连续系统离散化处理基本方法

合集下载

连续属性离散化

连续属性离散化

根据学习环境选择离散化方法
虽然已有很多离散化方法,但是没有一种离散 化方法对任何数据集以及任何算法都是有效的,也 没有一种离散化方法一定比其他方法产生更好的离 散化结果。因为离散化本身就是一个NP-hard 问题, 所以在使用时一定要根据数据集的特点和学习环境 以及使用者个人的偏好理解等选择合适的离散化方 法,以取得尽可能好的离散化效果。如决策树学习 容易受到碎片问题(碎片是指一个给定分枝中的样 本数太小,没有统计意义)的影响,所以离散化时 更偏好得到较少的离散化区间;决策规则希望离散 化得到的区间中的实例的类标号是唯一的;关联规 则重视特征间的相关性,所以在离散化时不能对各 个特征进行单一的离散化。
离散化结果的评价
• 完全离散化:指算法要能够完成数据集的多个 连续属性的离散化处理。因为我们不太可能只 需要对数据集的某一个连续属性进行离散化处 理,除非数据集只包含一个连续属性。 • 具有最简单的离散化结果:如果离散化处理完 成后,属性空间的规模越小,由这些离散化处 理所产生出来的数据所生成的规则越简单。因 此,由这样的属性所获得的知识就更是通用。
• 基于熵的离散化方法:该方法使用类信息计算 和确定分割点,是一种有监督的、自顶向下的 分裂技术。首先,将初始值切分成两部分,让 两个结果区间产生最小熵;然后,取一个区间, 通常选取具有最大熵的区间,重复此分割过程, 直到区间的个数达到用户指定的个数,或满足 终止条件(当得到的每个区间中的类标号都是 一样时,即停止离散化过程)。 最常用的基于熵的离散化方法是:基于最 短描述长度原则(MDLP)方法。
连续属性离散化方法
1.连续属性离散化的定义? 2.为什么要对连续属性离散化?
3.连续属性离散化方法有哪些?
定义
连续属性离散化就是采取各种方法将 连续的区间划分为小的区间,并将这连续 的小区间与离散的值关联起来。

连续系统模型的离散化处理方法

连续系统模型的离散化处理方法
只要T不变,三个系数均不变,可以在仿真前预先计算好,这样就减少了以后的计算工作量。 加入一个理想滤波器,保留输入信号主频段,滤掉附加的频谱分量,不失真
在离散化后,模型精度变差,可能不稳定。
S域到Z域的最基本映射关系是:Z=e (T— TS 数值积分法:将微分方程转换成差分方程,这中间是一步步离散,每一步离散都用到连续系统的原模型,这样的速度就慢了。
TeAT
m T
T eATA Bd
0
xKTTTxKTmTUKT
x(k1) TxkmTUk
B 当输入函数u(KT)在两采样 点间线性变化时(一阶保持)
uuKTukT
p
T
TeATABd
0
xkTTTxkTmTUkTpTUkT
xk1TxkmTUkpTUk
当连续系统状态方程系数A、B已知时,
可求出……
此法相比于数值积分法;只要T不变,三个系 数均不变,可以在仿真前预先计算好,这样 就减少了以后的计算工作量。
2 典型环节的离散状态方程
A 积分环节:G(S)=K/S f1=x2 ; f2=x3 ;
依据各环节的连接关系及外部作用函数 稳定性不及双线性替换法,Ts或信号重构器选择不当,离散模型的稳定性变差
二、Z域离散相似方法
1 基本方法
G z
y z u z
z G h s G s
1
z
s a
z exp( aT )
e TS 1 z
1 z
s
z 1
1
Tz
s* s
( z 1 )( z 1 )
Gz
yz uz
zGh
sGs
Gs k
sa
Gh
s
1

