技术简介

通俗易懂的MIMO技术简介

通俗易懂的MIMO技术简介MIMO概述MIMO技术已经广泛应用在许多现代通信标准中,特别是消费领域。

原因是相对于SISO,MIMO技术有很明显的优势。

MIMO是多路输入多路输出的意思,指的是当一个报文在发射端被一根或者多跟天线传输,而在接收侧被一根或者多根天线接收的情况。

与之比对的是单输入单输出(SISO),SISO指发送和接收都用1根天线,而另外有种说法叫单输入多输出(SIMO),SIMO指发送用一根,接收有多根天线。

可能有人会对SIMO的输入和输出定义有点奇怪,其实这是因为当初在贝尔实验室最开始定义这个名称时,工程师在发送和接收侧都是分别测试的,而不是整个无线链路测试,因此他们把“IN”定义为发送功能,“OUT”定义为了接收,一直沿用至今。

什么是多天线技术?在发送和接收侧的多天线引入了信号自由度的概念,这在SISO系统是没有的。

这里的自由度主要指的是空间自由度。

这种空间自由度可以被定义三种,分别为“分集”,“复用”或者这两种的组合。

分集(diversity)简单点来说,分集意味着重复:举个例子,多根天线接收同一个信号,就代表发射分集。

由于每根天线在接收数据时也接收到了各自的噪声,但由于各个噪声的不相关性,合并多个天线信号能够消除部分噪声,从而得质量更好的信号。

打个比方,如果从两个不同的方面来看同一个物件,那么得到的评价也会更可靠。

需要说明的是,分集并不一定要多个接收天线才能实现,后面就会讲到,分集也可以使用多个发送天线通过空时编码(STC )技术来实现。

空间复用(Spatial Multiplexing )第二个主要的MIMO 技术为空间复用,空间复用可以在不增加带宽和发送功率的情况下通过成对的MIMO 发送、接收来增加系统吞吐量。

空间复用增加的吞吐量与发送或接收天线数目(较少的那个)成线性关系。

空间复用中,每个传输天线发送不同的bit 流信息,每个接收天线收到来自所有传输天线的线性综合信息。

MIMO技术介绍

MIMO技术介绍

空间分集技术
空间分集技术原理
空间分集技术是一种利用多个天线在不同空间位置上传输相同数据流的技术。 通过增加天线数量,降低多径衰落的影响,提高信号质量和可靠性。
空间分集技术应用场景
广泛应用于无线通信系统,如4G、5G等,以及Wi-Fi、蓝牙等短距离无线通信 技术。
最大比合并技术
最大比合并技术原理
最大比合并技术是一种利用多个天线在同一频段上传输相同数据流的技术。通过 加权合并各个天线上接收到的信号,最大化合并比,从而提高信号强度和信噪比 。
最大比合并技术应用场景
广泛应用于无线通信系统,如4G、5G等,以及Wi-Fi、蓝牙等短距离无线通信技 术。
等效基带处理技术
等效基带处理技术原理
等效基带处理技术是一种将MIMO信道转换为等效基带信号进行处理的技术。通过基带处理实现信号的调制解调 、编码解码等操作,从而降低系统复杂度和成本。
等效基带处理技术应用场景
频谱效率
MIMO技术通过空间复用和空间分集等技术,提高频谱利用效率,从而在有限的频谱资源中实现更高 的数据传输速率。通过在多个天线之间进行信号的并行传输,可以增加数据传输的并行度,提高频谱 效率。
MIMO系统的误码率性能
误码率性能
在MIMO系统中,通过增加天线数量和采用 复杂的信号处理技术,可以显著降低误码率 ,提高数据传输的可靠性。例如,通过采用 空间调制、空时编码等技术,可以在一定程 度上抵消多径效应和干扰,从而降低误码率 。
02
MIMO技术原理及实现
空间复用技术
空间复用技术原理
空间复用技术是一种利用多个天线在同 一频段上传输不同数据流的技术。通过 增加天线数量,提高空间分辨率和频谱 效率,从而提升系统容量和数据传输速 率。

