气体变质量问题汇总

合集下载

高中物理一轮复习气体实验定律图像问题和变质量问题-普通用卷

高中物理一轮复习气体实验定律图像问题和变质量问题-普通用卷

高中物理一轮复习气体实验定律图像问题和变质量问题副标题题号 得分一二三总分一、单选题(本大题共 12 小题,共 48.0 分) 1. 如图是某种喷雾器示意图,在贮液筒装入一些药液后将密封盖盖好.多次拉压活塞后,把空气打入贮液筒内,贮液筒与外界热交换忽略不计,打开喷嘴开关,活塞位置不变,药液就可以持续地喷出,药液喷出过程中,贮液筒内的空气A. 分子间的引力和斥力都在增大B. 体积变大,压强变大C. 气体分子的平均动能不变D. 气体的内能减小2. 如图所示,一定质量的理想气体,由状态 A 沿直线 AB 变化到状态 B,在此过程中,气体分子的平均速率的变化情况是A. 不断增大 B. 不断减小 C. 先减小后增大 D. 先增大后减小3. 一定质量的理想气体的状态变化过程如图所示,AB 为一条直线,则气体从状态 A 到状态 B 的过程中A. 气体分子平均动能保持不变 B. 气体分子平均动能先增大后减小到初始状态 C. 整个过程中气体对外不做功 D. 气体的密度在不断增大4. 如图为一定质量的某种气体的 个状态中,下列判断正确的是图象。

在 A、B、C 三A. 体积最大的是 C 状态 B. 体积最大的是 B 状态 C. A,B 两状态体积一样第 1 页,共 13 页D. A 状态变到 B 状态,外界对气体做功值等于气体内能增加5. 如图,一定质量的理想气体从状态 I 变化到 II 的过程 中,其压强随热力学温度变化的图象为双曲线的一 支.若气体在状态 I 的体积和温度分别为 、 ,在状态Ⅱ的体积和温度分别为 、 ,则A.,且B.,且C.,且D.6. 如图甲,一定质量的理想气体的状态变化过程的之相对应的变化过程图象应为图乙中,且 图象.则与A.B.C.D.7. 如图所示,一定质量的理想气体,从状态 1 变化到状态 2,气体温度变化是A. 逐渐升高 B. 逐渐降低 C. 不变 D. 先升高后降低8. 如图所示,A、B 代表某一定质量的理想气体的两次等容变 化过程,由图可知,气体在 B 过程中当温度为 时,其压强为A. B. C. D. 1atm9. 足球的容积为 足球内已有的气体与外部大气的温度相同,压强等于大气压强 ,现再从球外取体积为 的空气充入球内,使足球内的压强增大到 P,设足球容积保持不变,充气过程气体温度不变,则 为A.B.C.D.第 2 页,共 13 页10. 如图为一定质量理想气体的压强 p 与体积 V 的关系图象,它由 状态 A 经过等容过程到状态 B,再经过等压过程到状态 设 A、 B、C 状态对应的温度分别为 、 、 ,则下列关系式中正确的是A.,B.,C.,D.,11. 如图所示,一定质量的理想气体,从状态 A 变到状态 B,则在 A、B 两状态时的压强 、 相比较是A.B.C.D. 条件不足,元法比较12. 带有活塞的气缸内封闭一定量的理想气体.气体开始处于状态 a,然后经过过程 ab 到达状态 b 或经过过程 ac 到达状态 c,b、c 状态温度相同,如图所示.设气体在状态 b 和状态 c 的压强分别为 和 ,在过程 ab 和 ac 中吸收的热量分别为 和 ,则A.,B.,C.,D.,二、多选题(本大题共 4 小题,共 16.0 分)13. 空气能热水器采用“逆卡诺”原理,工作过程与空调相反,能将空气中免费热量搬到水中进行制热,即使在南极也有良好表现,高效节能,是广东在世界领先的核心技术。

