选修2-1第二章2.2椭圆及其标准方程(一)

合集下载

椭圆标准方程课件-高二上学期数学人教A版选修2-1

椭圆标准方程课件-高二上学期数学人教A版选修2-1

思考:当椭圆的焦点在y轴上时,它的标准方程是怎样 的呢
椭圆的标准方程
y2 a2
x2 b2
1
(a b 0)
它表示:
① 椭圆的焦点在y轴
② 焦点是F1(0,-c)、 F2(0,c) ③ c2= a2 - b2
y
F2
P
ox
F1
填表
标准方程
x2 + y2 = 1a > b > 0 y2 + x2 = 1a > b > 0
因此, 所求椭圆的标准方程为x2 y2 1 .
10 6
求椭圆标准方程的方法: (1)定义法; (2)待定系数法; 注意先判断焦点的位置. 探究8、本节课你都学到了哪些知识?
1、椭圆的标准方程
标准方程
x2 + y2 = 1a > b > 0 y2 + x2 = 1a > b > 0
a2 b2
a2 b2
a2 b2
a2 b2
y

图形


y P
F1 O F2
x
F2 P
O
x
F1
焦点坐标
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c

定义
平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
同 点
a、b、c 的关系
a2 = b2 + c2
焦点位置的判断 分母哪个大,焦点就在哪个轴上
并且经过点
, 求它的标准方程.
解: 由椭圆的定义知
2a ( 5 2)2 ( 3)2 ( 5 2)2 ( 3)2 2 10

数学选修2-1~2.2(2)椭圆的标准方程

数学选修2-1~2.2(2)椭圆的标准方程
x a
2 2
y M
F1
0
F2
x

y b
2 2
1(a b 0)
所以:b2=1.52-1.22=0.81 因此,这个椭圆的方程为:
x
2
根据题意:2a=3, 2c=2.4,
2.25

y
2
0.81
1
示例5、将圆 x 2 y 2 4 上的点的横坐标保 持不变,纵坐标变为原来的一半,求所得 的曲线的方程,并说明它是什么曲线。
x
2
依定义知,点A 的轨迹为双曲线(除去顶点)方程为:
4

y
2
12
1 ( y≠0)
请同学们思考:
1.椭圆的两个焦点分别是F1(-8,0)和F2(8,0),且 椭圆上一点到两个焦点的距离之和是20,则此椭圆 方程是_____________。 2.△ABC中,三边a、c、b成等差数列,且a>c>b, 若A(-1,0),B(1,0),则动点C的轨迹方程 为____________。 3. 椭圆 A.5
堂小结(1) 满足几个条件的动点的轨迹叫做椭圆?



(1)平面上----这是大前提; (2)动点 M 到两个定点 F1、F2 的距离之和是 常数 2a; (3)常数 2a 要大于焦距 2c;
MF1 MF2 2 a 2 c
4
椭圆的标准方程(1)
x a
2 2

y b
2 2
2 2
×



2
y b
2 2
1( a , b 0)的焦点坐标为
2
( a b , 0)
×
9
Ex3写出适合下列条件的椭圆的标准方程:

椭圆及其标准方程一优秀教学设计精选全文完整版

 椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。

2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。

教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。

选修2-1:椭圆及其标准方程(一)教案案

选修2-1:椭圆及其标准方程(一)教案案

一、教案背景1、面向学生:高中学科:高二数学2、课时:1课时3、学生课前准备:(1)预习课本,思考:椭圆的定义及标准方程及其推导方法.(2)思考:椭圆定义中应该注意那些.(3)思考:标准方程是如何推导的.二、教学课题:《椭圆及其标准方程》第一课时1、理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程的推导及椭圆的标准方程;2、进一步学习类比、数形结合的数学思想方法,理解坐标法及其应用.3、重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简三、教材分析1、本节教材整体来看是两大块内容:意识椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把用坐标法对椭圆的研究放在了重点位置上.学好椭圆对于学生学好圆锥曲线是非常重要的.2、这节课的重点是椭圆的定义、椭圆的标准方程、坐标化的基本思想;难点是椭圆标准方程的推导与化简,坐标法的应用;标准方程推导的关键是含有两个根式的等式化简.四、教学方法1、用模型结合多媒体课件演示椭圆,再给出椭圆的定义,最后加以强调,加强概念的形成过程教学.2、对椭圆的标准方程的推导,可采用观察、分析、归纳、抽象、概括、自主探究、合作交流的教学方法,调动学生参与课堂教学的主动性和积极性.3、本节课坚持推行“学案引导——自主学习——合作探究——精讲点拨——巩固练习”的课堂教学模式,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五、教学过程课前预习,搜寻问题1、椭圆的定义及注意事项:2、椭圆的标准方程的推导:3、椭圆的标准方程有那几种形式:课内探究,答疑解惑一、创设情景、引入概念首先用多媒体演示“神州七号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.★问一:“神州七号”飞船绕地球旋转的轨迹是什么图形?二、尝试探究、形成概念学生实验:按课本上介绍的方法,学生用一块纸板,两个图钉,一根无弹性的细绳尝试画椭圆.实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?椭圆的定义:找定义的关键处:①平面曲线;②任意一点到两个定点的距离的和等于常数;③常数大于| F1F2|.三、标准方程的推导归纳求曲线方程的一般步骤:建系→设点→列出方程→化简方程.建系一般应遵循简单、优化的原则.★问二:怎样建立坐标系,才能使求出的椭圆方程最为简单?推导过程:思考:观察右图,能从中找出表示,a c12222=+byax.(0a b>>)此即为椭圆的标准方程.它所表示的椭圆的焦点在x轴上,焦点是)0,()0,(21cFcF-,中心在坐标原点的椭圆方程.M2F1F★问三:如果椭圆的焦点F 1,F 2在y 轴上,线段F 1F 2的垂直平分线为x 轴,a ,b ,c 意义同上,椭圆的方程形式又如何?注意理解以下几点:① 在椭圆的两种标准方程中,都有0>>b a 的要求;② 在椭圆的两种标准方程中,由于22a b >,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③ 椭圆的三个参数,,a b c 之间的关系是222a b c =+,其中0,0,a b a c b c >>>>和 大小不确定.四、尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?2、 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()04,-、()04,,椭圆上一点到两焦点距离的和等于10;变式一:将上题焦点改为(0,-4)、(0,4), 结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P 到两焦点的距离和等于10,结果如何?五、典例分析:例:写出适合下列条件的椭圆的标准方程两个焦点的坐标分别是()20-,、()20,,并且经过点P ⎪⎭⎫⎝⎛-2523,. 11)4(2222=++m y m x 123)3(22-=--y x 0225259)2(22=--y x 11625)1(22=+y x六、课堂练习1.写出适合下列条件的椭圆的标准方程:(1)a =4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.2.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为 .课后反思,巩固练习1、课后反思与体验<1>、本节课我学到了哪些知识,是用什么方法学会的?<2>、我还有什么知识没有掌握,是什么原因导致的?<3>、我从老师和同学那儿学到了哪些好的学习方法?<4>、通过上述的回顾评价一下自己本节课的表现。

