《分层抽样》教案设计-张桂伟
2024分层抽样说课稿范文

2024分层抽样说课稿范文课程名称:2024分层抽样一、说教材1、《2024分层抽样》是XXXX版小学数学六年级下册第X单元第X课时的内容。
它是在学生已经学习了XXXX并掌握了一些XXXX的基础上进行教学的,是小学数学领域中的重要知识点,而且在实际生活中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解分层抽样的概念与意义,掌握使用分层抽样进行统计调查的方法。
②能力目标:在实际问题中,培养学生识别抽样层次、确定抽样比例,并进行有效抽样的能力。
③情感目标:在统计调查中,让学生体会到数学与现实的联系,培养他们对统计学的兴趣与积极参与的态度。
三、说教法学法有这样一句话:“听见了,忘记了;看见了,记住了;体验了,理解了。
”可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:情境教学法,启发式教学法;学法是:实践探究法,合作学习法。
四、说教学准备在教学过程中,我将采用多媒体辅助教学,通过图表、图片、案例等直观形象地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
五、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。
本着这个教学理念,我设计了如下教学环节。
环节一、情境引入,导入新课。
课堂伊始,我将以大家熟悉的“体育锻炼”为情境引入分层抽样的概念。
通过问学生在学校中不同年级的体育课锻炼情况,引导学生思考如何进行统计调查并得出结论。
通过这个情境引入,让学生产生对分层抽样的兴趣和好奇心。
环节二、探究新知,突破难点。
1、理解分层抽样的概念与意义:通过给学生展示一组数据,并引导他们思考如何进行抽样,进而引导学生发现不同层次的数据,在统计调查中的重要性。
通过讨论,帮助学生理解分层抽样的概念与意义。
2、使用分层抽样进行统计调查的方法:我将分层抽样的方法分为几个步骤,如确定抽样层次、确定抽样比例、进行抽样等。
人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。
二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。
三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。
2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。
2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。
2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。
3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。
4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。
4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。
5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。
四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。
2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。
五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。
六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。
但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。
分层抽样课程设计

分层抽样课程设计一、教学目标本节课的教学目标是让学生掌握分层抽样的概念、原理和方法,并能够运用分层抽样解决实际问题。
具体来说,知识目标包括:了解分层抽样的定义、特点和适用条件;掌握分层抽样的步骤和方法;理解分层抽样在实际应用中的重要性。
技能目标包括:能够正确选择分层抽样的分层标准;能够独立进行分层抽样并解释结果;能够评价分层抽样的优缺点。
情感态度价值观目标包括:培养学生的数据分析意识,提高学生解决实际问题的能力;培养学生团队合作的精神,提高学生的沟通能力和合作意识。
二、教学内容本节课的教学内容主要包括以下几个部分:首先,介绍分层抽样的概念和原理,通过具体案例让学生理解分层抽样的基本思想;其次,讲解分层抽样的步骤和方法,包括如何选择分层标准、如何确定每层的样本容量等;然后,通过实际案例分析,让学生学会如何运用分层抽样解决实际问题;最后,对分层抽样的优缺点进行讨论和评价。
三、教学方法为了实现本节课的教学目标,采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,系统地讲解分层抽样的概念、原理和方法,让学生掌握基本知识;其次,采用案例分析法,让学生通过分析实际案例,加深对分层抽样的理解和应用;然后,采用讨论法,让学生分组讨论分层抽样的优缺点,培养学生的批判性思维;最后,采用实验法,让学生亲自动手进行分层抽样实验,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,准备了一系列的教学资源。
主要教材为《统计学原理》一书,辅助教材有《分层抽样技术及其应用》等。
参考书包括《现代统计学》、《抽样技术》等。
多媒体资料有分层抽样的教学视频、PPT课件等。
实验设备包括计算器、统计软件等。
这些教学资源将有助于丰富学生的学习体验,提高学生的学习效果。
五、教学评估本节课的教学评估将采用多元化的方式进行,以全面、客观、公正地评价学生的学习成果。
评估方式包括平时表现、作业和考试等。
平时表现主要考察学生在课堂上的参与程度、提问回答和团队协作等情况;作业包括课后练习和案例分析报告等,以巩固学生的知识和提高应用能力;考试分为期中和期末两次,主要考察学生对分层抽样概念、原理和方法的掌握程度。
数学《分层抽样》教案