第6章连续系统的离散化方法及近似解

第6章连续系统的离散化方法及近似解

第6章连续系统的离散化方法及近似解在连续系统中,我们经常需要将其离散化为离散系统以便于分析和求解。

离散化方法能够将连续系统的微分方程转化为差分方程,从而得到近似解。

本章将介绍连续系统的离散化方法及近似解的计算。

连续系统的离散化方法有许多种,常见的有Euler方法、Runge-Kutta方法和有限差分方法等。

其中,Euler方法是最简单和最基础的离散化方法,其基本思想是将连续时间轴划分为若干个小时间间隔,并用差分逼近连续系统的导数。

具体地,对于一阶常微分方程:\[\frac{{dy}}{{dt}} = f(y, t)\]可以使用Euler方法将其离散化为:\[y_{n+1} = y_n + h \cdot f(y_n, t_n)\]其中,\(y_n\)是时间点\(t_n\)的近似解,\(h\)是时间步长。

Runge-Kutta方法是一种更精确的离散化方法,其基本思想是利用多个中间步骤来更准确地逼近连续系统的导数。

常见的是四阶Runge-Kutta 方法,其公式为:\[y_{n+1} = y_n + \frac{h}{6} \cdot (k_1 + 2k_2 + 2k_3 +k_4)\]其中\[k_1=f(y_n,t_n)\]\[k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})\]\[k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2})\]\[k_4 = f(y_n + hk_3, t_n + h)\]这样可以得到更准确的近似解。

有限差分方法是一种常用的离散化方法,其基本思想是将连续的导数用差分逼近。

以二阶偏微分方程为例,该方程的一般形式为:\[\frac{{\partial^2u}}{{\partial x^2}} +\frac{{\partial^2u}}{{\partial y^2}} = f(x, y)\]可以使用中心差分公式将其离散化为:\[\frac{{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}}{{\Delta x^2}} + \frac{{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}}{{\Delta y^2}} =f_{i,j}\]其中,\(u_{i,j}\) 是近似解在网格点 \((i, j)\) 处的值,\(\Delta x\) 和 \(\Delta y\) 分别是网格在 \(x\) 和 \(y\) 方向的步长,\(f_{i,j}\) 是离散化后的右侧函数。

连续传递函数离散化的方法与原理

连续传递函数离散化的方法与原理

连续传递函数离散化的方法与原理连续传递函数离散化是将连续时间域中的传递函数转换为离散时间域中的传递函数的过程。

在控制系统设计中,离散化是非常重要的一步,因为大多数数字控制器本质上只能处理离散的输入和输出信号。

离散化方法的选择对系统的稳定性、性能和可实现性都有很大的影响。

离散化方法分为两大类:时域方法和频域方法。

时域方法根据传递函数的时间响应,或者根据传递函数的微分方程进行转换。

频域方法通过拉普拉斯变换和z变换之间的等价关系进行转换。

时域离散化方法:1. 脉冲响应不变法(Impulse Invariance Method):这是最常用的离散化方法之一、它通过将连续时间系统的脉冲响应对应到离散时间系统的单位冲激响应上来实现离散化。

该方法的原理是保持连续系统和离散系统的单位冲激响应相同,从而尽可能保持系统的动态特性。

2. 零阶保持法(Zero Order Hold Method):这个方法假设连续时间系统在每个采样周期内是恒定的,即将采样周期内的连续时间系统输出等效为一个恒定值。

这个方法的原理是根据离散系统的输出间隔和连续时间系统的采样间隔,使用插值方法得到离散系统的输出值。

3. 一阶保持法(First Order Hold Method):这个方法在零阶保持法的基础上改进,考虑了连续时间系统在每个采样周期内的变化趋势。

它假设连续时间系统在每个采样周期内是线性变化的。

通过插值方法得到离散系统的输出值。

4. 向后微分法(Backward Difference Method):这个方法根据连续时间系统微分方程中的向后差分近似来实现离散化。

它假设离散时间系统输出的变化率等于连续时间系统输出的变化率。

频域离散化方法:1. 频率响应匹配法(Frequency Response Matching Method):这个方法将连续时间系统和离散时间系统的频率响应函数进行匹配,使它们在一定频率范围内的增益和相位相近。

