埋弧焊气孔缺陷的成因及对策
埋弧焊气孔产生原因分析及控制措施

埋弧焊气孔产生原因分析及控制措施一、埋弧焊气孔缺陷产生的原因1、人为因素的影响(1)导电嘴离工件表面太近。
过低的导电嘴使焊剂堆积高度不够,易产生间断性的明弧,而且会因导电嘴太低致使堆覆的焊剂被拖带走,使熔池及电弧保护变差而产生气孔。
另外导电嘴离工件表面太近还易造成短路,使导电嘴烧坏和产生密集气孔。
(2)焊剂斗堵塞造成明弧。
由于焊剂的反复使用,在回收焊剂时有大块的熔渣没被筛除回收到焊剂斗内,造成出口堵塞而产生明弧。
2、设备因素的因素的影响(1)焊接规范执行不准确。
焊接过程中的电压电流不稳定,焊接参数变小,造成焊丝不稳定及保护效果欠佳,从而使空气中水蒸气容易进入焊缝形成气孔;同时焊接参数变小,使得焊接热输入变小,而冷却速度加快,使气体不易从正在凝固的熔化金属中逸出,从而造成气孔。
(2)网络电压的影响。
当电弧电压由于网络电压的影响而降低时,熔深迅速增加而焊接速度不变,熔池很快结晶,使气体和熔渣来不及逸出,存留在焊缝金属中形成气孔。
3、焊接材料、母材表面的氧化物及焊接环境因素的影响(1)焊剂受潮。
由于焊剂从烘干箱内取出后露天放置,过热的焊剂极易吸收空气中的水分,尤其是空气湿度较大的季节更突出,这时剩余的焊剂还要过夜而使其受潮更为严重,致使焊剂中过多的水分增加了熔池中的气体,这也是产生气孔的原因之一。
(2)焊剂中的杂质与氧化物。
由于焊缝周围清理不彻底,在回收焊剂的同时有一定量的灰尘、氧化物和球状的熔渣被收入装置内,这些灰尘、氧化物和球状的熔渣被收入装置内,这些灰尘、氧化物和熔渣在电弧高温作用下在熔池内发生强烈的氧化反应,另一方面焊剂在反复使用时颗粒度减小并与细小的灰尘混合形成比重较大的混合物,在熔池结晶过程中来不及浮出,这些都是产生气孔、夹渣的重要原因之一。
(3)焊剂垫中的焊剂不干净或受潮。
焊剂垫是双面埋弧焊的重要设备之一,焊剂垫内焊剂清洁与否将直接影响焊缝质量。
由于忽视对焊剂垫中焊剂的管理,使焊剂垫中的焊剂在反复使用时混入了很多杂质,同时焊剂始终暴露在空气中,长期受空气的浸蚀也是产生气孔的主要原因。
埋弧焊常见缺陷的产生原因及防止措施综述

1998年第1期内蒙古科技与经济39埋弧焊常见缺陷的产生原因及防止措施陈浩(呼伦贝尔盟锅炉检验所)埋弧焊是当今生产效率较高的机械化焊接方法之一,它的生产效率高,焊缝质量稳定。
但由于工艺制定的不适当,常有成形不良、咬边、未熔合、夹渣、气孔、裂缝等缺陷发生。
本文试对8~20mm低碳钢板的埋弧的焊(焊丝H08A,焊剂431)中出现的一些缺陷的产生原因和防止措施作一讨论。
1咬边会降低焊缝金属的强度,在焊缝金属塑性较差,承受疲劳载荷的情况下,还有可能发展成裂纹。
多层埋弧焊常出现夹渣缺陷,的。
但在进行。
凹槽,。
8mm,750A电弧电压38V,焊接速度34m h,不开坡口,间隙215mm的焊接工艺,焊后产生咬边缺陷。
分析产生缺陷的原因是焊接电流过大,焊接速度过快,将焊接电流调整到700A,焊速调至32m如果焊丝位置或h,就不产生咬边缺陷。
角度不正确也会产生咬边缺陷。
可见,通过选择合适的焊接参数和工艺措施能防止这一缺陷。
2未熔合图1焊偏示意图对上面组合焊接进行的埋弧焊工艺试验中,采用直流反接、焊接电流650A(正面)700A(反面),焊接时先正后反,焊速24m h,电弧电压36V,焊后对角焊缝做横向切开试件,每种间隙做4块试件,做金相检验。
