分层抽样 说课稿 教案

合集下载

2024分层抽样说课稿范文

2024分层抽样说课稿范文

2024分层抽样说课稿范文课程名称:2024分层抽样一、说教材1、《2024分层抽样》是XXXX版小学数学六年级下册第X单元第X课时的内容。

它是在学生已经学习了XXXX并掌握了一些XXXX的基础上进行教学的,是小学数学领域中的重要知识点,而且在实际生活中有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解分层抽样的概念与意义,掌握使用分层抽样进行统计调查的方法。

②能力目标:在实际问题中,培养学生识别抽样层次、确定抽样比例,并进行有效抽样的能力。

③情感目标:在统计调查中,让学生体会到数学与现实的联系,培养他们对统计学的兴趣与积极参与的态度。

三、说教法学法有这样一句话:“听见了,忘记了;看见了,记住了;体验了,理解了。

”可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。

因此,这节课我采用的教法:情境教学法,启发式教学法;学法是:实践探究法,合作学习法。

四、说教学准备在教学过程中,我将采用多媒体辅助教学,通过图表、图片、案例等直观形象地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

五、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。

本着这个教学理念,我设计了如下教学环节。

环节一、情境引入,导入新课。

课堂伊始,我将以大家熟悉的“体育锻炼”为情境引入分层抽样的概念。

通过问学生在学校中不同年级的体育课锻炼情况,引导学生思考如何进行统计调查并得出结论。

通过这个情境引入,让学生产生对分层抽样的兴趣和好奇心。

环节二、探究新知,突破难点。

1、理解分层抽样的概念与意义:通过给学生展示一组数据,并引导他们思考如何进行抽样,进而引导学生发现不同层次的数据,在统计调查中的重要性。

通过讨论,帮助学生理解分层抽样的概念与意义。

2、使用分层抽样进行统计调查的方法:我将分层抽样的方法分为几个步骤,如确定抽样层次、确定抽样比例、进行抽样等。

人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。

二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。

三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。

2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。

2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。

2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。

3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。

4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。

4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。

5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。

四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。

2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。

五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。

六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。

但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。

《分层抽样》说课稿正式版

《分层抽样》说课稿正式版

《分层抽样》说课稿各位老师:大家好!我叫***,来自**。

我说课的题目是《分层抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。

下面我将从教材分析、教学目标分析、教法和学法分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;为下节“用样本估计总体”的学习打下了基础.因此本节内容具有承前启后的作用,地位重要.2 教学的重点和难点重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

难点:恰当的选择三种抽样方法解决现实生活中的抽样问题。

二、教学目标分析1.知识与技能目标:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法目标:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

感悟有具体到一般的研究方法,培养学生的归纳概括能力。

3、情感态度与价值观目标:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

三、教法与学法分析1、教法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“启发—探究—讨论”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。

2、学法:以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦。

四、教学过程分析为了突出重点,突破难点,在教学上我将分以下几个环节进行阐述(一)复习回顾、设问激疑(请学生回答问题和思考)问题:系统抽样的基本含义如何?系统抽样的操作步骤是什么?思考:设计科学合理的抽样方法,其核心问题是保证抽样公平,并且样本具有好的代表性,如果要调查我校高一学生的平均身高,由于男生一般比女生高,故用简单随机抽样或系统抽样,都可能使样本不具有好的代表性。

高中数学-《分层抽样》说课及教案、教学设计

高中数学-《分层抽样》说课及教案、教学设计

《分层抽样》说课及教案、教学设计高中数学人教A版必修三一、说教材本节选自高中数学人教A版必修三第二章,是在学习了简单随机抽样和系统抽样的基础上,研究的第三种抽样方式,为下节“用样本估计总体”的学习打下了基础。

因此本节内容具有承上启下的过渡作用。

【教学目标】1.理解分层抽样的概念与特征;掌握其于前两种抽样(简单随机抽样、系统抽样)的区别与联系。

2.通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法3.通过对统计学知识的研究,感知数学知识中“估计与精确性”的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

【教学重点】分层抽样的含义及特点【教学难点】灵活选择三种抽样方法解决问题二、说学情高中数学课程标准中强调“统计观念和随机思想将成为现代社会一种普遍适用并且强有力的思维方式,要使学生形成尊重事实,用数据说话的态度。