MIMO技术介绍

MIMO技术介绍

6
MIMO
2 MIMO系统的信号设计和信号处理 MIMO信道的识别、对于己知信道应如何设计最佳 发送信号—设计出适合于大多数信道模型的通用信号、 接收端信号处理如何对应信号设计,这些都是实际可用
的MIMO系统必须考虑的问题。使用最优的发送信号方
案,可以大大简化对接收信号的处理。一旦发送方案确 定,就可以确定各种接收端的结构,当前的研究热点是
这种技术是在收发两端使用阵列天线的多输入多输出
(MIMO)和正交频分 复用(OFDM)。该系统使用3对收发 天线,每对收发天线可以实现54 M b it/s的传输速率。 这是日前MIMO + OFDM技术所表现的强大的应用潜力。 IEEE 802 11a 11g都是以OFDM作为核心技术,而IEEE 802 16系列则是以MIMO+ OFDM技术为核心。
优势
基本原理
3
MIMO
网络资料通过多重切割之后,经过多重天线进行同步传送,由于无线讯号在传
送的过程当中,为了避免发生干扰起见,会走不同的反射或穿透路径,因此到达接 收端的时间会不一致。为了避免资料不一致而无法重新组合,因此接收端会同时具 备多重天线接收,然后利用DSP重新计算的方式,根据时间差的因素,将分开的资 料重新作组合,然后传送出正确且快速的资料流。
MIMO作为无线高速数据传输的关键技术,其理论、性能、算法和实现的各方面
研究方向
6
MIMO
1 信道建模和信道容量 研究MIMO技术时必须考虑信道模型和信道容量。
实现MIMO系统实际增益的关键在于建立更准确的信道
模型,在对MIMO信道容量进行研究时,应该考虑多径, 考虑衰落之间的相关性对信道容量的影响。
THE END
谢谢

简述mimo的工作模式

简述mimo的工作模式

简述mimo的工作模式1. MIMO技术简介MIMO(Multiple-Input Multiple-Output)是多输入多输出的英文缩写,是一种无线通信系统的传输技术。

MIMO技术通过在发送和接收端使用多个天线,实现信号的空间分集,以提高通信链路的容量和可靠性。

简单而言,MIMO技术允许单一频率同时传输多个数据流。

2. MIMO的工作模式MIMO的核心工作原理是空间重复和空间编码,有以下四种主要的工作模式:##2.1 空间分集模式(Spatial Diversity)空间分集模式主要用于解决多径传播引起的信号衰减问题。

在此模式下,发送器会把同一信号的副本同时通过多个天线发送出去,接收器通过接收每个天线的信号,进行组合或选择性接收,从而降低误码率。

##2.2 信道容量模式(Spatial Multiplexing)信道容量模式也被称为空间复用模式,其目的是提高频谱效率和数据传输率。

在此模式下,发送器会将数据流分解为多个子流,然后通过多个天线同时发送。

接收器会依据接收到的信号,利用信道信息进行解码,从而实现高效的数据传输。

##2.3 传输波束成形模式(Transmit Beamforming)在波束成形模式下,发送器会根据预先获取的信道状态信息,调整每个天线的发送信号幅度和相位,使得接收天线的收到信号强度最大。

这种模式能提高链路的信号质量和覆盖范围。

##2.4 网络 MIMO(Coordinated Multipoint Transmission)网络MIMO模式是基于信道状态信息,由多个节点协同工作,同一时间向多个用户发送数据,可以进一步提高频谱利用率和系统容量。

3. MIMO的发展和应用MIMO技术作为现代无线通信系统的重要技术之一,已广泛应用于无线局域网、蜂窝移动通信、无线传感网络等领域。

随着科技的不断进步,MIMO技术还有望在未来的5G甚至6G通信系统中发挥重要作用。

通俗易懂的MIMO技术简介3篇

通俗易懂的MIMO技术简介3篇

通俗易懂的MIMO技术简介第一篇:什么是MIMO技术?MIMO技术全称Multiple Input Multiple Output,中文翻译为“多输入多输出”,是一项近年来日益受到重视的无线通信技术。

简单来说,MIMO技术就是利用多个天线进行数据传输和接收,从而提高无线通信系统的可靠性和吞吐量。

MIMO技术的发展始于上世纪90年代,当时是由于无线通信系统中的多径效应导致信号传输质量下降,而MIMO是通过一定的技术手段来利用多个信道进行信号传输和接收,从而提高系统的性能表现。

在传统的单天线系统中,信号只能通过一个天线进行传输和接收,如有多径效应或者干扰等问题出现,就会影响信号的传输和接收质量。

而在MIMO系统中,可以利用多个天线同时进行传输和接收,从而提高了系统的可靠性和吞吐量,降低了误码率和传输延迟。

MIMO技术不仅适用于无线通信系统,也可以应用于Wi-Fi、蓝牙、雷达等领域,既能提高系统的性能表现,也可以降低功耗和成本。

随着5G时代的到来,MIMO技术将会得到更加广泛的应用和发展。

第二篇:MIMO技术的原理和实现方式MIMO技术的实现基于两个基本概念:时空编码和空间复用。

其中,时空编码是指将数据信号与多个天线传输的信号进行编码,以此提高传输的可靠性和吞吐量;空间复用是指在多个天线上进行数据的同时传输,以此提高系统的吞吐量和信号质量。