试验结果如下:对口间隙在0~1mm时,没发现夹渣。
对口间隙在115mm时有断续小面积夹渣。
对口间隙在2~3mm,有连续大面积夹渣试验结果表明,对口间隙越大,夹渣情况越严重。
分析为间隙过大,焊剂首先填满间隙,加之没开坡口,加热熔化了的焊剂需较长时间才能浮出。
对1mm以上间隙的接头,先进行手工焊封底,再进行埋弧焊则无夹渣缺陷。
证明上面的分析是正确的。
4气孔未熔合是指焊接时焊道与母材之间或焊道与焊道之间(多层焊)血未完全熔化结合的部分。
面积型(片状)未熔合的危害性与裂纹类似,是一种很危险的缺陷。
锅炉压力容器的有关规程、标准中都规定不允许存在未熔合。
未熔合一般是由于焊丝未对准,造成一侧熔合不良,焊偏(如图1所示)或焊道局部弯曲过大也会造成未熔合。
埋弧自动焊气孔缺陷形成原因及预防措施浅析

埋弧自动焊气孔缺陷形成原因及预防措施浅析摘要:埋弧自动焊作为一种高效的焊接方法在制造业中得到了广泛的应用。
但各种因素的影响使得埋弧焊焊缝易出现气孔等焊接缺陷。
在压力容器的生产单位中,由于某些因素的影响,焊缝中也会出现气孔、裂纹、夹渣等焊接缺陷,直接影响了焊缝质量,其中气孔是最易产生并极具危害的缺陷之一。
它使焊缝的致密度下降,强度降低,影响焊缝的一次合格率。
因此尽量减少气孔缺陷是提高埋弧焊质量必须解决的一个重要问题。
关键词:埋弧焊;气孔;预防措施一、问题的提出及自动埋弧焊的特点在检验某公司蒸汽蓄热器时,宏观检验发现直径约4mm气孔,比平时常见的焊缝表面气孔尺寸要大,经过初步打磨后发现气孔内有类似夹渣物(见图一),该气孔位于焊缝边缘,打磨至17mm深度尚未完全消除,焊缝焊接方法为埋弧自动焊。
后经查阅相关资料后发现,自动埋弧焊该类缺陷较为常见,属铁豆型气孔缺陷。
埋弧焊是一种电弧在焊剂层下燃烧进行焊接的方法。
其固有的焊接质量稳定、焊接生产率高、无弧光、烟尘很少等优点,使其成为压力容器、管材制造、箱型梁柱等重要承压、承重钢结构制作中的主要焊接方法。
埋弧自动焊接时,引燃电弧、送丝、电弧沿焊接方向移动及焊接收尾等过程完全由机械来完成。
近年来,虽然先后出现了许多种高效、优质的新焊接方法,但埋弧焊的应用领域依然未受任何影响。
从各种熔化焊方法的熔敷金属质量所占份额的角度来看,埋弧焊约占10%左右,且多年来一直变化不大。
图一气孔缺陷二、气孔、铁豆缺陷形成原因(1)焊缝附近母材的影响焊缝附的近母材表面质量是产生气孔的重要因素之一,主要是指母材表面的铁锈、水分、油污等影响因素。
铁锈的主要成分为三氧化二铁(Fe2O3)与水(H2O)形成的络合物。
水分在高温作用下会分解出氢(H2)和氧(O2),在焊接熔池中,氢的溶解度很高,冷却时氢的溶解度急剧下降,容易形成氢气孔。
同时分解出的氧(O2)经过焊接的冶金过程,会与金属材料中的碳(C)元素结合,从而形成一氧化碳(CO)气孔。
埋弧焊常见焊接缺陷的成因分析及对策

3、埋弧焊常见焊接缺陷的防治措施
4、通过实践加深对理论知识的理解与应用能力
(二)本课题研究意义
1、埋弧焊的焊接生产率高 这主要是因为埋弧焊是经过导电嘴将焊接电流导入焊丝的,与焊条电弧焊相比,导电的焊丝长度短,其表面有无药皮包覆,不存在药皮成分受热分解的限制,所以允许使用比焊条电弧焊大得多的电流,使得埋弧焊的电弧功率、熔透深度与焊丝的熔化速度都相应增大。所以,埋弧焊与焊条电弧焊相比有更高的生产率。