通过频率响应函数的等价性,可以使用拉普拉斯变换和z变换之间的关系得到离散时间系统的传递函数。

连续系统离散化方法

连续系统离散化方法

其中 y ( kT ) 为到 kT 时刻的阴影总面积。对式(5.15)进行 Z 变换,并整理得到
Y ( z ) T 1 + z −1 = X ( z ) 2 1 − z −1
(5.16)
图 5-5 梯形面积近似积分
D( z ) = D( s )
由式 (5.16) , 也可得双线性变换:
s=
2 1− z −1 T 1+ z −1
3、双线性变换法
双线性变换法又称突斯汀(Tustin)法,是一种基于梯形积分规则的数字积分变换方法。 由 Z 变换定义 z = e ,将 e 改写为如下形式:
Ts Ts
第 2 章 计算机控制系统的信号转换
Ts
21
eTs =
e2 e
− Ts 2
(5.12)
然后将分子和分母同时展成泰勒级数,取前两项,得:
Ts 2 z= Ts 1− 2 1+
由上式计算出 s ,得双线性变换公式。
(5.13)
s=
2 1 − z −1 T 1 + z −1
T [ x[(k − 1)T ] + x( kT )] 2
(5.14)
另外,由图 5-5 所示的梯形面积近似积分可得
y (kT ) = y[(k − 1)T ] +
(5.15)
s=Biblioteka z −1 T(5.11)
另外还可将 z 级数展开 :
z = eTs = 1 + Ts +
T 2s2 + ... 2
20
第 2 章 计算机控制系统的信号转换
取一阶近似 z ≈ 1 + Ts ,也可得到:
s=
z −1 T

控制系统仿真及MATLAB语言-连续系统的离散化方法

控制系统仿真及MATLAB语言-连续系统的离散化方法
tyode45?rigid?0120结果如图图中数值算法的稳定性特征根在数值算法的选择原则matlab提供了微分方程数值求解的一般方法作为仿真算法的使用者而应关心各种方法在使用中会出现的问题精度受算法和影响截断误差计算速度受算法和影响算法简单速度就快些
第四章 连续系统的离散化方法
2021/4/10
1
ba12
a2
a2
1 12
a2b1 1 2
三个方程,四个未知数,解不唯一
2各021/个4/10系数的几种取法——见书上。
12
3) r=4时,四阶龙格库塔公式-最常用:
h
xk 1
xk
( 6
K1
2K2
2K3
K4
)
K1 f tk ,xk
K2
K3
f f
tk
tk
h 2
,
xk
h 2 , xk
2 病态系统中绝对值最小的特征值对应于系统动态性能 解中瞬态分量衰减最慢的部分,它决定了整个系统的动 态过渡过程时间的长短。一般与系统中具有最小时间常 数Tmax的环节有关,要求计算步长h取得很大。
3 对于病态问题的仿真需要寻求更加合理的算法,以解 决病态系统带来的选取计算步长与计算精度,计算时间 之间的矛盾。
在仿真中,对于n阶系统,状态方程可以写成一阶微分方程
xi ai1x1 ai2 x2 ain xn biu fi (t, x1, x2, x3, , xn )(i 1, 2, , n)
2021/4/10
14
根据四阶龙格-库塔公式,有
T=tk+h时刻的xi值
T=tk时刻的xi值
xk 1 i
2021/4/10 K3 [k13

连续系统的离散化方法课件

连续系统的离散化方法课件

离散化方法的意义
精确性
离散化方法可以提供对连续系统的精 确近似,特别是在计算机仿真和数字 控制系统中。
可计算性
离散化方法可以将不可计算的分析转 化为可计算的形式,便于进行数值计 算和控制器设计。
离散化方法的应用场景
01
02
03
数字控制
在数字控制系统中,连续 系统的离散化是必要的步 骤,以便在数字计算机上 进行数值计算和控制。
小波基选择
常用的小波基包括Haar小波、Daubechies小波、Morlet 小波等。
误差分析
小波变换法的误差主要来自于变换误差和离散化误差。
05
离散化方法的评估与优化
评估离散化方法优劣的标准
01
02
03
04
精度
离散化方法是否能准确代表原 连续系统。
稳定性
离散化方法在一定参数变化范 围内是否能保持稳定。
状态空间模型
用状态变量和输入、输出变量描述连续系统的动态特性。
状态空间模型通常形式为:`x'(t) = Ax(t) + Bu(t)` 和 `y(t) = Cx(t) + Du(t)`,其中 `x(t)` 表 示系统状态,`u(t)` 表示系统输入,`y(t)` 表示系统输出,`A`, `B`, `C`, `D` 是系数矩阵。
化率。
通过求解 ODE,可以得到系统 在任意时刻的状态。
传递函数
表示连续系统在输入和输出之间的传递 特性。
传递函数通常形式为:`G(s) = Y(s) / U(s)`,其中 `Y(s)` 和 `U(s)` 分别是输 出和输入的拉普拉斯变换,`s` 是复变
量。
通过分析传递函数的零点、极点和增益 ,可以得到系统的稳定性和性能特性。