”高一学生思维由经验型向理论型转化。

数据分析能力、瑞吉思维能力依然有待加强。

知识上,学生已经了解了简单随机抽样和系统抽样的特点和适用范围,以及在随机抽样中必须保证样本的代表性,这些为本节课的学习提供了帮助。

但学生面对较为复杂的总体时,对保证样本的代表性有疑虑。

分层抽样的概念对于他们来说还是比较抽象的。

而要透彻理解分层抽样的方法并能够解决实际问题更是有一定的困难。

三、说教法和学法【教法】自主学习法、合作探究法、引导发现法、讲练结合法【学法】自主探究法和合作学习法。

四、说教学过程(一)温故知新,导入新课改编教材上的导入问题:只给出学生总人数24300人,选择合理的抽样方法选出243个样本。

并说出具体的操作步骤。

学生根据已有知识回答:使用系统抽样的方式处理问题。

系统抽样的具体步骤:1、编号;2、确定分段间隔;3、从第一组起在每组的相同位置抽取一个样本。

在此基础上,继续利用PPT展示教材上的探究题。

引导学生继续思考:如果在这个前提下我们依旧选择系统抽样,选取出来的样本是否还具有代表性,引出课题。

分层抽样 说课稿 教案 教学设计

分层抽样 说课稿  教案  教学设计

分层抽样学习目标1.知道分层抽样过程中总体中的各个个体被抽取的机会相等.2.区分简单随机抽样,系统抽样和分层抽样,并选择适当正确的方法进行抽样.重点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.难点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.学案设计学习过程一、复习回顾.系统抽样有什么优缺点?它的一般步骤是什么?二. 自主学习(一)分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(二)分层抽样的步骤:探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行()A.每层等可能抽样B.每层不等可能抽样C.所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为 ( )A.N 1B.n 1C.N nD.N n反思:(三)简单随机抽样、系统抽样、分层抽样的比较(四)典型例题例1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人, 现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25B.15,15,15C.10,5,30 D15,10,20反思:例2、一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。反思:。

