04第六章 离散化方法
离散化方法介绍及其区别

离散化方法介绍及其区别1.等宽离散化(等间隔离散化):等宽离散化是指将数据按照相同宽度的区间进行分割。
具体来说,为了进行等宽离散化,首先需要确定分割数量(即离散化的个数),然后计算出每个区间的宽度,最后将数据根据宽度进行划分。
等宽离散化的优点是简单直观,易于理解和实现;缺点是容易受到异常点的干扰,可能导致一些区间没有数据。
2.等频离散化(等深离散化):等频离散化是指将数据按照相同数量的样本进行分割。
具体来说,等频离散化需要确定分割数量(即离散化的个数),然后根据样本数量将数据划分为相等的分组。
等频离散化的优点是对于分布不均匀的数据可以得到较好的效果;缺点是对于样本数量较少的情况,可能导致分组过于细致,不易进行统计分析。
3.最优化离散化:最优化离散化是指通过最优化问题求解来获取最佳离散化结果。
具体来说,最优化离散化可以通过最大化类间差异,最小化类内差异,或者最小化整体误差等准则来选择最佳划分点。
最优化离散化的优点是可以得到较好的离散化效果;缺点是计算复杂度较高,需要耗费较多时间和计算资源。
4.有序离散化:有序离散化是指将数据根据先验知识或者专家经验进行划分。
具体来说,有序离散化可以将连续属性的取值划分为预先定义的有序集合,如低、中、高等。
有序离散化的优点是可以考虑领域知识和专家意见;缺点是可能会引入人为主观因素,不便于自动化处理。
总结来说,离散化方法的选择应该根据具体的场景需求和数据特征来确定。
等宽离散化和等频离散化是最常见、简单易用的方法,适用于一般的数据预处理任务;最优化离散化适用于对离散化效果要求较高的情况;而有序离散化则适用于有先验知识或者领域专家意见的情况下。
需要注意的是,在进行离散化之前,需要对数据进行充分的分析和了解,以便选择合适的离散化方法。
第6章连续系统的离散化方法及近似解

第6章连续系统的离散化方法及近似解在连续系统中,我们经常需要将其离散化为离散系统以便于分析和求解。
离散化方法能够将连续系统的微分方程转化为差分方程,从而得到近似解。
本章将介绍连续系统的离散化方法及近似解的计算。
连续系统的离散化方法有许多种,常见的有Euler方法、Runge-Kutta方法和有限差分方法等。
其中,Euler方法是最简单和最基础的离散化方法,其基本思想是将连续时间轴划分为若干个小时间间隔,并用差分逼近连续系统的导数。
具体地,对于一阶常微分方程:\[\frac{{dy}}{{dt}} = f(y, t)\]可以使用Euler方法将其离散化为:\[y_{n+1} = y_n + h \cdot f(y_n, t_n)\]其中,\(y_n\)是时间点\(t_n\)的近似解,\(h\)是时间步长。
Runge-Kutta方法是一种更精确的离散化方法,其基本思想是利用多个中间步骤来更准确地逼近连续系统的导数。
常见的是四阶Runge-Kutta 方法,其公式为:\[y_{n+1} = y_n + \frac{h}{6} \cdot (k_1 + 2k_2 + 2k_3 +k_4)\]其中\[k_1=f(y_n,t_n)\]\[k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})\]\[k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2})\]\[k_4 = f(y_n + hk_3, t_n + h)\]这样可以得到更准确的近似解。
有限差分方法是一种常用的离散化方法,其基本思想是将连续的导数用差分逼近。