2.6 连续时间系统状态方程的离散化

2.6   连续时间系统状态方程的离散化

0 0 1 1 0 1 1 0 0 0 1 0 0.63 1 1 0.37 0 1.37 0.37 0 0 0.63 1 0.63 0.865 1.37 1 0.135 0 2.05 0.135 0.63 0 0.865 1 0.95
1 (3)H(T) 0 0
T
T 1 1 / 2(1 e2 t ) 0 dt 0 2 t e 1 0
x 1[(k 1)T] x 1 (kT) (4) G(T) H(kT) U(kT) x 2 [(k 1)T] x 2 (kT)
1
解:
例2.5已知控制对象满足 0 1 0 x x u,求其离散化方程 2 0 1
2 t 1 1 / 2 ( 1 e ) 1 1 ( 1 )( t ) L [SI A] 2 t e 0 1 1 / 2(1 e 2 t ) (2)G (T) ( t ) t T 2 t e 0
1 2T 2 t ( 2 T e 1 ) 1 / 2(1 e ) 4 dt 1 2 t 2 T e (1 e ) 2
说明:(1)当T选定后(如T=0.5秒)G(t)和
H(t)都是确定的系数矩阵
(2)离散化后得状态方程,可按递推法或
At 1 1
(2)由u(kT)=r(kT)-y(kT)=r(kT)-x1 (kT),代入,得系统的离散化 状态方程。
x1[(k 1)] 1 1 e T x1 (kT ) T e T 1 u (kT ) x [(k 1)] T T e x2 (kT ) 1 e 2 0 2 T e T 1 e T x1 (kT ) T e T 1 T r (kT ) T T e x2 (kT ) 1 e e 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在数字计算机上对连续系统进行仿真时,首先遇到的问题是如何解决数字计算机在数值及时间上的离散性与被仿真系统数值及时间上的连续性这一基本问题。

从根本意义上讲,数字计算机所进行的数值计算仅仅是“数字”计算,它表示数值的精度受限于字长,这将引入舍入误差;另一方面,这种计算是按指令一步一步进行的,因而,还必须将时间离散化,这样就只能得到离散时间点上系统性能。

用数字仿真的方法对微分方程的数值积分是通过某种数值计算方法来实现的。

任何一种计算方法都只能是原积分的一种近似。

因此,连续系统仿真,从本质上是对原连续系统从时间、数值两个方面对原系统进行离散化,并选择合适的数值计算方法来近似积分运算,由此得到的离散模型来近似原连续模型。

如何保证离散模型的计算结果从原理上确能代表原系统的行为,这是连续系统数字仿真首先必须解决的问题。

设系统模型为:),,(t u y f y
=&,其中u (t )为输入变量,y (t )为系统变量;令仿真时间间隔为h ,离散化后的输入变量为)(ˆk t u
,系统变量为)(ˆk t y ,其中k t 表示t=kh 。

如果)()(ˆk k t u t u
≈,)()(ˆk k t y t y ≈,即0)()(ˆ)(≈-=k k k u t u t u t e ,0)()(ˆ)(≈-=k k k y t y t y t e (对所有k=0,1,2,…),则可认为两模型等价,这称为相似
原理(参见图)。