选修2-1《椭圆及其标准方程》(第一课时)教案

选修2-1《椭圆及其标准方程》(第一课时)教案

椭圆及其标准方程(第一课时)教案一.教材及学情分析:本节课是《普通高中课程标准实验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修2-1第二章第二节《椭圆及其标准方程》第一课时.用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线.圆锥曲线的发现与研究始于古希腊.当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广.17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线.在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想.解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系.在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.在选修2中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值.根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持.二.教学目标:1.知识与技能目标:①理解椭圆的定义②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力②学会用坐标化的方法求动点轨迹方程③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三.重、难点重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简四.教法分析新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课采用让学生动手实践、自主探究、合作交流及教师启——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人.五.教学过程创设情境——提出问题,学生活动——体验数学,意义建构——感知数学,数学理论——建立数学,数学应用——巩固新知,回顾反思——归纳提炼,课后作业——巩固提高(一)创设情境——提出问题以折纸游戏创设问题情境请学生将课前统一发放的圆形纸片拿出来,并按如下步骤进行操作:1.将圆心记作点,然后在圆内任取一定点2.在圆周上任取10个点,分别记作,将它们与圆心相连,得半径3.折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;然后再次折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;……;依此类推,最后折叠圆形纸片,使点与点重合,将折痕与半径的交点记作4.用平滑曲线顺次连接点,你有何发现?设计意图:使学生产生学习兴趣和探索欲望(二)学生活动——体验数学1.学生通过动手实践、观察,猜想轨迹为椭圆2.展示学生成果3.用几何画板展示动点生成轨迹的全过程,印证猜想4.展示椭圆实际应用的幻灯片5.导出新课:看来,大家对椭圆并不陌生,但细想想,我们对椭圆也说不上有多熟悉,除了“她”的名字和容貌,我们对“她”的品性几乎还一无所知.数学是一门严谨的科学,我们不能满足于直观感受、浅尝辄止,我们希望对椭圆有更深刻的认识,比如:椭圆上所有的点所具有的共同的几何特征是什么?——椭圆的定义;能否用代数方法精确地刻画出这种共同的几何特征?——椭圆的标准方程.这就是我们这节课的重点内容.设计意图:从折纸游戏中导出新课,明确研究课题(三)意义建构——感知数学椭圆定义的初步生成学生每4人一组,合作探究,在刚才的折纸游戏中,折痕与对应半径的交点的共同属性,教师巡视指导.如学生有困难,可按如下提示铺设认知阶梯:如何用数学语言表达点与定点重合——点与定点关于折痕轴对称对称轴有什么特点——折痕即对称轴是线段的垂直平分线线段垂直平分线上的点有什么几何性质——到线段两个端点距离相等,即动点与定点之间有什么关系——请学生代表本小组交流探究结论——与两个定点的距离之和等于常数的点的轨迹叫做椭圆(四)数学理论——建立数学1.椭圆定义的完善提出问题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲.那么,这个常数可以是任意正实数吗?有什么限制条件吗?如何体现点在定圆的内部?引导学生回答:点在定圆的内部即点到圆心的距离小于圆的半径,也就是,从而意识到在“定义”中需要加上“常数>”的限制.应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数=时,与两个定点的距离之和等于常数的点的轨迹是线段;当常数<时,与两个定点的距离之和等于常数的点的轨迹不存在.请学生给出经过修改的椭圆定义,教师用幻灯片给出完善的椭圆定义,并介绍焦点、焦距的定义.设计意图:使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风2.椭圆的标准方程(1)回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性(2)建立焦点在轴上的椭圆的标准方程①建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?——利用椭圆的对称性特征以直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系.设焦距为,则.设为椭圆上任意一点,点与点的距离之和为.②动点满足的几何约束条件:③坐标化:④化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号预案一:移项后两次平方法链接到几何画板,分析的几何含义,令得到焦点在轴上的椭圆的标准方程为设计意图:进一步熟悉用坐标法求动点轨迹方程的方法掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神感受数学的简洁美、对称美(3)建立焦点在轴上的椭圆的标准方程要建立焦点在轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在轴上的椭圆的标准方程转化为焦点在轴上的椭圆的标准方程.