以二阶偏微分方程为例,该方程的一般形式为:\[\frac{{\partial^2u}}{{\partial x^2}} +\frac{{\partial^2u}}{{\partial y^2}} = f(x, y)\]可以使用中心差分公式将其离散化为:\[\frac{{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}}{{\Delta x^2}} + \frac{{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}}{{\Delta y^2}} =f_{i,j}\]其中,\(u_{i,j}\) 是近似解在网格点 \((i, j)\) 处的值,\(\Delta x\) 和 \(\Delta y\) 分别是网格在 \(x\) 和 \(y\) 方向的步长,\(f_{i,j}\) 是离散化后的右侧函数。
离散化方法

模拟控制器离散化成的数字控制器,也可以认为是数字滤波器
离散化法的实质就是求原连续传递函数D(s)的等效离散传递 函数D(z) 。
“等效”是指D(s)与D(z)在下述几种特性方面具有相近性:
---零极点个数;
---系统的频带; ---稳态增益;
---相位及增益裕度;
---阶跃响应或 脉冲响应形状;
在单位脉冲作用下输出响应为 u (t ) L1 D( s) 其采样值为
ai t A e i i 1
n
u (kT )
ai kT A e i i 1
n
例 已知模拟控制器 D( s) a
sa
,求数字控制器D(z)。
a
解:
D( z ) D( s ) 1 e aT z 1
3.差分变换法
1).一阶向后差分
基本思想:将连续域中的微分用一阶向后差分替换
D( z ) D( s)
1 z 1 T
s
•对于给定
D( s )
U (s) 1 E ( s) s
•其微分方程为 du (t ) / dt e(t ), u (t )
e(t )dt
0
t
•用一阶向后差分代替微分,则 du(t ) / dt {u(kT ) u[(k 1)T ]}/ T
---频率响应特性。
•离散化方法很多
数值积分法(置换法) ---一阶向后差法 ---一阶向前差法 ---双线性变换法 ---修正双线性变换法 零极点匹配法 保持器等价法 z变换法(脉冲响应不变法) •
• • •
注意:不同的离散化方法特性不同. D(z)与D(s)相比,并不能 保持全部特性,并且不同特性的接近程度也不一致。
离散化方法

离散化方法
离散化方法是将连续的数据转化为离散的数据,通常应用于数值计算、统计分析、信号处理等领域。
离散化方法可以将大量的连续数据转化为有限数量的离散数据,从而简化计算和分析过程。
离散化方法的具体实现方式有多种,包括分段、分组、聚类等方法。
分段方法是将连续的数据按照一定的区间范围进行划分,使得每个区间内的数据具有相同的特征值,例如相同的平均值、方差等。
分段方法常用于数据可视化和数据挖掘等领域。
分组方法是将连续的数据按照一定的规则进行分组,使得每组内的数据具有相同的特征值,例如相同的频率、比例等。
分组方法常用于数据分析和统计建模等领域。
聚类方法是将连续的数据按照相似性进行聚类,将相似的数据聚集到一起形成簇,使得每个簇内的数据具有相同的特征值,例如相同的标签、属性等。
聚类方法常用于数据挖掘和模式识别等领域。
总之,离散化方法是一种非常有用的数据处理技术,可以将连续的数据转化为离散的数据,从而简化计算和分析过程、提高数据处理效率、降低计算成本。
- 1 -。
离散化方法

离散化方法离散化方法是一种将连续数据转化为离散数据的方法,它在数据处理和分析中有着广泛的应用。
离散化方法可以将连续的数据转化为离散的数据,从而使得数据更加易于处理和分析。
在实际应用中,离散化方法可以用于数据挖掘、机器学习、统计分析等领域。
离散化方法的基本思想是将连续的数据按照一定的规则进行分组,将每个分组看作一个离散的数据点。
这样,原本连续的数据就被转化为了离散的数据。
离散化方法的具体实现方式有很多种,常见的方法包括等宽离散化、等频离散化、聚类离散化等。
等宽离散化是将数据按照一定的宽度进行分组,每个分组的宽度相等。