4、埋弧焊的劳动条件好 由于埋弧焊实现了焊接过程的机械化,操作较为简便,焊接过程中操作者只是监控焊机,因而大大减轻了焊工的劳动强度。另外,埋弧焊时电弧是在焊剂层下燃烧,没有弧光的有害影响,放出的烟尘和有害气体也较少,所以焊工的劳动条件大为改善。
5、数字化明显数字化是未来发展的方向,国内目前主要是做了外围的数字化,而核心还是模拟的,数字化的真正含义是能控制每一个溶滴过渡,依赖于DSP的高速数据处理,可以对送丝和溶滴过渡进行控制,输出方式多为脉冲。送丝机构使用高精度伺服系统。
2氢的作用 氢是引起焊接件产生延迟裂纹的主要原因并且具有延迟的特征。
焊接接头的含氢量越高,则裂纹的倾向越大,当含氢量超过某一临界值时,便开始出现裂纹。之后随着含氢量的增多,裂纹的尺寸和数量也在不断的增多。产生延迟裂纹的临界含氢量因钢种的化学成分,预热温度以与冷却速度等而异。虽着碳当量的提高,产生裂纹的临界含氢量将降低。
气孔的形成机理常温固态金属中气体的溶解度只有高温液态金属中气体溶解度的几十分之一至几百分之一,熔池金属在凝固过程中, 有大量的气体要从金属中逸出来。当凝固速度大于气体逸出速度时, 就形成气孔。
埋弧焊主要缺陷及防止

埋弧焊主要缺陷及防止埋弧焊时可能产生的主要缺陷,除了由于所用焊接工艺参数不当造成的熔透不足、烧穿、成形不良以外,还有气孔、裂纹、夹渣等。
本节主要叙述气孔、裂纹、夹渣这几种缺陷的产生原因及其防止措施。
1. 气孔埋弧焊焊缝产生气孔的主要原因及防止措施如下:1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的最好方法是正确肋储存和保管 6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
2 裂纹通常情况下,埋弧焊接头有可能产生两种类型裂纹,即结晶裂纹和氢致裂纹。
前者只限于焊缝金属,后者则可能发生在焊缝金属或热影响区。
1)结晶裂纹钢材焊接时,焊缝中的S 、P等杂质在结晶过程中形成低熔点共晶。
埋弧焊缺陷产生原因和防止方法

埋弧焊缺陷产生原因和防止方法缺陷产生原因防止焊缝金属内部裂纹(1) 焊丝和焊剂匹配不当( 母材中含碳量高时,熔敷金属中的Mn少)(2) 熔池金属急剧冷却,热影响区的硬化(3) 多层焊的第一层裂纹由于焊道无法抗拒收缩应力而造成(4) 沸腾钢产生硫带裂纹( 热裂纹)(5) 不正确焊接施工,接头拘束大(6) 焊道形状不当,焊道高度比焊道宽度大( 梨形焊道的收缩产生的裂纹)(7) 冷却方法不当(1) 焊丝和焊剂正确匹配,母材含碳量高时要预热时要预热(2) 焊接电流增加,减少焊接速度,母材预热(3) 第一层焊道的数目要多(4) 用G50XUs — 43 组合(5) 注意施工顺序和方法(6) 焊道宽度和深度几乎相当,降低焊接电流,提高电压(7) 