时空编码主要有两种方式:空时块码(STBC)和空时分组码(STGC)。

其中,STBC是在时间和空间两个方向进行数据编码,以此提高传输可靠性,适用于多径效应较强的无线环境;STGC则是在时间和频域两个方向进行数据编码,以此提高传输速率,适用于高速无线通信环境。

空间复用技术则主要有两种方式:空分多路复用(SDM)和空时多路复用(STDM)。

其中,SDM是通过将数据进行分割,然后分别发送到多个天线上,以此提高系统的吞吐量;STDM则是通过将不同的数据序列分成多个时间片段,在不同天线上传输,以此降低多径效应和干扰对系统的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TELE 9754 Coding and InformationTheoryResearch Workshop ReportAbstract—Mobile wireless communication has become one of the most important aspects of our daily life. The continuously increasing usage has imposed great pressure upon telecommunication system where the availability of channel capacity and spectral resources are limited. Multiple Input Multiple Output (MIMO) is considered as one of the possible solutions to the above problem and has attracted considerable attention among researchers and engineers in the field of mobile communication due to the great advantages it exhibits. In recent years, MIMO technology has been developed into more sophisticated forms and utilized in some common communication devices around us. This report is intended to provide readers with a brief review of the historical and technological developments of MIMO, and its applications.I. INTRODUCTIONOur wireless communication systems have undergone remarkable developments and progresses in the past 20 years, from 1G to 4G and the upcoming 5G. Such systems have provided our life with significant conveniences which were otherwise impossible and unachievable before the 1980s. However, under the condition of limited bandwidth resources and channel capacity, the developing communication scheme is unable to meet the fast growing demand from users of mobile devices. In other words, our communication system has somewhat attained its bottleneck and needs some new technology to enhance its performance. On the other hand, MIMO equipped with modern efficient signal processing techniques and processing hardware demonstrates prominent characteristics that could be taken to mitigate the above problems. MIMO can be defined, in simple terms, as a system which consists of multiple antennas at both the transmitter and receiver sides [6]. A systematic diagram of MIMO is illustrated by Figure 1.Figure 1. Systematic diagram of a MIMO systemThe underlying fact which enables MIMO to attract intense attention is that it could exploit the advantages of beamforming gain, spatial diversity and spatial multiplexing to enhance the performance of a communication system without extra consumption of spectral resources.The content of this report is organized in six separate sections. Section II offers readers a set of abbreviations used throughout the report. Section III illustrates the historical developments and milestones of MIMO from theory to implementations. Section IV introduces, in general sense, how MIMO functions and achieves the aforementioned advantages. Section V categorizes MIMO into various classes based on the properties it composes and some comparisons among them would be made. Section VI provides some examples of application of MIMO in modern communication scheme. Finally, a brief conclusion will be drawn in Section VI. Additional information can be found by referring to the Appendix section.II. TABLE OF ABBREVIATIONSThe following table (Table 1) lists a set of commonlyA BRIEF REVIEW ON MIMO TECHNOLOGY AND ITS APPLICATIONSLikai Ma z3326280used abbreviations to which will be referred in the following sections of this report. Table 1. Table of abbreviations III. HISTORICAL DEVELOPMENT OF MIMO [1] The history of MIMO can be dated back several decades ago. Although the idea of MIMO was not proposed until the 1970s, antenna arrays, also known as smart antennas (illustrated in Figure 2) had been developed to take the advantage of diversity and enhance wireless transmission and reception in analogue communications. CLASSIFICATION OF MIMO Figure 2. An example of antenna array. The idea of MIMO was first conceived in the 1970s in Bell Laboratory, which was inspired by the desire to overcome the problem of bandwidth limitation and interference in transmission cables. Such idea was too difficult to be realized and had remained in the form of theory for a long period of time, due to the limitation that the processing hardware and signal processing algorithms available at that stage was unable to support MIMO signal processing. Nevertheless, the theory of MIMO had continued to be enriched by some of the early researchers ’, including A.R Kaye, D.A George, Branderburg, Wyner and W. Van. Etten. In the late 1980s, MIMO theory had further been developed by Jack Salz and Jack Winters whose work centralizedaround the idea of beamforming.The concept of SM was proposed in 1993 by Arogyaswami Paulraj and Thomas. In 1996, Greg Raleigh and Gerard J. Foschini further developed the approaches towards MIMO using co-located antennas at the transmitter. Significant breakthrough in practical application of MIMO did not take place until the late 1990s. In 1998, SM was first demonstrated in the formFigure 2.Timeline of development of MIMO.of prototype in Bell Lab. Since then, the development