高一数学函数知识点总结

合集下载

高一函数 知识点大全

高一函数 知识点大全

高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。

函数的定义通常包括函数名称、参数列表和函数体。

在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。

二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。

符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。

三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。

奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。

四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。

函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。

五、函数的图像函数的图像是用来描述函数变化的直观工具。

在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。

同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。

六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。

在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。

我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。

高一函数知识点是数学学习的重要内容之一。

通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。

高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。

在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。

数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结

数学函数知识点归纳(高一)知识点总结数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1); (2)0时,幂函数的图象通过原点,并且在区间) ,0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸; (3)0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当_从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当_趋于时,图象在_轴上方无限地逼近_轴正半轴方程的根与函数的零点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。

2、函数零点的意义:函数)(_fy的零点就是方程0)(_f实数根,亦即函数)(_fy的图象与_轴交点的横坐标。

即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:○ 1 (代数法)求方程0)(_f的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2acb_a_y. (1)△0,方程02cb_a_有两不等实根,二次函数的图象与_轴有两个交点,二次函数有两个零点. (2)△=0,方程02cb_a_有两相等实根,二次函数的图象与_轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程02cb_a_无实根,二次函数的图象与_轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量向量的运算加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结高一函数知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的'被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇某奇=偶偶某偶=偶奇某偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一函数知识点总结7篇

高一函数知识点总结7篇

高一函数知识点总结7篇第1篇示例:高中一年级的数学学习内容丰富多彩,其中函数是一个重要的知识点。

函数作为数学中的一种基本概念,在数学和其他学科中都有着广泛的应用。

下面我们就来总结一下高一函数知识点。

一、函数的概念和性质1. 函数的概念:函数是一个对应关系,它将一个自变量映射到一个因变量。

通俗地说,就是一个输入对应一个输出。

2. 定义域和值域:函数的定义域是所有可能的输入值组成的集合,值域是所有可能的输出值组成的集合。

3. 一次函数:一次函数的一般形式为y=ax+b,其中a和b为常数,a不为0。

4. 二次函数:二次函数的一般形式为y=ax²+bx+c,其中a、b、c为常数,a不为0。

5. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

6. 单调性和极值:函数在定义域内单调递增或单调递减,当导数为0时函数取得极值。

1. 函数的图像:函数的图像是函数在坐标系中的表现,通常用曲线或者直线来表示。

2. 函数的对称性:函数图像关于y轴对称则为偶函数,关于原点对称则为奇函数。

3. 函数的周期性:周期函数可以表示为f(x+T)=f(x),其中T为函数的周期。

4. 函数的增减性:函数在某一区间上单调递增或单调递减。

5. 函数的奇偶性:函数的奇偶性可以通过f(-x)和f(x)的关系来确定。

三、函数的求导与应用1. 导数的概念:导数表示函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。

2. 导数的运算:导数的运算法则包括常数法则、幂法则、和差法则、复合函数求导等。

3. 函数的极值:函数在导数为0的点处取得极值,通过导数可判断临界点。

4. 函数的凹凸性:函数在凹和凸区间内的导数有一定的性质,通过二阶导数可判断凹凸性。

5. 泰勒展开:泰勒展开可以将一个函数在某一点处展开成无穷级数,用于近似计算。

第2篇示例:高一函数知识点总结函数是数学中一个非常重要的概念,它可以帮助我们描述数学规律和研究各种问题。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高一的函数知识点总结