进行后热气孔(在熔池内部的气孔)(1)接头表面有污物(2)焊剂的吸潮(3)不干净焊剂(刷子毛的混入)(1)接头的研磨、切削、火焰烤、清扫(2)150~300℃lh烘干(3)收集焊剂时用钢丝刷夹渣(1)下坡焊时,焊剂流入(2)多层焊时,在靠近坡口侧面添加焊丝(3)引弧时产生夹渣(附加引弧板时易产生夹渣)(4)电流过小,对于多层堆焊,渣没有完全除去(5)焊丝直径和焊剂选择不当(1)在焊接相反方向,母材水平放置(2)坡口侧面和焊丝之间距离,至少要保证大于焊丝直径(3)引弧板厚度及坡口形状,要与母材保持一样(4)提高电流,保证焊渣充分熔化(5)提高电流、焊接速度未熔透(熔化不良)(1)电流过小(过大)(2)电压过大(过小)(3)焊接速度过大(过小)(4)坡口面高度不当(5)焊丝直径和焊剂选择当(1)焊接条件(电流、电压、焊接速度)选适当(2)平定命适的笋口甲高度(3)选定合适焊丝直径和焊剂的种类缺陷产生原因防止焊缝金属表咬边(1)焊接速度太快(2)衬垫不合适(3)电流、电压不合适(4)电极位置不当(平角焊场合)(1)减小焊接速度(2)使衬垫和母材贴紧(3)调整电流、电压为适当值(4)调整电极位置焊瘤(1)电流过大(2)焊接速度过慢(3)电压太低(1)降低电流(2)加快焊接速度(3)提高电压面余高过大(1)电流过大(2)电压过低(3)焊接速度太慢(4)采用衬垫时,所留间隙不足(5)被焊物件没有放置水平位置(1)降低电流(2)提高电压(3)提高焊接速度(4)加大间隙(5)被焊物件置于水平位置余高过小(1)电流过小(2)电压过高(3)焊接速度过快(4)被焊物件未置于水平位置(1)堤高焊接电流(2)降低电压(3)降枉焊接速度(4)把被焊物件置于水平位置余高过窄(1)焊剂的散布宽度过窄(2)电压过低(3)焊接速度过快(1)焊剂散布费度加大(2)提高电压(3)降低焊接速度焊道表面不光滑(1)焊剂的散布高度过大(2)焊剂粒度选择不当(1)调整散布高度(2)选择适当电流表面压坑(1)在坡口面有锈、油、水垢等(2)焊剂吸潮(3)焊剂散布高度过大(1)清理坡口面(2)t50—300℃烘干1h(3)调整焊剂堆敷高度人字形压痕(1)坡口面有锈、油、水垢等(2)焊剂的吸潮(烧结型)(1)清理坡口面(2)150~300℃,烘干1h。
埋弧焊气孔等缺陷问题分析及预防
埋弧焊气孔等缺陷问题分析及预防鉴于最近本单位结构件焊接前道工序埋弧焊节点频繁出现连续性气孔及咬肉、漏焊等情况,结合相关实践理论,经分析得出以下结论一.气孔的形成,气孔缺陷普遍出现在焊缝中心或焊缝两侧,在焊缝中呈现许多针孔状缺陷,严重时可呈连续性,绵延整个焊缝,分析原因概如:1.焊丝、焊剂潮湿;2.板材跑偏造成成型合缝变形,焊剂被夹在成型缝里;3.原材料表面氧化,截料时断面处未做打磨清理,焊接时,焊接电弧角度不能直接吹烧到位,导致氧化物及氧化粉尘等杂质与液态熔池非正常相熔;二.咬肉(咬边)的形成,此类型缺陷的主要出现在焊缝两侧,在母材与焊缝边沿成条形凹坑状,随焊缝延伸,分析原因如:1.焊接时电流过大,焊接速度与电流的比例不协调;2.焊嘴角度不准,导致焊丝离边距太近;3.焊丝可能存在有硬弯,焊嘴可能松动;三.漏焊的形成原因如1.焊接速度过快,导致焊嘴不能充分吹烧到对接缝根部;2.板材平整度不够,薄板母材铆接点过多受局部高热影响易造成铆点处板材变形,滑轮经过焊接板面时高低起伏,焊嘴从凸起出跳起;3.焊剂喷嘴堵死,滑轮跑偏;四.埋弧焊防范注意事项1.气孔缺陷注意事项1.注意焊丝防水防锈,焊剂使用前的热烘干处理;2.保证截料时板材的平整度,铆接的准确性,避免接板处变形产生缝隙;3.务必清理原材料表面氧化物,截料时断面处必须做打磨除锈清理;2.咬肉(咬边)缺陷注意事项1.确保电流电压及焊接速度的合理性(电流一般是焊丝直径的100~200倍,焊接速度随板材厚度酌情而定);2.