例如,将一组数据按照区间宽度为10进行分组,数据范围在0到100之间,那么就可以将数据分为10个组,每个组的区间为0-10、10-20、20-30……90-100。
等宽离散化的优点是简单易懂,缺点是可能会导致某些分组中数据过于集中,而其他分组中数据过于分散。
等频离散化是将数据按照一定的频率进行分组,每个分组中包含相同数量的数据。
例如,将一组数据按照频率为10进行分组,数据范围在0到100之间,那么就可以将数据分为10个组,每个组中包含10个数据。
等频离散化的优点是可以避免某些分组中数据过于集中的问题,缺点是可能会导致某些分组中数据过于分散,而其他分组中数据过于集中。
聚类离散化是将数据按照一定的聚类算法进行分组,每个分组中包含相似的数据。
例如,可以使用K-means算法将一组数据分为若干个簇,每个簇中包含相似的数据。
聚类离散化的优点是可以更加准确地将数据分组,缺点是算法复杂度较高,需要进行参数调整。
离散化方法是一种将连续数据转化为离散数据的方法,它在数据处理和分析中有着广泛的应用。
离散化方法可以用于数据挖掘、机器学习、统计分析等领域,可以帮助我们更好地理解和分析数据。
偏微分方程的离散化方法课件

x2 )
从方程可以看出:如果已知第 n(本步时间)的值 Pin ,就可以求得第 n+1
时刻(下步时间)的值
P n1 i
。因此如初始条件,即
n=0
时各网格的
P
值已给定,
就可以依次求得以后各时间的 P 值。这种差分格式是显式差分格式。在显式差分
格式中:只有一个未知数 Pin1 ,由一个方程就可以求出。简单,精度较差,时间
步长受到严格限制,基本不用。
(2)隐式差分:利用 P(x,t)关于 t 的一阶向后差商和关于 x 的二阶差商, 在点(i,n+1)的差分方程:
P n1 i 1
2Pin1 x 2
P n1 i1
P n1 i
Pi n
t
(1
2
) Pi n 1
(
P n1 i1
Pi
n 1 1
)
Pi n
从方程可以看出:如果已知第 n(本步时间)的值 Pin ,为了求得第 n+1 时刻(下
(1)离散空间:把所研究的空间划分成某种类型的网格, 大的空间转化为若干小单元组成,网格之间动态连接,通 常采用矩形网格(正方体)。
(2)离散时间:把研究的时间域分成若干小的时间段, 在每个时间段内,对问题求解,时间段之间有机连接。步 长大小取决于所要解决的实际问题。
离散空间
P
t
离散时间
1、网格系统 它有x,y两个自变量,在平面上用平行线分割成许多网格, 如考虑时间,则。编号:x→i,y→j,t→n。为步长(对三 维z→k)。 节点:网格的交点叫网格节点。取一些与边界s接近的网格 节点,把他们连成折线Sh,Sh所围成的区域记为Dh,Dh 内的节点为内部节点、边界上的节点为边界节点。
第六章 离散化方法

•离散化方法很多
• 数值积分法(置换法) ---一阶向后差法 ---一阶向前差法 ---双线性变换法 ---修正双线性变换法
• 零极点匹配法 • 保持器等价法
• z变换法(脉冲响应不变法)
注意:不同的离散化方法特性不同. D(z)与D(s)相比,并不能 保持全部特性,并且不同特性的接近程度也不一致。
❖ 离散后控制器的时间响应与频率响应,与连续控制器相比有 相当大的畸变。
❖ 变换前后,稳态增益不变。
应用
•变换较为方便。 •采样周期较大时,这种变换的映射关系畸变较为 严重,变换精度较低,工程应用受到限制。
例 已知 一阶向后差分法离散。
解
, T=1s、0.1s,试用
当T=1s时,a=2.8,b=2.8, 当T=0.1s时,a=2.08,b=1.09,
❖ 映射关系畸变严重,不能保证D(z)一定稳定。 ❖ 使用简单方便,如若采样周期较小,亦可使用。
例 试用向前差分法离散下述传递函数
。
稳定性判断:要求
•若取T=1s,则D(s)的极点将落在以(-1/T,0) 为圆心, 以r=1/T为半径的圆外 .