只需将图(1)沿直线翻折或将图(1)绕着原点按逆时针方向旋转即可转化成图(2),需将轴、轴的名称换为轴、轴或轴、轴.(1) (2) 焦点在轴上的椭圆的标准方程为设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动(4)辨析焦点分别在轴、轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较与项分母的大小即可.若项分母大,则焦点在轴上;若项分母大,则焦点在轴上.反之亦然.联系:它们都是二元二次方程,共同形式为两种情况中都有(五)数学应用——巩固新知例1:判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点和点的距离之和为6的点的轨迹;(是)(2)到点和点的距离之和为4的点的轨迹;(不是)(3)到点和点的距离之和为6的点的轨迹;(是)(4)到点和点的距离之和为4的点的轨迹;(是)设计意图:巩固椭圆定义例2:已知椭圆的两个焦点的坐标分别是,椭圆上一点M 到的距离之和为4,求该椭圆的标准方程.设计意图:学会用待定系数法求椭圆标准方程变式一:已知椭圆的两个焦点的坐标分别是,椭圆上一点M 到的距离之和为4,求该椭圆的标准方程.设计意图:提醒学生在解题时先要根据焦点位置判断使用哪种形式的椭圆标准方程 变式二:已知椭圆的两个焦点分别是,椭圆经过点,求该椭圆的标准方程. ()22221222335321142132222143a MF MF a cb ac x y ⎛⎫=+=+++=+=∴==∴=-= ⎪⎝⎭∴+=解:椭圆的标准方程为设计意图:使学生体会椭圆定义在解题中的重要作用(六)回顾反思——归纳提炼1.知识点:椭圆的定义及其标准方程2.数学方法:用坐标化的方法求动点轨迹方程3.数学思想:数形结合思想、化归思想(七)课后作业,巩固提高1.必做题:课本49页习题2.2 A组2,5(1)(2),6,92.思考题:(1)在化简椭圆方程的过程中有成立,该式有什么几何含义?你能从函数观点看待等式右端的代数式吗?你能用函数单调性解释椭圆上的点与焦点间距离的变化情况吗?(2)将稍作变化即可得到,两个代数式的商为常数,它又有什么几何含义?设计意图:为引入椭圆第二定义及焦半径公式作适当铺垫,体现数学知识之间的联系,培养学生养成深入思考的习惯.《椭圆及其标准方程》教学设计说明我在进行《椭圆及其标准方程》教学设计过程中力图在如下三方面作文章,以期能有所突破和创新.一.椭圆定义的生成(方案一)用圆柱状水杯盛半杯水,将水杯放在水平桌面上,截面为圆形.当端起水杯喝水时,水杯倾斜,再观察水平面,此时截面为椭圆形.看来,椭圆是与圆有着密切关系的一种曲线.圆是到定点距离等于定长的点的轨迹,根据圆的定义,用一根细绳就可画出一个圆.将细绳的一贯固定在黑板上,在另一端系上一支粉笔,将细绳绷紧并绕固定端点旋转一周即可.将圆心从一点“分裂”成两点,将细绳的两端固定在这两点,用粉笔挑起细绳并绷紧,移动粉笔,即可画出一个椭圆.再根据椭圆画法,从中归纳椭圆定义——与两个定点的距离之和为定长(绳长)的点的轨迹为椭圆(绳长大于两定点间距离).(方案二)实际授课时所采用的折纸游戏法两种方案比较各有优势.方案一基本上是教材中所介绍的方法,只是在画椭圆之前做了些铺垫工作,从日常喝水这样一个熟悉的情景中引出话题,突出椭圆与圆的联系,过渡自然、节约时间,但缺点是从椭圆画法中概括椭圆定义过于显性,没有给学生留下足够的探究空间.方案二实际上是由课本49页习题2.2A组第7题改编而成,原题为:圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点.线段AP的垂直平分线和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是什么?为什么?该方案趣味性较强,能充分调动学生的学习兴趣和探究欲望,椭圆定义相对较隐性,为学生探究留下一定余地,但学生活动用时较长,需要教师合理控制折纸活动和探究交流时间,以防完不成教学计划.新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.教师应努力改变教学观念,切实改进学生的学习方式,使学生真正成为学习的主人.因此,最终采用了方案二,不为教学进度所累,放弃繁难习题演练,采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,按照“创设情境——学生活动——意义建构——数学理论——数学应用——回顾反思——巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,充分尊重学生作为学习主体的情感、认知水平和发展需求,使数学概念自主建构生成势必比被动接受教师灌输式讲授会取得更好效果.二.椭圆方程的推导在选修2中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.在教师教学用书中明确指出,不仅要求学生能化简得到椭圆的标准方程,还要求学生掌握化简含根号等式的方法.因此,在教学设计中,我在这一部分作了较为充分的准备,除教材中介绍的移项后两次平方这种方法,又准备了两个预案:引入共轭无理数对和等差数列.在实际教学中,学生思维活跃,三种方案都得以实施,学生感受到了数学知识间的普遍联系,更感受到了创新思维带来的成就感和满足感,教师确实做到了既讲结果,更重过程和方法.在讲解焦点在轴上的椭圆的标准方程时,教材只是一带而过,“容易知道,此时(焦点在轴上)椭圆的标准方程是”,没有过程.其实这是培养学生运用化归思想解决问题的一个很好的机会,引导学生抓住事物间联系,化未知为已知,用已知解决未知,可以通过翻折和旋转的方式实现图形变换,从而利用焦点在轴上椭圆的标准方程得到焦点在轴上椭圆的标准方程,避免繁琐、重复的推导过程.三.思考题引导学生对椭圆方程推导过程中产生的作进一步思考,为后续引入椭圆的第二定义及焦半径公式作适当铺垫.现行教材对椭圆的焦半径公式、椭圆第二定义及圆锥曲线统一定义等知识呈弱化趋势,仅通过一个具体的例子使学生感受椭圆的另外一种定义方式,学生会感觉很突兀,为什么到定点的距离与到定直线的距离之比是一个常数(常数在0、1之间)的点的轨迹就是椭圆呢?椭圆第一定义与第二定义之间有何联系?认真研究思考题,学生就可从中找到这些问题的答案,从而深刻体会到知识的形成过程中蕴含着丰富内容,从而自觉改变只重结果和习题演练而轻视过程的功利主义学习方法,自觉将目光转移到对知识本身的探求过程中来,学会发现问题和解决问题的方法,终身学习能力也会在这一过程中逐渐提高.。