变质量气体问题的处理方法

变质量气体问题的处理方法

变质量气体问题的处理方法1. 引言变质量气体问题是指在热力学系统中,物质的质量发生变化而产生的一类气体问题。

这类问题涉及到物质的进出、化学反应以及物质转化等过程。

在工程实践和科学研究中,我们经常会遇到这类问题,并需要采取相应的处理方法。

本文将介绍变质量气体问题的处理方法,包括控制物质进出、考虑化学反应和转化以及计算相关参数等内容。

2. 控制物质进出在处理变质量气体问题时,首先需要考虑如何控制物质的进出。

常见的方法有以下几种:2.1 进料控制通过控制进料流量和进料时间来控制物质的进入系统。

可以使用阀门、泵等设备来调节流量,确保物质进入系统的稳定性。

2.2 排放控制通过控制排放流量和排放时间来控制物质的离开系统。

可以使用排放阀门、泄压装置等设备来调节流量,确保物质排放的安全性和稳定性。

2.3 密封控制在处理变质量气体问题时,需要注意系统的密封性。

通过选择合适的密封材料、设计合理的密封结构等方式,确保系统的密封性,防止物质的泄漏和外界空气的进入。

3. 考虑化学反应和转化变质量气体问题中常涉及到化学反应和物质转化。

在处理这类问题时,需要考虑以下几个方面:3.1 化学平衡对于存在多种化学反应的系统,需要考虑各个反应之间的平衡关系。

可以根据各个反应的速率常数、反应热力学数据等信息,利用热力学平衡条件求解各个组分的浓度或压力。

3.2 反应速率对于存在快速反应和慢速反应的系统,需要考虑各个反应之间的速率差异。

可以使用动力学模型描述快速反应和慢速反应之间的相互作用,并通过求解动力学方程得到各个组分的浓度或压力随时间变化的规律。

3.3 物质转化在处理变质量气体问题时,常常需要考虑物质之间的转化关系。

可以使用反应速率常数、平衡常数等数据,通过建立适当的动力学模型和质量守恒方程,求解各个组分的转化率和转化程度。

4. 计算相关参数在处理变质量气体问题时,需要计算一些与问题相关的参数。

常见的参数包括:4.1 流量流量是指单位时间内物质通过某一截面的数量。

高中物理新教材同步选择性必修第三册 第2章 气体液体和固体专题强化 变质量问题 理想气体的图像问题

高中物理新教材同步选择性必修第三册 第2章 气体液体和固体专题强化 变质量问题 理想气体的图像问题

变质量问题 理想气体的图像问题[学习目标] 1.会巧妙地选择研究对象,使变质量气体问题转化为定质量的气体问题.2.会利用图像对气体状态、状态变化及规律进行分析,并应用于解决气体状态变化问题.一、变质量问题分析气体的变质量问题时,可以通过巧妙选择合适的研究对象,将变质量转化为定质量问题,然后用气体实验定律或理想气体状态方程求解. (1)打气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球、轮胎内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题. (2)抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看作是膨胀的过程.(2020·徐州一中高二开学考试)一只两用活塞气筒的原理图如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V 0,现将它与另一只容积为V 的容器相连接,开始时气筒和容器内的空气压强为p 0,已知气筒和容器导热性能良好,当分别作为打气筒和抽气筒时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为(容器内气体温度不变,大气压强为p 0)( )图1A .np 0,1np 0B.nV 0V p 0,V 0nVp 0 C .(1+V 0V )n p 0,(1+V 0V )n p 0D .(1+nV 0V )p 0,(V V +V 0)n p 0答案 D解析 打气时,活塞每推动一次,就把体积为V 0、压强为p 0的气体推入容器内,若活塞工作n 次,就是把压强为p 0、体积为nV 0的气体压入容器内,容器内原来有压强为p 0、体积为V 的气体,根据玻意耳定律得: p 0(V +nV 0)=p ′V .所以p ′=V +nV 0V p 0=(1+n V 0V)p 0.抽气时,活塞每拉动一次,就把容器中的气体的体积从V 膨胀为V +V 0,而容器中的气体压强就要减小,活塞推动时,将抽气筒中的体积为V 0的气体排出,而再次拉动活塞时,又将容器中剩余的气体的体积从V 膨胀到V +V 0,容器内的压强继续减小,根据玻意耳定律得: 第一次抽气p 0V =p 1(V +V 0), p 1=VV +V 0p 0.第二次抽气p 1V =p 2(V +V 0) p 2=V V +V 0p 1=(V V +V 0)2p 0活塞工作n 次,则有: p n =(V V +V 0)n p 0.