掌握好焊嘴角度,焊嘴与焊接根部的距离;3.操作人员应预先查验焊丝可能存在的硬弯,焊嘴可能出现的松动;3.漏焊缺陷注意事项1.注意焊接速度随着板材厚度调整,确保焊嘴能充分的吹烧到对接缝根部;2.原材料截料的板材轧制平整,决定了自动埋弧焊接时的流畅性,务必考虑薄板母材铆接处点数的合理性,以免发生滑轮经过焊接板面时高低起伏,焊嘴从凸起处跳起时,焊嘴偏离焊道引起漏焊,3.操作人员预先查验焊剂喷嘴通畅,滑轮螺丝是否松动,以防引起漏焊。
埋弧焊为什么会产生气孔
埋弧焊为什么会产生气孔?埋弧焊缝产生气孔的主要原因是氢,氢气是由焊材、母材带入电弧区的水分所造成的。
但是电磁偏吹、母材质量不好等也会造成气孔,应根据实际情况具体分析,采取相应防止措施。
(1)焊接材料和坡口门不清洁,是造成气孔的最常见的原因。
焊剂末烘干或烘干不彻底,焊丝表面、坡口表面及邻近区域有油、锈和水分,都会使熔池中含氢量显著增高而产生气孔。
防止氢气孔的方法,是减少氢的来源和创造使氢逸出熔池的条件:①焊剂(包括焊剂垫用的焊剂):应按规定严格烘干。
如果天气潮湿,焊剂从烘箱中取出到使用的时间不能太长,最好能在50度左右温度下保温待用。
回收再用的焊剂要避免被水、尘土等污染。
②严格清除焊丝和坡口两侧20毫米范围内的油、锈和水分。
焊件要随装随焊,如果沾有水分,要将焊接区域烘烤干燥后焊接。
③焊剂粒度要合适,细粉末和灰分要筛除,使焊剂有一定透气性,利于气体跑出。
(2)钢材轧制或热冲压、卷板过程中,形成或脱落的氧化皮,以及定位焊渣壳,碳弧气刨飞渣等夹入焊剂,也会在焊缝中造成气孔。
防止措施:①卷板、弯曲等加工过程中脱落的氧化皮,在装配焊接前要清扫或用压缩空气吹除,防止夹入装配间隙或落入坡口中。
②焊接场地周围要清洁,防止氧化皮、渣壳、碳弧.气刨飞渣混入焊剂。
回收复用的焊剂中,这些杂质的含量往往较多,所以要在多次回用的焊剂中掺进新焊剂o(3)焊剂层太薄、焊接电压过高或网路电压波动较大时,电弧可能穿出焊剂层,使熔池金属受外界空气污染而造成气孔;焊剂粒度太粗时,空气会透过焊剂层污染熔池;悬空焊装配间隙超过0.8毫米时,会造成焊缝中的深气孔。
防止措施:①焊剂层厚度要合适使与焊接规范相适应,焊剂粒度不能过粗,以保证焊接过程中不透出连续弧光o②悬空焊,特别在焊件厚度20毫米以内的悬空焊时,装配间隙不要超过0.8―1毫米o(4)磁偏吹会造成气孔,最容易在用直流焊接薄板时发生,气孔多出现在收尾区域,越近焊缝末端气孔越严重。
这种气孔在焊接较厚焊件时也可能遇到。
埋弧焊常见焊接缺陷的成因分析及对策
埋弧焊常见焊接缺陷的成因分析及对策埋弧焊是一种常用的焊接方法,常见焊接缺陷包括气孔、夹渣、碳化物析出和裂纹等。
下面就这些常见焊接缺陷的成因进行分析,并提出相应的对策。
1.气孔气孔是由于焊口或焊丝表面含有气体、油污、水蒸汽等杂质进入焊缝内,而在焊接过程中被溶解在熔池中形成的孔洞。
气孔的成因主要有以下几个方面:1)焊接金属表面存在污染物;2)熔池热循环不充分,导致气体不能完全从焊缝中逸出;3)焊接材料或熔化金属中的气体含量过高。
对策:1)确保焊材和焊接母材的表面干净,需要进行预处理(如打磨、除油);2)控制焊接电流、电弧稳定,使熔池和热循环达到最佳状态;3)使用低气含量焊材,减少气体溶解在熔池中的机会。
2.夹渣夹渣是指焊缝中出现的包括焊渣在内的非金属夹杂物。