【高中数学选修2-1】2.2.1椭圆及其标准方程PPT课件

【高中数学选修2-1】2.2.1椭圆及其标准方程PPT课件

14

定义
图形
方程 焦点 a,b,c之间的关系
|MF1|+|MF2|=2a (2a>2c>0)
y
y
M
F2 M
F1 o F2 x
x2 a2
by22
1ab0
ox
F1
y2 a2
bx22
1ab0
F(±c,0)
F(0,±c)
c2=a2-b2
注:
共同点:椭圆的标准方程表示的一定是焦点在坐标轴上, 中心在坐标原点的椭圆;方程的左边是平方和,右边是1.
x2 y2 1
a2
b2
(a>b >0)由椭圆定
义知 2 a (5 2 )2 ( 3 )2(5 2 )2 ( 3 )2 210
2
22
2
所以 a 10 ,又因为 c2 ,所以 b 2 a 2 c 2 1 4 0 6
因此,椭圆的标准方程为
x2
y2
1
10 6
待定系数法
2021
21
练习、求满足下列条件的椭圆的标准方程:
定点F1、F2叫做椭圆 的焦点。
两焦点之间的距离叫
做焦距(2c)。
2021
M1FM2F2a
(2a>2c)
M
F2
F1
7
数学实验
• [1]在平面内,任取两个 定点F1、F2 ;
• [2]取一细绳并将细绳 (大于两定点的距离) 的两端分别固定在F1、 F2两点 ;
• [3]用笔尖(点M)把细 绳拉紧,慢慢移动笔尖 看看能画出什么图形?
演示1
演示2 2021
若改为小于或等于将 是什么情况?
M
F1
F2

第2章2.2.2 椭圆的简单几何性质(一)

第15页
高考调研 ·新课标 ·数学选修2-1
例 2 根据下列条件,求中心在原点,对称轴在坐标轴上的 椭圆方程.
(1)焦点在 x 轴上,一个焦点与短轴的两端点连线互相垂直, 且半焦距为 6;
(2)与椭圆x92+y42=1 有相同的焦点,且离心率 e= 55; (3)以直线 3x+4y-12=0 与两坐标轴的交点分别作为顶点 和焦点.
第25页
高考调研 ·新课标 ·数学选修2-1
互动 2 (1)ba与bc的大小能刻画椭圆的扁平程度吗?为什 么?
(2)你能运用三角函数的知识解释,为什么 e=ca越大,椭圆 越扁?e=ac越小,椭圆越圆?
第26页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)都能.由ba= a2-a2 c2= 1-e2(0<e<1)可知, 当 e 越趋近于 1 时,ba越趋近于 0,椭圆越扁;当 e 越趋近于 0 时, ba越趋近于 1,椭圆越接近于圆.当且仅当 a=b 时,c=0,两焦 点重合,图形变为圆,方程为 x2+y2=a2.
【解析】 把已知方程化成标准方程为2y52 +x2=1. 这里 a=5,b=1,所以 c= 25-1=2 6. 因此,椭圆的长轴和短轴的长分别是 2a=10 和 2b=2,两个焦 点分别是 F1(0,-2 6),F2(0,2 6),椭圆的四个顶点是 A1(0,- 5),A2(0,5),B1(-1,0)和 B2(1,0).
第29页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)将椭圆方程 4x2+9y2=36 化为标准方程x92+y42
=1,则 a2=9,b2=4,所以 a=3,c= a2-b2= 5,故离心率 e = 35;椭圆2x52+2y02 =1 中,a2=25,b2=20,则 a=5,c= a2-b2