故正确答案为D.在分析和求解气体质量变化的问题时,首先要将质量变化的问题变成质量不变的问题,否则不能应用气体实验定律.如漏气问题,不管是等温漏气、等容漏气,还是等压漏气,都要将漏掉的气体“收”回来.可以设想有一个“无形弹性袋”收回漏气,且漏掉的气体和容器中剩余气体同温、同压,这样就把变质量问题转化为定质量问题,然后再应用气体实验定律求解. 针对训练 大气压强p 0=1.0×105 Pa.某容器的容积为V 0=20 L ,装有压强为p 1=2.0×106 Pa 的理想气体,如果保持气体温度不变,把容器的开关打开,等气体达到新的平衡时,容器内剩余的气体质量与原来气体的质量之比为( ) A .1∶19 B .1∶20 C .2∶39 D .1∶18答案 B解析 由玻意耳定律得p 1V 0=p 0V 0+p 0V ,因V 0=20 L ,则V =380 L ,即容器中剩余20 L 压强为p 0的气体,而同样大气压下气体的总体积为400 L ,所以剩余气体的质量与原来气体的质量之比等于同压下气体的体积之比,即20400=120,B 正确.二、理想气体的图像问题名称图像特点其他图像等温线p-VpV=CT(C为常量),即pV之积越大的等温线对应的温度越高,离原点越远p-1Vp=CTV,斜率k=CT,即斜率越大,对应的温度越高等容线p-T p=CV T,斜率k=CV,即斜率越大,对应的体积越小等压线V-T V=Cp T,斜率k=Cp,即斜率越大,对应的压强越小使一定质量的理想气体的状态按图2甲中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线的一部分.图2(1)已知气体在状态A的温度T A=300 K,求气体在状态B、C和D的温度各是多少?(2)将上述状态变化过程在图乙中画成用体积V和热力学温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程.答案(1)600 K600 K300 K(2)见解析解析从p-V图中可以直观地看出,气体在A、B、C、D各状态下压强和体积分别为p A=4atm ,p B =4 atm ,p C =2 atm ,p D =2 atm ,V A =10 L ,V C =40 L ,V D =20 L. (1)根据理想气体状态方程 p A V A T A =p C V C T C =p D V DT D, 可得T C =p C V C p A V A ·T A =2×404×10×300 K =600 K ,T D =p D V Dp A V A ·T A =2×204×10×300 K =300 K ,由题意知B 到C 是等温变化,所以T B =T C =600 K. (2)因由状态B 到状态C 为等温变化, 由玻意耳定律有p B V B =p C V C ,得 V B =p C V C p B =2×404L =20 L.在V -T 图上状态变化过程的图线由A 、B 、C 、D 各状态依次连接(如图),AB 是等压膨胀过程,BC 是等温膨胀过程,CD 是等压压缩过程.(多选)一定质量的理想气体的状态变化过程的p -V 图像如图3所示,其中A 是初状态,B 、C 是中间状态,A →B 是等温变化,如将上述变化过程改用p -T 图像和V -T 图像表示,则下列图像可能正确的是( )图3答案BD解析A到B是等温变化,气体体积变大,根据玻意耳定律知压强p变小,B到C是等容变化,在p-T图像上为过原点的一条倾斜的直线;C到A是等压变化,气体体积减小,根据盖-吕萨克定律知温度降低,故A错误,B正确;A到B是等温变化,气体体积变大,B到C是等容变化,压强变大,根据查理定律,温度升高;C到A是等压变化,气体体积变小,在V-T图像中为过原点的一条倾斜的直线,故C错误,D正确.1.(图像问题)(多选)一定质量的气体的状态经历了如图4所示的ab、bc、cd、da四个过程,其中bc的延长线通过原点,cd垂直于ab且与T轴平行,da与bc平行,则气体体积在()图4A.ab过程中不断增加B.bc过程中保持不变C.cd过程中不断增加D.da过程中保持不变答案AB解析因为bc的延长线通过原点,所以bc是等容线,即气体体积在bc过程中保持不变,B 正确;ab是等温线,压强减小则体积增大,A正确;cd是等压线,温度降低则体积减小,C 错误;如图所示,连接aO交cd于e,则ae是等容线,即V a=V e,因为V d<V e,所以V d<V a,即da过程中气体体积变大,D错误.2.(变质量问题)用打气筒将压强为1 atm的空气打进自行车轮胎内,如果打气筒容积ΔV=500 cm3,轮胎容积V=3 L,原来压强p=1.5 atm.