数学《分层抽样》教案1. 教学目标:了解分层抽样的概念、特点和方法,掌握其中常见的几种方法。
2. 教学重点:掌握分层抽样的方法。
3. 教学难点:如何根据实际情况选择合适的分层抽样方法。
4. 教学内容:4.1 分层抽样的概念和特点。
4.2 分层抽样的方法。
4.2.1 基本分层抽样法。
4.2.2 无重复抽样法。
4.2.3 系统抽样法。
4.2.4 分层整群抽样法。
4.2.5 整群随机抽样法。
5. 教学方法:讲授、演示、讨论。
6. 教学步骤:6.1 引入:教师简要讲解分层抽样的概念和作用。
6.2 分层抽样的方法:6.2.1 基本分层抽样法:按照某些特征将总体分为若干层,从每层中抽取若干单位进行抽样。
6.2.2 无重复抽样法:从所有单位中随机抽取若干单位,再将这些单位按照所属层来进行分类,以保证每层都有样本。
6.2.3 系统抽样法:从第一个单位开始按照固定间隔进行抽样,以保证每个单位有被抽中的机会。
6.2.4 分层整群抽样法:将总体按照一定比例分成若干群,在每个群中选择全部的单位作为样本。
6.2.5 整群随机抽样法:将总体按照一定比例分成若干群,随机选择若干个群,再从每个群中随机抽取一定数量的单位作为样本。
6.3 讨论:讨论在不同情况下,如何选择合适的分层抽样方法,以保证样本的质量。
7. 教学总结:对分层抽样的概念、特点和方法进行简要总结,并引导学生思考如何灵活应用分层抽样的方法。
8. 课后作业:完成指定的分层抽样练习题,掌握分层抽样的操作技巧。
《分层抽样》教案

《分层抽样》教案【教学目标】1、正确理解分层抽样的概念;掌握分层抽样的一般步骤.2、通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法.3、通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观.【教学重点】分层抽样的概念和步骤;应用分层抽样方法解决部分实际问题.【教学难点】对分层抽样方法的理解.【教学过程】一、创设情境,温故求新1、复习提问(1)为了了解我班65名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?(2)为了了解我校高二年级1403名学生的近视情况,准备抽取100名学生进行检查,应怎样进行抽取?通过对学生采用不同抽样方法的原因进行提问,归纳总结:当总体中的个体数较少时采用简单随机抽样的方法,当总体中的个体数较多时采用系统抽样的方法.2、新课引入(3)为了了解我区高中生2400人,初中生10900人,小学生11000人的近视情况,要从中抽取1%的学生进行检查,应怎样进行抽取?对于这个问题,我们还能不能采用前两节所学的简单随机抽样或系统抽样呢?样本中应该高中生、初中生和小学生都有,那么他们应该按照什么比例来抽取呢?为了尽可能地保证样本结构和总体结构的一致性,我们可以按各部分所占的比例进行抽取,抽取高中生、初中生和小学生各1%的人,即抽取高中生:2400×1%=24(人)初中生:10900×1%=109(人)小学生:11000×1%=110(人)然后再在各个学段用简单随机抽样或系统抽样的方法把这24人、109人和110人抽取出来,最后再将这些抽取出来的个体合在一起,即构成了我们所要调查的样本.二、启发引导,形成概念1、分层抽样的定义根据刚才的分析,让学生思考讨论,引导学生给出分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2、强调定义关键词分成互不交叉的层:将相似的个体归入一类,即为一层;分成互不交叉的层是为了抽取过程中既不重复也不遗漏,从而确保了抽取样本的公平性;比例:按照一定的比例抽取是指所有层都采用同一抽样比等可能抽样,这样可以保证样本结构与总体结构的一致性,从而提高了样本的代表性;各层独立地抽取:在分层抽样中,每一层内部都要独立地进行抽样,并且为了确保抽样的随机性,各层应分别按简单随机抽样或系统抽样的方法抽取,因此,分层抽样也是一种等概率抽样.三、新知初用,示例练习例某单位有500名职工,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的职工;(2)确定样本容量与总体的个体数之比100:500=1:5;(3)利用抽样比确定各年龄段应抽取的个体数:1 =25(人)不到35岁的职工:125×51 =56(人)35~49岁的职工:280×51 =19(人)50岁以上的职工:95×5(4)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人;(5)然后将抽取的25,56,19人合在一起,就是所抽取的样本.四、 掌握步骤,巩固深化1、分层抽样的步骤根据上例的分析,请同学们归纳整理出分层抽样的步骤.1、分层——根据已有信息,将总体分成互不相交的层;2、定比——根据总体中的个体数N 与样本容量n 确定抽样比Nn k =; 3、定量——确定第i 层应该抽取的样本数k N n I i ⨯≈(i N 为第i 层所包含的个体数)使得各i n 之和为n ;4、抽样——在各个层中,按步骤3中确定的数目在各层中随机抽取个体;5、组样——综合每层抽样,得到容量为n 的样本.2、应用举例,巩固新知1、下列问题中,采用怎样的抽样方法比较合理:①从10台冰箱中抽取3台进行质量检查; 简单随机抽样 ②某电影院有32排座位,每排有40个座位,座位号为1~40。
招教《分层抽样》教学设计