高中数学第2章2.2椭圆2.2.1椭圆的标准方程讲义(含解析)苏教版选修2_1

2.2.1 椭圆的标准方程[对应学生用书P20]在平面直角坐标系中,已知A (-2,0),B (2,0),C (0,2),D (0,-2).问题1:若动点P 满足PA +PB =6,设P 的坐标为(x ,y ),则x ,y 满足的关系式是什么? 提示:由两点间距离公式得 (x +2)2+y 2+(x -2)2+y 2=6, 化简得x 29+y 25=1.问题2:若动点P 满足PC +PD =6,设P 的坐标为(x ,y ),则x 、y 满足什么关系? 提示:由两点间距离公式得x 2+(y -2)2+x 2+(y +2)2=6,化简得y 29+x 25=1.椭圆的标准方程焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 焦点坐标(±c,0)(0,±c )a 、b 、c 的关系c 2=a 2-b 21.标准方程中的两个参数a 和b ,确定了椭圆的形状和大小,是椭圆的定形条件.a ,b ,c 三者之间a 最大,b ,c 大小不确定,且满足a 2=b 2+c 2.2.两种形式的标准方程具有共同的特征:方程右边为1,左边是两个非负分式的和,并且分母为不相等的正值.当椭圆焦点在x 轴上时,含x 项的分母大;当椭圆焦点在y 轴上时,含y 项的分母大,已知椭圆的方程解题时,应特别注意a >b >0这个条件.[对应学生用书P20]待定系数法求椭圆标准方程[例1] 求适合下列条件的椭圆的标准方程: (1)经过两点(2,-2),⎝ ⎛⎭⎪⎫-1,142; (2)过点(3,-5),且与椭圆y 225+x 29=1有相同的焦点.[思路点拨] (1)由于椭圆焦点的位置不确定,故可分焦点在x 轴上和在y 轴上两种情况进行讨论.也可利用椭圆的一般方程Ax 2+By 2=1(其中A >0,B >0,A ≠B ),直接求A ,B .(2)求出焦点,然后设出相应方程,将点(3,-5)代入,即可求出a ,b ,则标准方程易得.[精解详析] (1)法一:若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由已知条件得⎩⎪⎨⎪⎧ 4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎪⎨⎪⎧ 1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由已知条件得⎩⎪⎨⎪⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎪⎨⎪⎧1b 2=18,1a 2=14.即a 2=4,b 2=8,则a 2<b 2,与题设中a >b >0矛盾,舍去. 综上,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).将两点(2,-2),⎝ ⎛⎭⎪⎫-1,142代入,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎪⎨⎪⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.(2)因为所求椭圆与椭圆y 225+x 29=1的焦点相同,所以其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在椭圆上,所以()-52a 2+(3)2b2=1,即5a 2+3b2=1.②由①②得b 2=4,a 2=20, 所以所求椭圆的标准方程为y 220+x 24=1. [一点通] 求椭圆标准方程的一般步骤为:1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0),(4,0),且椭圆经过点(5,0); (2)经过两点P ⎝ ⎛⎭⎪⎫13,13,Q ⎝ ⎛⎭⎪⎫0,-12. 解:(1)由已知得:c =4,a =5.b 2=a 2-c 2=25-16=9.故所求椭圆方程为x 225+y 29=1.(2)设椭圆方程为Ax 2+By 2=1.(A >0,B >0,A ≠B ) 由已知得,⎩⎪⎨⎪⎧19A +19B =1,14B =1,解得:⎩⎪⎨⎪⎧B =4,A =5,故所求椭圆方程为y 214+x 215=1.2.求适合下列条件的椭圆的方程.(1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆经过点(2,0)和(0,1), ∴⎩⎪⎨⎪⎧22a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1,故所求椭圆的标准方程为x 24+y 2=1. (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为y 2a 2+x 2b2=1(a >b >0).∵P (0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8, ∴b 2=a 2-c 2=36, ∴所求椭圆的标准方程是y 2100+x 236=1.椭圆标准方程的讨论[例2] 已知方程x 2·sin α-y 2·c os α=1(0≤α≤2π)表示椭圆. (1)若椭圆的焦点在x 轴上,求α的取值范围. (2)若椭圆的焦点在y 轴上,求α的取值范围.[思路点拨] (1)已知的方程不是椭圆的标准形式,应先化成标准方程.(2)对于椭圆方程x 2m +y 2n=1(m >0,n >0,m ≠n )可由m ,n 的大小确定椭圆焦点的位置,列出三角不等式后求α的范围.[精解详析] 将椭圆方程x 2·sin α-y 2·cos α=1(0≤α≤2π)化为标准形式为x 21sin α+y 21-cos α=1(0≤α≤2π). (1)若方程表示焦点在x 轴上的椭圆, 则1sin α>-1cos α>0,即⎩⎪⎨⎪⎧ α∈⎝ ⎛⎭⎪⎫π2,π,tan α>-1,所以34π<α<π.即α的取值范围是⎝ ⎛⎭⎪⎫3π4,2π.(2)若方程表示焦点在y 轴上的椭圆, 则-1cos α>1sin α>0,即⎩⎪⎨⎪⎧α∈⎝ ⎛⎭⎪⎫π2,π,tan α<-1,所以π2<α<3π4.即α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4.[一点通] 对于讨论椭圆方程中参数的取值范围问题,一般的解题方法是根据题设条件给出的焦点位置,结合对应的标准方程应满足的条件,建立一个含参数的不等式组,通过求解不等式组得到参数的取值范围.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:由于椭圆的焦点在x 轴上,所以⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0a >-6.解得a >3或-6<a <-2.答案:(3,+∞)∪(-6,-2) 4.已知方程x 2k -5+y 23-k=-1表示椭圆,求k 的取值范围.解:方程x 2k -5+y 23-k=-1可化为x 25-k+y 2k -3=1,由椭圆的标准方程可得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,得3<k <5,且k ≠4.所以满足条件的k 的取值范围是{k |3<k <5,且k ≠4}.椭圆的定义及标准方程的应用[例3] 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.