现要使轮胎内压强变为p′=4 atm,若用这个打气筒给自行车轮胎打气,则要打气次数为(设打气过程中空气的温度不变)()A.10次B.15次C.20次D.25次答案 B解析打气过程中空气的温度不变,由玻意耳定律的分态气态方程得pV+np0ΔV=p′V,代入数据解得n =15.3. (图像问题)如图5所示是一定质量的气体从状态A 经状态B 、C 到状态D 的p -T 图像,已知气体在状态B 时的体积是8 L ,求V A 、V C 和V D ,并画出此过程中的V -T 图像.图5答案 4 L 8 L323L 见解析图 解析 A →B 为等温过程,由玻意耳定律得p A V A =p B V B 所以V A =p Bp A V B =1.0×1052.0×105×8 L =4 LB →C 为等容过程,所以V C =V B =8 L C →D 为等压过程,有V C T C =V DT D则V D =T D T C V C =400300×8 L =323 L此过程的V -T 图像如图所示.考点一 变质量问题1.空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L .设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为( ) A .2.5 atm B .2.0 atm C .1.5 atm D .1.0 atm 答案 A解析 取全部气体为研究对象,由p 1(V 1+V 2)=pV 1得p =2.5 atm ,故A 正确.2.容积为20 L 的钢瓶充满氧气后,压强为150 atm ,打开钢瓶的阀门让氧气同时分装到容积为5 L 的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10 atm ,分装过程中无漏气,且温度不变,那么最多能分装( ) A .4瓶 B .50瓶 C .56瓶 D .60瓶 答案 C解析 取全部气体为研究对象,根据玻意耳定律:p 0V 0=p ′(V 0+nV 1) n =p 0V 0-p ′V 0p ′V 1=150×20-10×2010×5瓶=56瓶,故选C.3.一个瓶子里装有空气,瓶上有一个小孔跟外面大气相通,原来瓶里气体的温度是7 ℃,如果把它加热到47 ℃,瓶里留下的空气的质量是原来质量的( ) A.18 B.34 C.56 D.78 答案 D解析 取原来瓶中气体为研究对象,初态V 1=V ,T 1=280 K 末态V 2=V +ΔV ,T 2=320 K 由盖-吕萨克定律得:V 1T 1=V 2T 2又m 余m 原=V V +ΔVm 余m 原=T 1T 2=78,故选D. 考点二 图像问题4.(多选)如图1所示,用活塞把一定质量的理想气体封闭在固定的导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,气体由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图像表示( )图1答案 AD解析 由题意知,气体由状态①到状态②的过程中,温度不变,体积增大,根据pVT=C 可知压强将减小.对A 图像进行分析,p -V 图像是双曲线,即等温线,且由状态①到状态②,气体体积增大,压强减小,故A 项正确;对B 图像进行分析,p -V 图像是直线,气体温度会发生变化,故B 项错误;对C 图像进行分析,可知气体温度不变,但体积减小,故C 项错误;对D 图像进行分析,可知气体温度不变,压强减小,故体积增大,故D 项正确. 5.如图2为一定质量理想气体的压强p 与体积V 的关系图像,它由状态A 经过等容过程到状态B ,再经过等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是( )图2A .T A <TB ,T B <TC B .T A >T B ,T B =T C C .T A >T B ,T B <T CD .T A =T B ,T B >T C 答案 C解析 根据pVT =C 可知,从A 到B 体积不变,压强减小,则温度降低,即T A >T B ,从B 到C压强不变,体积变大,则温度升高,即T B <T C ,故选C.6.(2021·吉林江城中学高二期中)一定质量的理想气体经过一系列过程,如图3所示,下列说法中正确的是( )图3A .a →b 过程中,气体体积减小,压强减小B .b →c 过程中,气体压强不变,体积增大C .c →a 过程中,气体压强增大,体积减小D .c →a 过程中,气体内能增大,体积不变 答案 D解析 a →b 过程中,温度不变,压强减小,根据pV =C 可知体积变大,A 错误;b →c 过程中,压强不变,温度降低,根据VT =C 可知体积减小,B 错误;c →a 过程中,图像为过坐标原点的倾斜直线,所以体积不变,温度升高,压强增大,内能增大,C 错误,D 正确.7.