4 .双线性变换法
•变换也是z变换的一种近似
s与z之间的变换关系
例 已知连续控制器传递函数 试用双线性变换法离散,并比较D(s)与D(z)的频率特性。 解:
当T=1s时, 当T=0.2s时,
MATLAB命令:
num=[1]; Den=[1 0.8 1] [n,d]=c2dm(num,den,1,’tustin’ )
n = [0.1515 0.3030 0.1515] d= [1.0000 -0.9091 0. 5152]
离散化的方法

离散化的方法
离散化是一种将连续数据转换为离散数据的方法。
在计算机科学领域,离散化常被用于处理大量数据或在计算机上进行数据分析。
离散化的方法有很多种,包括等宽离散化、等频离散化、k-means聚类离散化、自适应离散化等。
等宽离散化方法是将数据按照固定的宽度分成若干个区间,每个区间的宽度相同。
例如,将年龄数据按照每10岁分为一组。
等频离
散化方法是将数据分成若干个区间,每个区间内包含相同数量的数据。
例如,将一组学生成绩按照平均分数分成若干组。
k-means聚类离散化方法是将数据聚类成若干个簇,每个簇内的数据相似度高于不同簇内的数据。
例如,将一组商品销售数据聚成若干个簇,每个簇内的商品销售情况相似。
自适应离散化方法是根据数据分布特征,自动选取合适的离散化方法进行处理。
例如,将一组人口分布数据根据不同地区的人口密度特征,采用不同的离散化方法进行处理。
离散化的方法根据不同的应用场景和数据特征,选择合适的方法可以提高数据处理和分析的效率和准确性。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•其微分方程为 du(t) / dt e(t),u(t)
t
e(t)dt
0
•用一阶向后差分代替微分,则 du(t)/ dt {u(kT) u[(k 1)T]}/T
u(kT) u[(k 1)T] Te(kT)
•两边取Z变换得
U (z) z1U (z) TE(z)
--映射是一对一的非线性映射。
s 2 (z 1) T (z 1)
s域角频率
A
2 T
tan
DT
2
jA
2 T
1 1
e jDT e jDT
2 T
e jDT /2 e jDT /2
e jDT /2 e jDT /2
2 2 jsin(DT / 2) j 2 tan DT
•变换也是z变换的一种近似
e(Ts / 2) z e(Ts/2)
s与z之间的变换关系 s 2 (z 1) T (z 1)
•离散化公式
1 T s
z
1
2 T
s
2
D(z) D(s) 2(1z1) s T (1 z1 )
•对于给定
D(s) U (s) 1 E(s) s
D2 (z) z2 1.8165z 0.8532
MATLAB命令:
num=[1]; Den=[1 0.8 1] [n,d]=c2dm(num,den,1,’tustin’)
单位阶跃响应的仿真结果
n = [0.1515 0.3030 0.1515] d= [1.0000 -0.9091 0. 5152]
•其微分方程为
t
du(t) / dt e(t),u(t) e(t)dt
0
❖ 相当于数学的梯形积分法,即以梯形面积近似代替积分
❖ 每个题型面积的宽度为T,上底和下底面积分别为 e(k 1) e(k)
❖ 故面积为
u(k) u(k 1) T [e(k) e(k 1)] 2
U(z) z1U(z) T [E(z) z1E(z)] 2
z1,2 =0.5000 j0.3273 =0.597580.5796
D2(z) 两个根分别为:
z1,2 =0.9541 j0.0841=0.95780.0879
均位于单位圆内
❖ 稳态增益不变
D(s) s0 1
D1(z)
z 1
1 1 2.8 2.8
1
D2 (z)
z 1
T 2 cos(DT / 2) T
2
z域角频率
•若D(s)稳定,则D(z)一定稳定。
•频率畸变:双线性变换的一对一映射,保证了离散频率特性 不产生频率混叠现象,但产生了频率畸变
双线性变换的频率关系
A
2 T
tan
DT
2
当采样频率较高
DT 足够小
双线性变换频率特性失真
A
2 T
DT
2
D
1
。
1 D( z) s2 0.8s 1 s( z1)/T
z2
T2 (2 0.8T )z (1 0.8T
T2)
稳定性判断:要求
0 T 0.8s
•若取T=1s,则D(s)的极点将落在以(-1/T,0) 为圆心, 以r=1/T为半径的圆外 .