[思路点拨] 根据椭圆的标准方程知PF 1+PF 2=4,结合面积公式和余弦定理找到PF 1和PF 2的关系求解.[精解详析] 由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,F 1F 2=2c =2,在△PF 1F 2中,由余弦定理,得PF 22=PF 21+F 1F 22-2PF 1·F 1F 2cos 120°,即PF 22=PF 21+4+2PF 1.① 由椭圆定义,得PF 1+PF 2=4, 即PF 2=4-PF 1.② ②代入①解得PF 1=65.∴S △PF 1F 2=12PF 1·F 1F 2·sin 120°=12×65×2×32=335, 即△PF 1F 2的面积是3 35.[一点通] 在椭圆中,由三条线段PF 1,PF 2,F 1F 2围成的三角形称为椭圆的焦点三角形.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出PF 1+PF 2=2a ,利用这个关系式便可求出结果,因此回归定义是求解椭圆的焦点三角形问题的常用方法.5.已知两定点F 1(-1,0)、F 2(1,0),且F 1F 2是PF 1与PF 2的等差中项,则动点P 的轨迹方程是________.解析:∵F 1(-1,0),F 2(1,0),∴F 1F 2=2. ∵F 1F 2是PF 1与PF 2的等差中项, ∴2F 1F 2=PF 1+PF 2,即PF 1+PF 2=4,∴点P 在以F 1,F 2为焦点的椭圆上, ∵2a =4,a =2,c =1,∴b 2=3. ∴椭圆的方程是x 24+y 23=1.答案:x 24+y 23=16.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,则△F 1PF 2的面积等于________.解析:由x 29+y 24=1,得a =3,b =2,∴c 2=a 2-b 2=5.∴c = 5.∴F 1F 2=2 5. 由⎩⎪⎨⎪⎧PF 1+PF 2=6,PF 1∶PF 2=2∶1,得⎩⎪⎨⎪⎧PF 1=4,PF 2=2.∴PF 21+PF 22=F 1F 22. ∴△F 1PF 2为直角三角形. ∴S △F 1PF 2=12PF 1·PF 2=4.答案:47.如图,已知F 1,F 2是椭圆x 2100+y 236=1的两个焦点.(1)若椭圆上一点P 到焦点F 1的距离等于15,那么点P 到另一个焦点F 2的距离是多少? (2)过F 1作直线与椭圆交于A ,B 两点,试求△ABF 2的周长. 解:由椭圆的标准方程可知a 2=100,所以a =10.(1)由椭圆的定义得PF 1+PF 2=2a =20,又PF 1=15,所以PF 2=20-15=5,即点P 到焦点F 2的距离为5.(2)△ABF 2的周长为AB +AF 2+BF 2=(AF 1+BF 1)+AF 2+BF 2=(AF 1+AF 2)+(BF 1+BF 2). 由椭圆的定义可知AF 1+AF 2=2a ,BF 1+BF 2=2a ,故AB +AF 2+BF 2=4a =40.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.[对应课时跟踪训练(八)]1.若椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为________.解析:由椭圆定义知,a =5,P 到两个焦点的距离之和为2a =10,因此,到另一个焦点的距离为5.答案:52.椭圆25x 2+16y 2=1的焦点坐标是________.解析:椭圆的标准方程为x 2125+y 2116=1,故焦点在y 轴上,其中a 2=116,b 2=125,所以c2=a 2-b 2=116-125=9400,故c =320.所以该椭圆的焦点坐标为⎝⎛⎭⎪⎫0,±320.答案:⎝⎛⎭⎪⎫0,±3203.已知方程(k 2-1)x 2+3y 2=1是焦点在y 轴上的椭圆,则k 的取值范围是________. 解析:方程(k 2-1)x 2+3y 2=1可化为x 21k 2-1+y 213=1. 由椭圆焦点在y 轴上,得⎩⎪⎨⎪⎧k 2-1>0,1k 2-1<13.解之得k >2或k <-2.答案:(-∞,-2)∪(2,+∞)4.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析:由题意,知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.答案:85.已知P 为椭圆x 225+4y275=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,则△F 1PF 2的面积为________.解析:在△F 1PF 2中,F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°,即25=PF 21+PF 22-PF 1·PF 2.① 由椭圆的定义,得 10=PF 1+PF 2.②由①②,得PF 1·PF 2=25,∴S △F 1PF 2=12PF 1·PF 2sin 60°=25 34.答案:25 346.求适合下列条件的椭圆的标准方程:(1)以(0,5)和(0,-5)为焦点,且椭圆上一点P 到两焦点的距离之和为26; (2)以椭圆9x 2+5y 2=45的焦点为焦点,且经过M (2,6). 解:(1)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0).∵2a =26,2c =10,∴a =13,c =5. ∴b 2=a 2-c 2=144. ∴所求椭圆的标准方程为y 2169+x 2144=1. (2)法一:由9x 2+5y 2=45, 得y 29+x 25=1,c 2=9-5=4, 所以其焦点坐标为F 1(0,2),F 2(0,-2).设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由点M (2,6)在椭圆上,所以MF 1+MF 2=2a ,即2a =(2-0)2+(6-2)2+(2-0)2+(6+2)2=43, 所以a =23,又c =2,所以b 2=a 2-c 2=8, 所以所求椭圆的标准方程为y 212+x 28=1. 法二:由法一知,椭圆9x 2+5y 2=45的焦点坐标为F 1(0,2),F 2(0,-2),则设所求椭圆方程为y 2λ+4+x 2λ=1(λ>0),将M (2,6)代入,得6λ+4+4λ=1(λ>0), 解得λ=8或λ=-2(舍去). 所以所求椭圆的标准方程为y 212+x 28=1.7.如图,设点P 是圆x 2+y 2=25上的动点,点D 是点P 在x 轴上的投影,M 为PD 上一点,且MD =45PD ,当P 在圆上运动时,求点M 的轨迹C 的方程.解:设M 点的坐标为(x ,y ),P 点的坐标为(x P ,y P ),由已知易得⎩⎪⎨⎪⎧x P =x ,y P =54y .∵P 在圆上,∴x 2+(54y )2=25.即轨迹C 的方程为x 225+y 216=1.8.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r , 则|MA |=r ,|MB |=8-r , ∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8, ∴a =4,c =3, ∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.。