用活塞式抽气机抽气,在温度不变的情况下,从玻璃瓶中抽气,第一次抽气后,瓶内气体的压强减小到原来的45,要使容器内剩余气体的压强减为原来的256625,抽气次数应为( )A .2B .3C .4D .5 答案 C解析 设玻璃瓶的容积是V ,抽气机的容积是V 0, 气体发生等温变化,由玻意耳定律可得 pV =45p (V +V 0),解得V 0=14V ,设抽n 次后,气体压强变为原来的256625,由玻意耳定律可得:抽一次时:pV =p 1(V +V 0),解得p 1=45p ,抽两次时:p 1V =p 2(V +V 0),解得p 2=(45)2p ,抽n 次时:p n =(45)n p ,又p n =256625p ,则n =4,C 正确.8.氧气瓶的容积是40 L ,瓶内氧气的压强是130 atm ,规定瓶内氧气压强降到10 atm 时就要重新充氧.有一个车间,每天需要用1 atm 的氧气400 L ,一瓶氧气能用几天?(假定温度不变,氧气可视为理想气体) 答案 12解析 用如图所示的方框图表示思路.以氧气瓶内的气体为研究对象,气体发生等温变化,由V 1→V 2,由玻意耳定律可得p 1V 1=p 2V 2, V 2=p 1V 1p 2=130×4010L =520 L ,由(V 2-V 1)→V 3,由玻意耳定律可得p 2(V 2-V 1)=p 3V 3, V 3=p 2(V 2-V 1)p 3=10×4801 L =4 800 L ,则V 3400 L=12(天).9.(2020·山东高二期末)如图4,医院消毒用的压缩式喷雾器储液桶的容量为5.7×10-3 m3,开始时桶内倒入了4.2×10-3m3的药液.现关闭进气口,开始打气,每次能打进2.5×10-4m3的空气,假设打气过程中药液不会向外喷出.当打气n次后,喷雾器内空气的压强达到4 atm,设周围环境温度不变,气压为标准大气压强1 atm.图4(1)求出n的数值;(2)试判断这个压强能否使喷雾器的药液全部喷完.答案(1)18(2)能解析(1)根据理想气体状态方程的分列式,得p0V+p0nV′=4p0V,其中V=5.7×10-3 m3-4.2×10-3 m3=1.5×10-3 m3,V′=2.5×10-4 m-3,代入数值,解得n=18;(2)当空气完全充满储液桶后,如果空气压强仍然大于标准大气压强,则药液可以全部喷出.由于温度不变,根据玻意耳定律p1V1=p2V2,得p2=4p0V 5.7×10-3解得p2≈1.053p0>p0所以药液能全部喷出.10.(2021·吉化第一高级中学高二月考)如图5甲所示是一定质量的气体由状态A经过状态B 变为状态C的V-T图像,已知气体在状态A时的压强是1.5×105 Pa.图5(1)根据图像提供的信息计算图甲中T A对应的温度值;(2)请在图乙坐标系中作出该气体由状态A经过状态B变为状态C的p-T图像,并在图线相应位置上标出字母A、B、C,如果需要计算才能确定有关坐标值,请写出计算过程.答案(1)200 K(2)见解析解析(1)由题图甲所示图像可知,A与B的连线所在的直线过原点O,所以A→B是一个等压过程,即p A=p B=1.5×105 Pa由题图甲可知,V A=0.4 m3,V B=V C=0.6 m3,T B=300 K,T C=400 K,从A到B过程,由盖—吕萨克定律得V A T A =V B T B解得T A =200 K.(2)从B 到C 为等容过程,由查理定律得p B T B =p C T C解得p C =2×105 Pa ,气体状态变化的p -T 图像如图所示11.(2019·全国卷Ⅰ)热等静压设备广泛应用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m 3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m 3,使用前瓶中气体压强为1.5×107 Pa ,使用后瓶中剩余气体压强为2.0×106 Pa ;室温温度为27 ℃.氩气可视为理想气体.(1)求压入氩气后炉腔中气体在室温下的压强;(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强.答案 (1)3.2×107 Pa (2)1.6×108 Pa解析 (1)设初始时每瓶气体的体积为V 0,压强为p 0;使用后瓶中剩余气体的压强为p 1.假设体积为V 0、压强为p 0的气体压强变为p 1时,其体积膨胀为V 1.由玻意耳定律得:p 0V 0=p 1V 1① 被压入炉腔的气体在室温和p 1条件下的体积为:V 1′=V 1-V 0②设10瓶气体压入完成后炉腔中气体在室温下的压强为p 2,体积为V 2,由玻意耳定律:p 2V 2=10p 1V 1′③联立①②③式并代入题给数据得:p 2=3.2×107 Pa ④(2)设加热前炉腔的温度为T 0,加热后炉腔的温度为T 1,气体压强为p 3,由查理定律得:p 3T 1=p 2T 0⑤ 联立④⑤式并代入题给数据得:p 3=1.6×108 Pa.。