数学《分层抽样》教案

数学《分层抽样》教案

数学《分层抽样》教案1. 教学目标:了解分层抽样的概念、特点和方法,掌握其中常见的几种方法。

2. 教学重点:掌握分层抽样的方法。

3. 教学难点:如何根据实际情况选择合适的分层抽样方法。

4. 教学内容:4.1 分层抽样的概念和特点。

4.2 分层抽样的方法。

4.2.1 基本分层抽样法。

4.2.2 无重复抽样法。

4.2.3 系统抽样法。

4.2.4 分层整群抽样法。

4.2.5 整群随机抽样法。

5. 教学方法:讲授、演示、讨论。

6. 教学步骤:6.1 引入:教师简要讲解分层抽样的概念和作用。

6.2 分层抽样的方法:6.2.1 基本分层抽样法:按照某些特征将总体分为若干层,从每层中抽取若干单位进行抽样。

6.2.2 无重复抽样法:从所有单位中随机抽取若干单位,再将这些单位按照所属层来进行分类,以保证每层都有样本。

6.2.3 系统抽样法:从第一个单位开始按照固定间隔进行抽样,以保证每个单位有被抽中的机会。

6.2.4 分层整群抽样法:将总体按照一定比例分成若干群,在每个群中选择全部的单位作为样本。

6.2.5 整群随机抽样法:将总体按照一定比例分成若干群,随机选择若干个群,再从每个群中随机抽取一定数量的单位作为样本。

6.3 讨论:讨论在不同情况下,如何选择合适的分层抽样方法,以保证样本的质量。

7. 教学总结:对分层抽样的概念、特点和方法进行简要总结,并引导学生思考如何灵活应用分层抽样的方法。

8. 课后作业:完成指定的分层抽样练习题,掌握分层抽样的操作技巧。

《分层抽样》教案

《分层抽样》教案

《分层抽样》教案【教学目标】1、正确理解分层抽样的概念;掌握分层抽样的一般步骤.2、通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法.3、通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观.【教学重点】分层抽样的概念和步骤;应用分层抽样方法解决部分实际问题.【教学难点】对分层抽样方法的理解.【教学过程】一、创设情境,温故求新1、复习提问(1)为了了解我班65名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?(2)为了了解我校高二年级1403名学生的近视情况,准备抽取100名学生进行检查,应怎样进行抽取?通过对学生采用不同抽样方法的原因进行提问,归纳总结:当总体中的个体数较少时采用简单随机抽样的方法,当总体中的个体数较多时采用系统抽样的方法.2、新课引入(3)为了了解我区高中生2400人,初中生10900人,小学生11000人的近视情况,要从中抽取1%的学生进行检查,应怎样进行抽取?对于这个问题,我们还能不能采用前两节所学的简单随机抽样或系统抽样呢?样本中应该高中生、初中生和小学生都有,那么他们应该按照什么比例来抽取呢?为了尽可能地保证样本结构和总体结构的一致性,我们可以按各部分所占的比例进行抽取,抽取高中生、初中生和小学生各1%的人,即抽取高中生:2400×1%=24(人)初中生:10900×1%=109(人)小学生:11000×1%=110(人)然后再在各个学段用简单随机抽样或系统抽样的方法把这24人、109人和110人抽取出来,最后再将这些抽取出来的个体合在一起,即构成了我们所要调查的样本.二、启发引导,形成概念1、分层抽样的定义根据刚才的分析,让学生思考讨论,引导学生给出分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2、强调定义关键词分成互不交叉的层:将相似的个体归入一类,即为一层;分成互不交叉的层是为了抽取过程中既不重复也不遗漏,从而确保了抽取样本的公平性;比例:按照一定的比例抽取是指所有层都采用同一抽样比等可能抽样,这样可以保证样本结构与总体结构的一致性,从而提高了样本的代表性;各层独立地抽取:在分层抽样中,每一层内部都要独立地进行抽样,并且为了确保抽样的随机性,各层应分别按简单随机抽样或系统抽样的方法抽取,因此,分层抽样也是一种等概率抽样.三、新知初用,示例练习例某单位有500名职工,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的职工;(2)确定样本容量与总体的个体数之比100:500=1:5;(3)利用抽样比确定各年龄段应抽取的个体数:1 =25(人)不到35岁的职工:125×51 =56(人)35~49岁的职工:280×51 =19(人)50岁以上的职工:95×5(4)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人;(5)然后将抽取的25,56,19人合在一起,就是所抽取的样本.四、 掌握步骤,巩固深化1、分层抽样的步骤根据上例的分析,请同学们归纳整理出分层抽样的步骤.1、分层——根据已有信息,将总体分成互不相交的层;2、定比——根据总体中的个体数N 与样本容量n 确定抽样比Nn k =; 3、定量——确定第i 层应该抽取的样本数k N n I i ⨯≈(i N 为第i 层所包含的个体数)使得各i n 之和为n ;4、抽样——在各个层中,按步骤3中确定的数目在各层中随机抽取个体;5、组样——综合每层抽样,得到容量为n 的样本.2、应用举例,巩固新知1、下列问题中,采用怎样的抽样方法比较合理:①从10台冰箱中抽取3台进行质量检查; 简单随机抽样 ②某电影院有32排座位,每排有40个座位,座位号为1~40。

说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》

说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》

分层抽样一、说教材1.教材分析《分层抽样》是人教版高中数学必修第三册第二章第一节的内容。

本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;而且本节为下节“用样本估计总体”的学习打下了基础。

因此,本节内容在学习统计学知识的过程中起到承上启下的重要过渡作用。

2. 教学目标根据以上对教学内容和结构的分析,又考虑到高二年级学生的知识水平,我制定了以下三维教学目标:首先,知识与技能目标是:理解分层抽样的概念;掌握分层抽样的一般步骤;能区分简单随机抽样、系统抽样和分层抽样,会选择适当的方法进行抽样。

其次,过程与方法目标是:通过对现实生活中实际问题进行分层抽样,感知有具体到一般的数学研究方法,培养概括和归纳的能力。

最后,情感态度和价值观目标是:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,激发思考、分析、探求的学习激情。

3.教学重点和难点根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的教学重点为:正确理解分层抽样的定义,灵活应用分层抽样抽取样本。