高中数学 第二章 圆锥曲线与方程 2.2 椭圆预习案 新人教A版选修2-1(2021年整理)

山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省忻州市2016-2017学年高中数学第二章圆锥曲线与方程2.2 椭圆预习案新人教A 版选修2-1的全部内容。

2.2 椭圆§2.2。

1 椭圆及其标准方程(一)【教学目标】1.知识与技能:掌握椭圆的定义;了解椭圆标准方程的推导过程,熟记椭圆标准方程;会根据条件求椭圆的标准方程;掌握椭圆方程中的参数a、b、c的关系.2。

过程与方法:借助课件展示椭圆轨迹的产生,让学生经历椭圆的形成过程,师生共同推导标准方程,体会坐标法在平面解析几何中的应用,感受数学推理的严密.3.情感态度价值观:椭圆的定义及标准方程是本章的重点,也是高考经常涉及的考点;体会数与形的内在联系和完美统一,激发学生的求知欲.【预习任务】阅读教材P38—40,回答:1.(1)写出椭圆的定义.椭圆的焦点、焦距,椭圆定义中,有哪些特别注意事项;(2)若常数=|F1F2|,则动点的轨迹是什么?;若常数<|F1F2|,则动点的轨迹是否存在?2.建立适当坐标系,推导椭圆的标准方程.3.根据椭圆的标准方程如何确定焦点所在的位置?4.找出右图中能表示a,b,c的所有线段.写出a,b,c 的关系式并体会它们的大小关系.B ACDF1F2【自主检测】1。

已知两点A(0,—3)、B(0,3),由下列条件,分别写出点M的轨迹方程(1)|MA|+|MB|=8 (2) |MA|+|MB|=62.课本P42练习1,2,3【组内互检】椭圆的定义.椭圆的焦点、焦距及标准方程§2.2。

2012高中数学 第2章2.2.1椭圆及其标准方程课件 新人教A版选修2-1


思路点拨】 解答本题可先利用a, , 三 【 思路点拨 】 解答本题可先利用 , b,c三 者关系求出|F 者关系求出 1F2|, 再利用定义及余弦定理求 , 出|PF1|、|PF2|,最后求出 △F1PF2. 、 ,最后求出S△
x y 【解】 在椭圆 + =1 中,a=4,b=3,所 = , = , 16 9 以 c= 7. = 在椭圆上,所以|PF1|+|PF2|=8,① + = , 因为点 P 在椭圆上,所以 ∵∠F 在△PF1F2 中,∵∠ 1PF2=60°,根据余弦定理 , 可得: 可得: |PF1|2+|PF2|2-2|PF1|·|PF2|·cos 60°=|F1F2|2 = =28,② ,
问题探究
平面内动点M满足 平面内动点 满足|MF1|+ |MF2|= 2a, 当 2a= 满足 + = , = |F1F2|时 , 点 M的轨迹是什么 ? 当 2a<|F1F2|时呢 ? |时 M的轨迹是什么 的轨迹是什么? |时呢 时呢? 的轨迹是线段F 提示: 时 的轨迹是线段 提示 : 当 2a=|F1F2|时, 点 M的轨迹是线段 1F2 ; = 当2a<|F1F2|时,不表示任何轨迹. 时 不表示任何轨迹.
利用椭圆的定义求轨迹方程 用定义法求椭圆方程的思路是: 先观察、 用定义法求椭圆方程的思路是 : 先观察 、 分 析已知条件, 析已知条件 , 看所求动点轨迹是否符合椭圆 的定义, 若符合椭圆的定义, 的定义 , 若符合椭圆的定义 , 则用待定系数 法求解即可. 法求解即可. 例2 已知动圆 过定点 - 3,0), 并且内切 已知动圆M过定点 过定点A(- , 于定圆B: - 于定圆 : (x- 3)2 + y2 = 64, 求动圆圆心 的 , 求动圆圆心M的 轨迹方程. 轨迹方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MF1 MF2 2a ,尝试推导椭圆的方程。
M
F1
F2
思考:如何建立坐标系,使求出的方程更为简单? 将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。 方案一 方案二 y y M O x M O
F2 F2
x
F1
F1
按方案一建立坐标系,师生研讨探究得到椭圆标准方程
(4)椭圆焦点的位置由标准方程中分母的大小确定; (5)求椭圆标准方程时,可运用待定系数法求出 a,b 的值。 2、 在归纳总结的基础上,填下表
标准方程
x2 y2 + =1 (a b 0) a2 b2
y M
y2 x2 + =1 (a b 0) a2 b2
y
F2 F2
x M O x
图形
1
M O x
P1
(六)变式训练,探索创新 1、 写出适合下列条件的椭圆标准方程 (1) a 1, b 1,焦点在 x 轴上; (2)焦点在 x 轴上,焦距等于 4,并且经过点 P (3,2 6 ) ; (3) a c 10, a c 4 。
2、 若方程
y2 x2 1 表示焦点在 y 轴上的椭圆,则 k 的范围 2 k k 1
2 2
3 5 , )。 2 2
(2)若椭圆经过两点 P ( 5 , ), Q ( 2 2 , ), 求椭圆标准方程。 (3)若椭圆 2kx ky 1的一个焦点是 (0,4) ,则 k 的值为
2 2
4 3
2 3
。பைடு நூலகம்
(A)
1 1 (B)8 (C) (D)32 8 32
例 3、如图,已知一个圆的圆心为坐标原点,半径为 2,从这个圆上任意一点 P 向 x 轴作垂线段 PP ,求线 1 y P 段 PP 中点 M 的轨迹。
教辅资源 教学 目标 分析 知识与技能
过程与方法
重点 分析 难点 分析 主要教学方法
情感态度与 价值观 具体细化内 容和确定依 据
教 学 过 程
一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、 概括椭圆定义 引导学生概括椭圆定义 M