2021年高考物理最新模拟题精练专题1.16 变质量气体计算问题(基础篇)(解析版)

2021年高考物理最新模拟题精练专题1.16 变质量气体计算问题(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-3、3-4)第一部分热学(选修3-3)专题1.16 变质量气体计算问题(基础篇)1. (2020东北三省三校一模)一导热性能良好的圆柱形气缸固定在水平面上,气缸上端开口,内壁光滑,截面积为S。

A是距底端H高处的小卡环。

质量为m的活塞静止在卡环上,活塞下密封质量为m o的氢气,C为侧壁上的单向导管。

大气压强恒定为Po。

环境温度为T o时,从C处注入水,当水深为时,关闭C,卡环恰对活塞无作用力。

接下来又从c处缓慢导人一定量氢气,稳定后再缓慢提升环境温度到1. 6T o,稳定时活塞静止在距缸底2.7H处,设注水过程中不漏气,不考虑水的蒸发,氢气不溶于水。

求:①初被封闭的氢气的压强P1;②导人氢气的质量M。

【名师解析】①对原有气体,经历等温过程,设注水后气体压强为,有:------(2分)对活塞,有:---------------(2分)---------------(1分)②设导入气体后且尚未升温时气体总高度为h,显然此时活塞已经离开卡环,接下来升温过程为等压过程,有:---------------(2分)得:考虑到此高度的气体中,原有气体占高为,故后导入的气体占高为---------------(1分)所以设此时密度为有:---------------(1分)得:---------------(1分)2.⑵(10分)(2020陕西咸阳二模)2019年12月以来,我国部分地区突发的新型冠状病毒肺炎威胁着人们的身体健康。