《分层抽样》教案
《分层抽样》教案
一、教学目标
【知识与技能】
了解随机抽样中的分层抽样的特点和适用情况,并会用分层抽样解决实际问题。
【过程与方法】
在经历分层抽样的特点的探索过程中,提升概括能力和应用能力。
【情感、态度与价值观】
在探索的过程中,体会数学与生活的紧密联系。
二、教学重难点
【教学重点】
分层抽样的特点及步骤。
【教学难点】
分层抽样特点的探究过程。
三、教学过程
(一)引入新课
思考:如果要调查某校高一学生的平均身高应该怎样调查?
预设:男生女生身高有很大差别,简单随机抽样和系统抽样都不能够使样本具有代表性。
讲解:选择抽样方法之前,充分利用事先对总体情况的已有了解是非常重要的。
教师直接引出新的抽样方法的学习《分层抽样》。
(二)探索新知
1.探索分层抽样
出示书上探究的问题情境:某地区有高中生2400人,初中生10900人,小学生11000人。
此地区教育部门为了了解本地区中小学生的近视情况及其形成的原因,要从本地区的中小学生中抽取1%的学生进行调查。
你认为应当怎样抽取样本?
提问:你认为哪些因素可能影响学生的视力?设计抽样方法时需要考虑这些因素吗?
预设:不同年龄阶段的近视情况可能存在明显差异,三个部分的人数相差较大,我们需要考虑到三个年龄段各自的情况。
提问:根据前面的问题情境,如果让你来抽样你会如何进行?。
人教版高中数学必修3《分层抽样》课程设计(全国一等奖)

人教版高中数学必修3《分层抽样》课程设计(全国一等奖)课程概述本课程设计是针对人教版高中数学必修3中的《分层抽样》内容而设计的。
通过该课程的研究,学生将了解到分层抽样在实际生活和应用领域中的重要性和作用,并学会如何进行分层抽样的设计方法和步骤。
课程目标- 理解分层抽样的概念和基本原理- 学会选择适当的分层抽样方法和样本规模- 掌握分层抽样的设计步骤和具体操作- 了解分层抽样在实际调查和研究中的应用课程安排第一课时:引入与概念解析- 介绍分层抽样的定义和基本概念- 解析分层抽样的优点和作用- 分层抽样的实例分析和讨论第二课时:分层抽样方法- 介绍几种常见的分层抽样方法,如整群抽样、相对等额抽样等- 分层抽样方法的适用场景和特点- 分层抽样方法的选择和判断标准第三课时:样本规模的确定- 讲解如何确定分层抽样的样本规模- 分层抽样的误差控制和置信度计算- 样本规模的计算公式和实际应用示例第四课时:分层抽样的设计步骤- 介绍分层抽样的设计步骤和流程- 讲解分层抽样设计中的注意事项和常见问题- 使用实例进行分层抽样设计的演练和实践教学方法本课程设计采用多种教学方法和手段,包括讲解、示范、讨论、实践等。
通过理论和实践相结合的教学方式,提高学生对分层抽样知识的理解和应用能力。
评估方式学生的评估将主要通过以下几个方面进行:- 平时作业完成情况- 课堂讨论和互动参与度- 实际案例综合分析能力- 考试或小测验成绩参考资料1. 人教版高中数学必修3教材2. 相关数学教育研究论文3. 分层抽样实践案例参考书目以上为《人教版高中数学必修3《分层抽样》课程设计(全国一等奖)》的简要内容介绍,希望能对教学工作有所帮助。
如需深入了解详细课程设计,请参考相关教材和参考资料。
人教A版高中数学必修三 2.1.3《分层抽样》教案