高一的函数知识点总结

高一的函数知识点总结函数作为数学中的一个核心概念,是高一数学课程中的重要组成部分。

本文将对高一阶段所学的函数知识进行梳理和总结,以帮助学生更好地理解和掌握这一概念。

一、函数的基本概念函数是指一个从一个集合(称为定义域)到另一个集合(称为值域)的映射关系,通常用符号f表示。

对于函数f,如果输入值x属于定义域,那么f(x)就是x在函数f下的对应输出值。

函数可以用多种方式表示,如公式、表格、图形等。

二、函数的性质函数的性质包括单调性、奇偶性、周期性等。

1. 单调性:函数在某个区间内,如果随着x的增加,f(x)也增加,则称函数在该区间内单调递增;如果f(x)减少,则称单调递减。

2. 奇偶性:如果对于所有的x,都有f(-x)=-f(x),则称函数f为奇函数;如果f(-x)=f(x),则称偶函数。

3. 周期性:如果存在一个非零实数T,使得对于所有的x,都有f(x+T)=f(x),那么T是函数f的一个周期。

三、函数的图像函数的图像是函数在坐标平面上的表现形式,通过图像可以直观地了解函数的性质和特点。

1. 直线:表示线性函数,如y=2x+3。

2. 抛物线:表示二次函数,如y=ax^2+bx+c。

3. 曲线:表示其他复杂的函数,如指数函数、对数函数等。

四、函数的应用函数在实际生活中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。

1. 物理中的函数:描述物体运动的速度、加速度等与时间的关系。

2. 经济学中的函数:描述成本、收益与产量的关系。

五、函数的运算函数的运算包括四则运算、复合函数、反函数等。

1. 四则运算:两个函数的和、差、积、商都是新的函数。

2. 复合函数:如果有两个函数f和g,那么(f(g(x)))表示新的函数,称为f和g的复合函数。

3. 反函数:如果函数f的每个y值都有唯一的x值与之对应,那么这个对应关系f的逆称为f的反函数。

六、函数的极限与连续性函数的极限描述了函数值在某个点附近的变化趋势,连续性则是函数图像无间断的属性。

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全

高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。

本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。

一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。

函数可以用各种方式来表示,常见的有解析式、图像和表格。

1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。

例如:f(x) = 2x + 1,y = sin(x)。

2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。

3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。

二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。

1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。

2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。

3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。

4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。

三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。

1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。

一次函数的图像是一条斜率为a的直线。

2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。

二次函数的图像通常是一个开口向上或向下的抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学函数知识点总结
一、函数的定义与性质
函数是数学中非常重要的一个概念,它是我们研究变化规律的
工具之一。

函数是一种将一个集合中的每个元素映射到另一个集
合中的元素的规则。

数学中常用的函数类型包括线性函数、二次
函数、指数函数、对数函数等等。

函数的性质有很多,其中一个重要的性质是单调性。

函数在定
义域上的单调性指的是函数的增减关系,可以分为递增和递减。

另外,函数还有奇偶性、周期性等性质,这些性质可以用来做函
数图像的研究。

二、函数的运算
函数的运算是数学中常用的操作之一。

我们可以通过不同函数
的运算,得到新的函数。

函数的运算包括函数的加法、乘法、复
合运算等等。

函数的加法指的是将两个函数的相同自变量对应的函数值相加。

函数的乘法指的是将两个函数的相同自变量对应的函数值相乘。

函数的复合运算指的是将一个函数的输出作为另一个函数的输入。

这些运算能够帮助我们更好地理解函数之间的关系。

三、函数的图像与性质
函数的图像是函数可视化的一种方式,通过画出函数的图像,
我们可以更加清晰地看到函数的变化规律。

函数的图像是一个平
面上的曲线,它展示了函数的自变量和因变量之间的关系。

通过观察函数的图像,我们可以得到函数的一些特性。

例如,
函数的增减性可以通过图像的上升和下降来判断。

函数的极值可
以通过图像的拐点来判断。

函数的周期性可以通过图像的重复性
来判断。

因此,图像可以帮助我们更好地理解函数的性质。

四、函数的应用
函数在现实生活中有广泛的应用。

它可以用来描述各种变化规律,解决许多实际问题。

下面我们来看一些例子。

1. 经济学中,函数可以用来描述消费者支出和收入之间的关系,帮助经济学家研究消费行为。

2. 物理学中,函数可以用来描述物体的运动规律、力与加速度
之间的关系等等,帮助物理学家解决相关问题。

3. 生物学中,函数可以用来描述生物的生长规律、种群的增长
规律等等,帮助生物学家研究生物的变化。

这些仅仅是函数在实际应用中的一些例子,实际上函数的应用
非常广泛,几乎应用于各个领域。

五、高一数学学习建议
在高一学习数学时,函数是一个非常重要的知识点。

为了更好
地掌握函数,我给出以下几点学习建议。

1. 加强基础知识。

函数作为数学中的重要概念,需要对基础知
识有清晰的掌握。

要熟练掌握函数的定义、性质、运算以及图像
等基本内容。

2. 多做练习题。

练习可以帮助我们巩固知识,并提高解题能力。

高一数学课本中有大量的练习题,可以多做一些,理解并掌握函
数的应用。

3. 多思考问题。

函数是需要思考和理解的内容,不要死记硬背,要注重理解和思考。

在遇到难题时,要积极思考,多尝试找到解
决方法。

4. 寻找实际应用。

学习函数时,可以尝试将函数的概念和实际
问题联系起来,这样可以更好地理解函数的用途和意义。

5. 合理时间管理。

函数是高一数学中的重点,要合理安排时间,保证在数学学习中有足够的时间来学习和理解函数的知识。

综上所述,高一数学函数知识点是数学学习中的重要内容,掌
握好这些知识点对于数学学习的深入和应用是非常重要的。

通过
学习函数的定义与性质、函数的运算、函数的图像与性质、函数
的应用以及遵循一些学习建议,我们可以更好地掌握函数的知识,并成功应用于实际问题中。

相关文档
最新文档