夹渣的成因主要是焊接过程中未能及时清理熔池中的渣滓,导致其残留在焊缝中。
对策:1)控制焊接参数,确保熔池的活动性足够高,便于渣滓从焊缝中浮出;2)焊缝宽度的设定要合理,以便焊工容易清理夹渣;3)确保焊缝两侧的金属表面干净,并采取适当的焊接技术措施,如倾斜角度、填充和推动方式等。
3.碳化物析出碳化物析出是在焊缝中由于熔化金属的冷却速度过慢,导致碳元素和金属元素结合形成的碳化物。
碳化物的成因主要有以下几个方面:1)金属元素成分不稳定,含有高碳或其他容易形成碳化物的合金元素;2)焊接过程中冷却速度过慢,导致碳和合金元素结合。
对策:1)控制焊接工艺参数,提高焊接速度,使熔池的冷却速度加快,减少碳化物的形成;2)选择含有稳定成分的焊接材料,避免含有高碳或其他容易形成碳化物的合金元素。
4.裂纹裂纹是焊接缺陷中最严重的一种,会导致焊接连接的失效。
1)焊接应力过大或应力集中,引发金属的应力超过其承受极限而发生破裂;2)低温下的氢致裂纹,由于焊材或焊接工艺中含氢元素的存在,使焊接过程中氢聚积在焊缝中导致裂纹形成。
对策:1)控制焊接应力,尤其是焊接位置的应力集中区域,采取合适的焊接顺序和焊接参数;2)确保焊接材料和焊接环境的干燥,避免氢聚积导致裂纹的形成。
薄板埋弧焊气孔偏多的缺陷分析和预防措施
薄板埋弧焊气孔偏多的缺陷分析和预防措施薄板埋弧焊是一种广泛应用于制造业的焊接方法。
然而,在这种焊接过程中,经常会出现气孔偏多的缺陷,这不仅影响焊接质量,还可能导致焊接件的性能降低,甚至造成设备事故。
因此,分析薄板埋弧焊气孔偏多的缺陷,找出其原因,采取预防措施,对于提高焊接质量和工作安全具有重要意义。
缺陷分析过多气孔是薄板埋弧焊过程中常见的缺陷之一。
气孔对于焊接件的性能影响很大,容易导致合金元素和温度变化的不稳定,进而影响焊接强度。
因此,我们需要深入分析气孔生成的原因,才能找到解决方法。
气孔的形成原因气孔产生的原因有很多,包括:1.气体污染:焊丝、钢材中含有空气、水蒸气等易挥发物质影响氩气的纯度,使气体中含有过多的氧气和氮气,从而导致气孔的产生。
2.埋弧强度不足:埋弧强度不足会导致弧光不稳定,极易生成气孔。
3.焊缝的凸度和型变:在埋弧焊接过程中,由于主要多是在平板上进行焊接,容易产生焊缝的凸起和往内的弯曲,导致焊缝产生气孔的风险增加。
4.数据参数不合理:焊接过程中,数据参数不合理会导致温度分布不均,从而引发气孔生成。
5.圆周焊接:圆周焊接容易产生气孔,所以要进行圆周焊接时应对焊接姿势和焊丝进行调整。
气孔的分类气孔可以分为两种类型:气体孔和氧化物孔。
气体孔介于导气管中,而氧化物孔则呈粒状或颗粒状。
酸度和氧化物含量越高,则生成气体孔的几率越大。
预防措施针对上述分析,我们可以在薄板埋弧焊接过程中,适当地采取以下预防措施来减少气孔的产生:1.提高气体纯度:采用高纯度氩气可以大大减轻气孔的产生。
2.增强埋弧强度:通过增加电弧电流和延长埋弧时间可以增强埋弧强度,避免弧光不稳定,从而降低气孔的产生。
3.控制焊缝凸度和型变:焊接过程中,应根据焊接部位的形状和尺寸进行正确的焊接姿势调整,减少焊缝的凸起和型变,从而降低气孔的产生。
4.优化数据参数:调整数据参数,合理分布温度,降低气孔的产生率。
5.根据需要调整圆周焊接:若圆周焊接不可避免,则应根据焊接元件的形状和尺寸进行正确的焊接调整,避免产生气孔。