4 .双线性变换法
z 2 (1T )2 (T )2
令 z (1 单位圆) 1 (1 T )2 (T )2
1 T2
1 T
2
2
•只有当D(s)的所有极点位于左 半平面的以点(-1/T,0) 为圆心、1/T为半径的圆内, 离散化后D(z)的极点才位于 z平面单位圆内
主要特性 ❖ s平面与z平面映射关系
z 1 1 1 (1 Ts) 1 Ts 2 2 (1 Ts)
s j
z
1 2
2
1 4
(1T )2 (1T )2
(T )2 (T )2
•当=0 (s平面虚轴),s平面虚轴映射到z平面为该小圆的
圆周。
•当> 0(s右半平面),映射到z平面为上述小圆的外部。 •当< 0(s左半平面),映射到z平面为上述小圆的内部。
D(z) U (z) E(z)
T (1 z1) 2
1 z1
2
1 (z 1)
T (z 1)
主要特性
❖ s平面与z平面映射关系
z
1 1
T
2 T
2
s s
1 1
T 2 T 2
j j
T
2
T
2
s j
z
2
1 1
注意:不同的离散化方法特性不同. D(z)与D(s)相比,并不能 保持全部特性,并且不同特性的接近程度也不一致。
1 脉冲响应不变法(Z变换法)
1).设计原理
❖ 基本思想:数字滤波器产生的脉冲响应序列近似等于模拟
滤波器的脉冲响应函数的采样值。
D( z )
u(kT)
n i 1
Ai 1 eaiT z 1
T 2 T 2
2
2
T
2
T
2
2
2
•当=0(s平面虚轴)映射为z平面
的单位圆周。
•当> 0(s右半平面),映射到z
平面单位圆外 。
•当< 0(s左半平面),映射到z
平面单位圆内 。
图 双线性变换映射关系
•双线性变换将
--整个s平面左半部到z平面单位圆内。 --整个s平面右半部映射到单位圆外。 --s平面虚轴映射为单位圆。
图 向前差分法的映射关系
❖ s若D(s)稳定,采用向前差分法离散化,D(z)不一定稳定。只 有采用较小的采样周期T,方能保证D(z)稳定。
❖ 映射关系畸变严重,不能保证D(z)一定稳定。 ❖ 使用简单方便,如若采样周期较小,亦可使用。
例 试用向前差分法离散下述传递函数
D(s)
s2
1 0.8s
1
s2 0.8s 1
一阶向后差分法离散。
, T=1s、0.1s,试用
解
1
D(z) D(s)
s(1 z1 )/T
(s2 0.8s 1)
s(1 z1 )/T
1 [(1 z1)2 / T 2 0.8(1 z1) / T 1]
T2z2 1 az bz2
•T=1s时的单位阶跃响应与连续系统响应接近 •T=0.2s时的单位阶跃响应与连续系统响应非 常接近。 •这表明该方法精度较高。
5. 频率预畸变双线性变换法
❖ 基本思想: 双线性变换产生了频率轴的非线性畸变,预 修正的目的是满足在某个选定的关键频率ω1上:
D(ej1T ) D( j1)
为实现上述要求,需将D(s/ω1)平移到D(s/ωA)处,再做Tustin 变换.因为
0
用一阶向前差分代替微分 du(t) / dt {u[(k 1)T] u(kT)}/T
u[(k 1)T] u(kT) Te(kT)
两边取Z变换得 (z 1)U(z) TE(z)
D(z) U (z) / E(z) T /(z 1)
主要特性
❖ s平面与z平面映射关系
z 1 Ts (1T) jT
混叠现象。 ❖ 其应用范围是:连续控制器D(s)应具有部分分式结构或能较容易地分解
为并联结构。D(s)具有陡衰减特性,且为有限带宽信号的场合。这时采 样频率足够高,可减少频率混叠影响,从而保证D(z)的频率特性接近原 连续控制器D(s)。
2.阶跃响应不变法(加零阶保持器的Z变换法)
❖ 基本思想:用零阶保持器与模拟控制器串联,然后再进行 Z变换离散化成数字控制器
0.01 1 2.08 1.09
1
❖ 单位阶跃响应
2).一阶向前差分法
❖ 基本思想:将连续域中的微分用一阶向前差分替换
D(z) D(s) s z1 T
对 D(s) U (s) 1
E(s) s
其微分方程为
t
du(t) / dt e(t),u(t) e(t)dt
•双线性变换后环节的稳态增益不变
D(s) s0 D(z) z1 •双线性变换后D(z)的阶次不变, 且分子、分母具有相同的阶次。并有下式成立:
D(e jT ) s 0 2
应用
1) 这种方法使用方便,且有一定的精度和前述一些好 的特性,工程上应用较为普遍。
2) 这种方法的主要缺点是高频特性失真严重,主要用 于低通环节的离散化,不宜用于高通环节的离散化。
❖ 若D(s)稳定,则D(z)一定稳定。
❖ 离散后控制器的时间响应与频率响应,与连续控制器相比有 相当大的畸变。
❖ 变换前后,稳态增益不变。 D(s) s0 D(z) z1
应用
•变换较为方便。 •采样周期较大时,这种变换的映射关系畸变较为 严重,变换精度较低,工程应用受到限制。
例
已知 D(s)
z
1)
1
1
T 2 z 12
(4 1.6T T 2 )z2 (8 2T 2 )z (4 1.6T T 2 )
当T=1s时,
0.1515 z 12
D1(z) z2 0.9091z 0.5152
当T=0.2s时,
0.0092 z 12