实际上,要完全保证0)(,0)(==k y k u t e t e 是很困难的。

进一步分析离散化引的误差,随着计算机技术的发展,由计算机字长引入的舍入误差可以忽略,关键是数值积分算法,也称为仿真建模方法。

相似原理用于仿真时,对仿真建模方法有三个基本要求:
(1)稳定性:若原连续系统是稳定的,则离散化后得到的仿真模型也应是稳定的。

关于稳定性的详细讨论将在节中进行。

(2)准确性:有不同的准确性评价准则,最基本的准则是:
绝对误差准则:δ≤-=)()(ˆ)(k k k y t y t y
t e 相对误差准则:δ≤-=
)(ˆ)()(ˆ)(k k k k y t y
t y t y
t e 其中 规定精度的误差量。

原连续模型
仿真模型
)(≈k y t e
图 相
f (t,y )
f (t 0,y o )
t
t
t 0
t 1
图数值积分法
(3)快速性:如前所述,数字仿真是一步一步推进的,即由某一初始值)(0t y 出发,逐步计算,得到)(,),(),(21k t y t y t y Λ,每一步计算所需时间决定了仿真速度。

若第k 步计算对应的系统时间间隔为,1k k k t t h -=+计算机由)(k t y 计算)(1+k t y 需要的时间为T k ,则,若T k =h k 称为实时仿真,T k h k 称为超实时仿真,而大多数情况是T k h k ,对应于离线仿真。

连续系统数字仿真中离散化最基本的算法是数值积分算法。

对于形如),,(t u y f y
=&的系统,已知系统变量y 的初始条件y t y ()00=,现在要求y 随时间变化的过程y t ()。

计算过程可以这样考虑(参见图):首先求出初始点y t y ()00=的f t y ()00,,微分方程可以写作:
y t y f t y dt t t
()(,)=+⎰00 ()
图所示曲线下的面积就是y t (),由于难以得到f(y,u,t)积分的数值表达式,人们对数值积分方法进行了长期探索,其中欧拉法是最经典的近似方法。

欧拉法用矩形面积近似表示积分结果,也就是当t=t 1时,y t ()1的近似值为y 1 :
y y t y t f t y 11000=≅+⋅()()∆,
重复上述作法,当t t =2时
y y t y t t f t y 2212111=≅+-⋅()()(), 所以,对任意时刻t k+1,有:
y y t y t t f t y κκκκκκκ+++=≅+-⋅111()()(), () 令t t h κκκ+-=1称为第κ步的计算步距。

若积分过程中步距不变h h κ=,可以证明,欧拉法的截断误差正比于h 2。

为进一步提高计算精度,人们提出了“梯形法”。

梯形法近似积分形式如式所示,令:
t t h h κκκ+-=1=已知:t t =κ时y t ()κ的近似值y κ,那么:
y y t y h f t y f t y κκκκκκκ++++=≅+
+11111
2
()[(,)(,)] 可见,梯形法是隐函数形式。

采用这种积分方法最简单的预报校正方法是用欧拉法估计初
值,用梯形法校正,即:
y
y h f t y f t y i i κκκκκκ++++≅++1
11112
()()
[(,)(,)] y y h f t y i κκκκ+≅+⋅1()
(,)
式称作预报公式,采用欧拉法,式为校正公式,采用梯形法。

用欧拉法估计一次y i κ+1()
的值,代入校正公式得到y κ+1的校正值y i κ++11()。

设是规定的足够小正整数,称作允许误差,若i =0, i +1=1
称作第一次校正;i i =+=112,称作第二次校正;通过反复迭代,直到满足y y i i
κκε+++-≤111,
这时y i κ++11()
是满足误差要求的校正值。

上述方法是针对式所示的微分方程在已知初值情况下进行求解,因此也称为微分方程初值问题数值计算法,为统一起见,本书中称为数值积分法。

连续系统数字仿真的离散化方法有两类,它们是数值积分方法和离散相似方法,本文讨论数值积分法。

数值积分方法采用递推方式进行运算,而采用不同的积分方法会引进不同的计算误差,为了提高计算精度,往往会增加运算量。

就同一种积分算法而言,为提高计算精度,减小积分步距h ,计算量增大,影响系统运算速度。

因此,计算精度和速度是连续系统仿真中常迂到的一对矛盾,也是数字仿真中要求解决的问题之一。

也就是说,选择合适的算法、合适的软、硬件环境,在保证计算精度的前提下,考虑怎样提高仿真的速度。

相关文档
最新文档