of MIMO had been accelerated and some products with such technology integrated started to be available commercially. In 2002, Iospan Wireless Inc. launch the first commercial product with MIMO embedded, which was a milestone in the real application of this technology. Later, in 2005, the first standard of WLAN (IEEE 802.11n), also commonly known as Wi-Fi, with MIMO-OFDM was produced by Airgo Networks and has become more and more popular since then. The more detailed historical development of MIMO is depicted as a timeline and can be found in Figure 2.IV. HOW DOES MIMO WORKThe underlying principle of MIMO is that signals transmitted and received at both the transmitter and receiver sides combine together so that either parallel data sub-streams are formed or SNR is improved [3]. The benefits that MIMO exploits are known as beamforming, spatial diversity and spatial multiplexing.Figure 3.Smith chart showing the technique of beamformingBeamforming is achieved by focusing energy in some desired angular direction through appropriate choice of antenna parameters [1, 2]. The Smith chart in Figure 3 illustrates the idea of beamforming where the main lob is pointing at a particular angular direction while the side lobes are significantly suppressed. When the channel between the transmitter and receiver are located within the range of LOS, MIMO can be configured to exploit the advantages of beamforming so that the antenna gains combine constructively and thereby an enhanced receiving power and SNR are attained in the link.When multiple copies of a signal are transmitted from the transmitter, they may subject to non-idealities in the communication channel, for example fading, reflection and refraction, to different extents. Multiple replicas of the signal incoming from different directions can be analyzed by employing some sophisticated DSP algorithms to recover the original transmitted signal if those signals are highly uncorrelated. Such technique is referred as spatial diversity [2]. In general, the more the extent of uncorrelation, the better the effect of spatial diversity. MIMO could also take the advantages of spatial diversity to improve the quality of the received signal (ie, increased SNR) and hence to provide a more reliable communication link.Figure 4. The MIMO channel capacity increases almost linearly with the number of transmitting or receiving antennas [5]In a fading channel, particularly Rayleigh fading with CSI known to the receiver, MIMO could form a number of parallel and independent sub-channels through which a code word can be divided into a number of pieces and transmitted separately [4, 5]. In other words, a higher transmission rate (channel capacity) could be achieved. In theoretical sense, the channel capacity increases approximately with the number of transmitting or receiving antennas, as depicted in Figure 4. This discovery has a tremendous implicationuponcommunication system, that higher information exchange rate can be achieved without consuming extra bandwidth, by introducing additional antennas at the transmitter and receiver sides. The benefits exploited by MIMO are summarized in the following table (Table 2).Table 2. Summary table of MIMO techniquesIn general, beamforming, spatial diversity and spatial multiplexing are three rivaling techniques that engineers should make appropriate decisions on what could be sacrificed in order to gain more advantages from the others. The inter-relations among these techniques are depicted in Figure 5 [2].Figure 5. Inter-relations among three MIMO techniquesAlthough they are rivaling factors, they are not necessarily mutually exclusive, meaning that by making appropriate decisions on to what extent those are used, one can design a communication scheme which employs a combination of those techniques such that certain degrees of advantages of them can be involved. Such decision should be based solely upon the specific engineering problem to be solved. V. V ARIOUS TYPES OF MIMOA MIMO system can be divided into different classes according to some specific criterion. A MIMO system is commonly classified according to the criterions that whether multiple users are able to be served simultaneously. The classifications is shown as in Figure 6.Figure 6. Classification of MIMOIn the case of multiple users, a MIMO system is referred as SU-MIMO if only a single user among them is served at a time. In contrary, the term MU-MIMO is defined for the case where multiple users can be served in parallel. The following figure (Figure 7) depicts a comparison between SU-MIMO and MU-MIMO.Figure 7. Comparison between SU-MIMO and MU-MIMO [7](A) SU-MIMO SYSTEM [7, 8]In SU-MIMO, the time-frequency resources are allocated entirely to a single user in a given communication session. If SM is employed, multiple sub-streams can then be created to scale up the channel capacity by the order dictated by the minimum of transmitting or receiving antennas. Different users can be served through the use of TDMA or FDMA.One can see that since the order of increases in channel capacity in SU-MIMO is limited by the transmitter or receiver side which consists of the smallest number of antennas, the improvements in channel throughput may be very limited, particularly for cellular communication networks. In other words, the user end would likely be the constraint on the enhancements of channel capacity. The number of antennas that can be integrated to the users’ mobile devices, such as mobile phones, is very limited, mainly due to limitations like portability and space availability.