3、 已知 B,C 是两个定点, BC 6, 且ABC 周长为 16,求顶点 A 的轨迹方程。 4、 已知椭圆 mx y 8与9 x 25y 100的焦距相等,求实数 m 的值。
2 2 2 2
x2 y2 1 上求一点,使它与两个焦点连线互相垂直。 5、 在椭圆上 45 20
(四)归纳概括,方程特征 1、 观察椭圆图形及其标准方程,师生共同总结归纳 (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴; (2)椭圆标准方程形式:左边是两个分式的平方和,右边是 1; (3)椭圆标准方程中三个参数 a,b,c 关系: b a c (a b 0) ;
2 2 2
个性化设计与改进
F1
F2
椭圆定义:平面内与两个定点 F1 , F2 距离的和等于常数(大于 F1 F2 )的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为 F1 , F2 的椭圆上任一点 M,有什么性质? 令椭圆上任一点 M,则有 MF MF2 2a(2a 2c F1 F2 ) 1 (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? 2、研讨探究 问题:如图已知焦点为 F1 , F2 的椭圆,且 F1 F2 =2c,对椭圆上任一点 M,有
椭圆及其标准方程(一)
年级
教学 资源 分析
高二
课题内容 课程标准 考试说明
科目____
数学
__ _
主备教师____
__
备课组长审核
时间 2013.12
椭圆及其标准方程(一)
课程标准: 基本要求: 1。经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 2。通过圆锥曲线的学习,进一步体会数形结合的思想。
F1
O
F1
a,b,c 关系 焦点坐标 焦点位置
b2 a2 c2 (c,0)
在 x 轴上
b2 a2 c2 (0,c)
在 y 轴上
(五)例题研讨,变式精析 例1、 求适合下列条件的椭圆的标准方程 (1)两个焦点的坐标分别是 (4,0), (4,0) ,椭圆上一点 P 到两焦点距离和等于 10。 (2)两焦点坐标分别是 (0,2), (0,2) ,并且椭圆经过点 ( (3) a b 10, c 2 5 。 例 2、 (1)若椭圆标准方程为 16x 9 y 144 求a, b 及焦点坐标。 ,
6、 已知 P 是椭圆
y2 x2 1 上一点,其中 F1 , F2 为其焦点且 F1 PF2 60 ,求三解形 F1 PF2 面积。 100 64
(七)小结归纳,提高认识 师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。 (八)作业训练,巩固提高 一课一练
板书设计: 课 题 1、椭圆的定义 2、有关概念 3、标准方程 (1)焦点在 x 轴上 (2)焦点在 y 轴上 例 2: (1)详解 (2)关键步骤 椭 圆 标 准 方 程 的 推导 过 程 例 1:分析思路
x2 y2 + =1( a b 0 ) ,其中 b2 = a2-c2 ( b > 0 ); a2 b2
y2 x2 选定方案二建立坐标系,由学生完成方程化简过程,可得出 2 + 2 =1,同样也有 a2-c2 = b2 ( b > 0 )。 b a
教师指出:我们所得的两个方程
x2 y2 y2 x2 + 2 =1 和 2 + 2 =1( a b 0 )都是椭圆的标准方程。 a2 b b a
高考要求: 1.掌握椭圆的定义、几何图形、标准方程及简单性质。 2.能用坐标法解决简单的直线与椭圆、抛物线的位置关系等问题。
教材分析 3.圆锥曲线的简单应用。 “椭圆及其标准方程”是在学生已学过坐标平面上圆的方程的基础上,运用“曲线和方程”理论解决具体的二次曲线的又一实 例.从知识上讲,它是解析法的进一步运用,同时它也是进一步研究椭圆几何性质的基础;从方法上讲,它为我们研究双曲线、抛物 .. .. 线这两种圆锥曲线提供了基本模式和理论基础;从教材编排上讲,现行教材中把三种圆锥曲线独编一章,更突出了椭圆的重要地位. .... 因此本节课有承前启后的作用,是本章和本节的重点内容. 中学第二教材 高中教学质量监控讲义 A 基础训练 多媒体 投影仪 学习椭圆的定义,掌握椭圆标准方程的两种形式及其推 导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。 通过对椭圆概念的引入教学,培养学生的观察能力和探 索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并 渗透数形结合和等价转化的数学思想方法。 通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索 的精神和渗透辩证唯物主义的方法论和认识论。 教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。 教学难点:椭圆标准方程的建立和推导 (1)通过教学情境中具体的学习活动(如动手实验、自主探究、合作交流等) ,引导学生发现并提出数学问题,并在作出合理推导的基 础上,形成椭圆的定义; (2)引导学生寻求椭圆标准方程的研究途径,并通过对解决问题过程的反思,获得求曲线方程的一般方法.
教 学 反 思
相关文档
最新文档