根据本节课的内容,以及学生的心理特点和认知水平,确定本节课的教学难点为:恰当的选择三种抽样方法解决现实生活中的抽样问题。

二、说学情掌握学生的基本情况,对于把握和处理教材具有重要作用,所以接下来我来说一下学生情况。

高二的学生思维活跃,积极性高,已初步形成解决数学问题的合作探究能力。

知识经验较为丰富,具备了较强的抽象逻辑思维能力和演绎推理能力。

根据学生的这一心理发展特点,应在教学过程中注意引导和启发,从而促进学生思维发展水平的提高。

三、说教法教师是学习的组织者,引导者。

我会采取直观演示法、指导发现法、讲练结合法,三法结合并辅以多媒体教学工具,帮助学生理解体会本课的内容,突出本课的重点,突破难点,实现教学目标。

四、说学法科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:D
例2某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()
A.4B.5C.6D.7
分析:抽样比为 = ,则抽取的植物油类种数是10× =2,则抽取的果蔬类食品种数是20× =4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.
分析:由于研究血型与色弱的关系,按血型分层,用分层抽样抽取样本.利用抽样比确定抽取各种血型的人数.
解:用分层抽样抽取样本.
∵ ,即抽样比为 .
∴200× =8,125× =5,50× =2.
故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.
抽样步骤:
①确定抽样比 ;
②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;
②按抽样比确定每层抽取个体的个数;
③各层分别按简单随机抽样的方法抽取样本;
④综合每层抽样,组成样本.
(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.
②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.
分析:抽样比为 ,样本中高三学生的人数为500× =50.
答Байду номын сангаас:50
2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生()
A.30人,30人,30人B.30人,45人,15人
C.20人,30人,10人D.30人,50人,10人
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
(3)在各层分别按抽签法或随机数表法抽取样本.
(4)综合每层抽样,组成样本.
点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.
变式训练
1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
解:用分层抽样来抽取样本,步骤是:
(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.
(2)确定每层抽取个体的个数.抽样比为 ,则在不到35岁的职工中抽125× =25人;在35岁至49岁的职工中抽280× =56人;在50岁以上的职工中抽95× =19人.
A.②③都不能为系统抽样B.②④都不能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样
分析:如果按分层抽样时,在一年级抽取108× =4人,在二、三年级各抽取81× =3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.
(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.
(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.
(4)分层抽样的步骤:
①分层:按某种特征将总体分成若干部分(层);
(3)在各层分别按随机数表法抽取样本.
(4)综合每层抽样,组成样本.
2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()
A.简单随机抽样B.系统抽样
C.分层抽样D.先从老年人中剔除1人,再用分层抽样
分析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.
(2)想一想为什么这样取各个学段的个体数?
(3)请归纳分层抽样的定义.
(4)请归纳分层抽样的步骤.
(5)分层抽样时如何分层?其适用于什么样的总体?
讨论结果:(1)分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.
教学难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.
教学
准备
多媒体课件
教学过程
导入新课
我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.
推进新课
新知探究
提出问题
(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
①简单随机抽样②系统抽样③分层抽样
A.②③B.①③C.③D.①②③
分析:由于各家庭有明显差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.
分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200× =40;200× =60;200× =100.
解:用分层抽样来抽取样本,步骤是:
(1)分层:按区将20 000名高中生分成三层.
(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.
答案:D
2.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________.
答案:5
3.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?
③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.
拓展提升
某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
答案:C
点评:如果A、B、C三层含有的个体数目分别是x、y、z,在A、B、C三层应抽取的个体数目分别是m、n、p,那么有x∶y∶z=m∶n∶p;如果总体有N个个体,所抽取的样本容量为n,某层所含个体数目为a,在该层抽取的样本数目为b,那么有 .
变式训练
1.(2007浙江高考,文13)某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为______________.
分层抽样
项目
内容
课题
2.1.3分层抽样
(共1课时)
修改与创新
教学
目标
1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;
2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.
教学重、
难点
教学重点:分层抽样的概念及其步骤.
分析:抽样比是 ,则应在这三校分别抽取学生: ×3 600=30人, ×5 400=45人, ×1 800=15人.
答案:B
知能训练
1.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法()
课堂小结
本节课学习了分层抽样的定义及其实施步骤.
③当总体个体差异明显时,采用分层抽样.
应用示例
例1一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.
答案:D
点评:根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取出的样本号码没有规律性;利用分层抽样抽取出的样本号码有规律性,即在每一层抽取的号码个数m等于该层所含个体数目与抽样比的积,并且应该恰有m个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n-1)k.其中,n为样本容量,l是第一组中的号码,k为分段间隔=总体容量/样本容量.
相关文档
最新文档