(B)MU-MIMO SYSTEM [7, 8]MU-MIMO can be considered as an extension to the theory of SU-MIMO. In a MU-MIMO system, multiple users can be served in parallel with the same time-frequency resources available. By exploiting the advantages of SM, the channel throughput for MU-MIMO can then be enhanced by the number of transmit antennas with sufficient number of users, namely a similar scaling principle carried by the case of SU-MIMO.As oppose to SU-MIMO, MU-MIMO better exploits the multiplexing gain provided by SM, which is achieved by allocating different users to different sub-channels. Different users can not only be served by employing TDMA or FDMA (in SU-MIMO), but also by means of SDMA. Therefore, MU-MIMO has more advantages over SU-MIMO in terms of time, frequency and spatial allocations.VI. APPLICATION OF MIMO IN MODERNCOMMUNICATION SCHEME [3]As the developments in both powerful signal processing hardware and more sophisticated MIMO models have become available in recent years, the application of MIMO in our modern communication systems have been made possible as oppose to the past, mainly by the ITU and 3GPP.Some of the common communication systems, including the 3G/4G network, Wi-Fi (IEEE 802.11n) and WiMAX have already integrated some MIMO technologies to a certain extent where various forms of MIMO have been deployed and different advantages are exploited. The use of MIMO technology in modern communication systems can be depicted by the following figure (Figure 8).Figure 8.Application of MIMO in modern communication systems.The current CDMA2000 standard, one of the 3G standards (WCDMA, CDMA2000 and TD-SCDMA) has adopted transmit diversity, while the WCDMA-based UMTS has also enabled implementation of transmit diversity and beamforming at base stations. Furthermore, the 3GPP LTE employs SU-MIMO with SM and STC. The more advanced version, so called 3GPP LTE-Advanced further extends from what has been designed in LTE and has involved MU-MIMO and multi-cell MIMO.In IEEE802.16 standard (also commonly known as WiMAX), MIMO-OFDMA, a technique that utilizes OFDM modulation scheme in combination with multiple antennas, has been deployed.IEEE802.11n or Wi-Fi is another commonly used communication standard and has implemented several MIMO technologies to enhance its data through put, channel capacity and overall performance. The techniques employed by Wi-Fi are mainly antenna selection, STC and beam forming. The following table (Table 3) provides a summary for the different MIMO technologies used in those communication schemes and their performance (data rate).Table 3. Summary of MIMO technologies in modern communication systems and their overall performances.VII. CONCLUSIONIn conclusion, the historical developments, classification and current applications associated with MIMO technologies have been outlined and reviewed in this report. It can be seen that MIMO has a great deal of advantages over other traditional communication technologies. MIMO can also be used in conjunction with other existing techniques including digital modulation (OFDM in particular), coding (STC, DPC and etc) and multiple access (TDMA and FDMA) in order to derive more powerful and efficient communication schemes and provide users with better communication quality. Although there still exits some compelling problems regarding the wide application of MIMO, one can see that such technology will be more extensively integrated in our future generation wireless communication systems.REFERENCE[1] Raut, Pravin W., and S. L. Badjate. "MIMO-Future Wireless Communication."[2] Sibille, Alain, Claude Oestges, and Alberto Zanella. MIMO: from theory to implementation. Academic Press, 2010.[3] Clerckx, Bruno, and Claude Oestges. MIMO Wireless Networks: Channels, Techniques and Standards for Multi-antenna, Multi-user and Multi-cell Systems. Academic Press, 2013.[4] Holter, Bengt. "On the capacity of the MIMO channel: A tutorial introduction."Proc. IEEE Norwegian Symposium on Signal Processing. 2001.[5] Liang, Yang Wen. "Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels." Dept. of Electrical and computer Engg. University of British Columbia, V ancouver, British Columbia (2005).[6] Telatar, Emre. "Capacity of Multi‐antenna Gaussian Channels." European transactions on telecommunications 10.6 (1999): 585-595.[7] Bauch, Gerhard, and Guido Dietl. "Multi-user MIMO for achieving IMT-Advanced requirements." Telecommunications, 2008. ICT 2008. International Conference on. IEEE, 2008.[8] Li, Qinghua, et al. "MIMO techniques in WiMAX andLTE: a feature overview."Communications Magazine, IEEE 48.5 (2010): 86-92.。

相关文档
最新文档