人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:这6组数据产生差异的原因是什么?
预设的答案:抽取样本的方法不同造成差异。
教师引导:对比这6种抽样方法和调查结果,请同学们以小组为单位进行组内反思和组间评价,看看哪组的抽样方法更加合理。
预设的答案:第一组样本中全是男生,第五组的样本中女生偏多,都属于方便样本。
其实,无论是简单随机抽样还是系统抽样,都有可能导致方便样本(男生偏多或女生偏多),所以第二组、第三组的抽样方法也不够合理。
第四组和第六组在抽样是注意到了影响平均身高的因素----性别,这样抽取样本具有合理性。
问题2:从统计数据来看,哪些因素可能影响我们的平
问题3:第四组抽取的样本中,男女比例为1:1,第六组抽取的样本中,男女比例为3:2,哪个更加合理呢?
预设的答案:第六组的更为合理,因为我们班的男生有30人,女生20人,男女生比例为3:2,按照这个比列抽取了男生6人,女生4人,这样的样本和咱班的实际情况一样,所以更合理。
事实是本班学生实际平均身高169.8 cm,第四组结果为168.9cm,第六组的结果为169.3 cm,显然第六组的结果更接近实际平均值,所以第六组的抽样方法更合理。
问题4:像这样抽取样本的方法叫做分层抽样.那么你能对分层抽样加以描述吗?
预设的答案:
分层抽样:(1)总体分层,互不交叉;
(2)按照比例在各层内独立抽取;
(3)将各层取出的个体合在一起.
获得定义:阅读教材第61页第三段分层抽样的定义,并背会.
分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(分析关键词)
问题5:梳理抽样的过程,思考要完成一个分层抽样,有哪些步骤?
预设的答案:先根据对总体的了解进行分层,确定比例后,再各层抽取.
可分为四步:
(1)分层——根据已有信息,将总体分成互不相交的层;
(2)定比——根据总体中的个体数N与样本容量n确
活动案例2:
小组合作讨论以下问题:(上课前已经下发班级学生信息表)
(1)在本班选10人,参加对本班数学教师教学方法的测评,应该如何抽取?
(2)在本班选10人,参加团委组织的各类学生社团发展规划的研讨活动,应该如何抽取?
预设的答案:问题(1)采用分层抽样,全班同学按成绩分层,定比抽取;问题(2)采用分层抽样,全班同学按特长爱好不同分层,定比抽取。
活动案例3:
回顾本节阅读与思考——一个著名的案例(抽样中的泰坦尼克事件),分析预测结果出错的原因是什么.
预设的答案:未考虑总体的结构,只对富人做了调查.这个案例再次说明了分层抽样的必要性与合理性.从这个案例可以总结三点经验:
第一,分层抽样的必要性与合理性;
第二,掌握知识的重要性,使用正确的方法可以节省物力
问题9:结合本课涉及的案例,谈谈你对分层抽样的认识.预设的答案:知道了为什么要进行分层抽样以及分层抽样的概念、步骤.
分层抽样的适用范围.
教师讲解:经过今天学习,在“大数据”的今天,收集数据的方法至此我们有了三种方法——简单随机抽样、系统抽样、分层抽样.。