勤消毒是防疫很关键的一个措施。

如右图是防疫消毒用的喷雾消毒桶的原理图,圆柱形喷雾器高为h,内有高度为的消毒液,上部封闭有压强为p0、温度为T0的空气。

将喷雾器移到室内,一段时间后打开喷雾阀门K,恰好有消毒液流出.已知消毒液的密度为ρ,大气压强恒为p0,喷雾口与喷雾器等高。

忽略喷雾管的体积,将空气看作理想气体。

①求室内温度。

②在室内用打气筒缓慢向喷雾器内充入空气,直到水完全流出,求充入空气与原有空气的质量比。

气体实验定律之热学变质量问题—人教版高中物理选修_2022年学习资料

气体实验定律之热学变质量问题—人教版高中物理选修_2022年学习资料

Thinking-Good Id-气体实验定律之-huinL-nvent-气体变质量问题-So ution-Learnin-ecology-Study-【高中物理】【人教版选修3-3】【第八气体】-nnovation-ideas-Education-Science-ChemicalI I-01-气体分子运动特点-02-气体实验定律-03-解题思路-04-解题方法zhi-shi-hui-知-识-01气体分子的运动特点:-气体分子除了相互碰撞或者跟器壁碰撞外不受力而做匀速直线运动;-2-某一时刻,向各个方向运动的气体分子数目都相等;-3-气体能充满它能到达的整个空间,气体的体积为容器的容积;-气体分子做无规则运动,速率有大有小,却按一定的规律布:-1fv-低温分布-高温分布积成反比-查理定律:p1TP2/T2-盖吕萨克定律:V1T1=V2/T2-一定质量的某种气体,-体积不变的情况下,压强-压强不变的情况下,体积-与热力学温度成反比积成反比-图像:等温线-说明:P-V图为双曲线,同一气-T增大-体的两条等温线比较,双曲线顶-离坐标原点远的温度高,即-T1>T2.-P-1W图线为过原点的直线,同-一气体的两条等温线比较斜率-大的温度高,T1>T2。

积成反比-放气:-PVj=P2V2+P3V3+P4V4+...-充气:-PiV+P2V2+P3 3+...=PmVm02气体实验定律-p-图像:等容线-A-C--273-T-查理定律:p1TP2/T2-说明:pt图线为过-273C的直线,与纵轴交点是0C时气-一定质量的某种气体,在-体的压强,同一气体的条等容线比较,V1>V2。

-体积不变的情况下,压强--T图线为过原点的直线,同一气体的两条等容比较,斜-与热力学温度成反比-率大的体积小,即V1>V2。

02气体实验定律-图像:等压线-Vm3↑-Vm1-92-273-tc-TK-盖吕萨克定律:V11=V2/T2-一定质量的某种气体,在-压强不变的情况下,体积-说明:V-t图线为过-273C直线,与纵轴交点为0C时气-与热力学温度成反比-体的体积,同一气体的两条等压线比较,P1>P2 -图线为过原点的直线,同一气体的两条等压线比较,斜率-大的压强小,即P1>P2。

高中气体变质量问题

高中气体变质量问题

气体变质量问题的处理分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为一定质量的气体问题,用理想气体状态方程求解.1.充气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题.2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看做是等温膨胀的过程.3.灌气问题将一个大容器中的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,可以把大容器中的气体和多个小容器中的气体看做是一个整体来作为研究对象,可将变质量问题转化为定质量问题.4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解.如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化的问题,可用理想气体状态方程求解.对点例题某容积为20L的氧气瓶中装有30atm的氧气,把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为5atm,如果每个小钢瓶中原有氧气的压强为1atm,问共能分装多少瓶(设分装过程中无漏气,且温度不变)解题指导设能够分装n个小钢瓶,则以氧气瓶中的氧气和n个小钢瓶中的氧气整体为研究对象,分装过程中温度不变,遵守玻意耳定律.分装前:氧气瓶中气体状态p1=30atm,V1=20L;小钢瓶中气体状态p2=1atm,V2=5L.分装后:氧气瓶中气体状态p1′=5atm,V1=20L;小钢瓶中气体状态p2′=5atm,V2=5L.由p1V1+np2V2=p1′V1+np2′V2得n==瓶=25瓶.答案25技巧点拨 1.对于气体的分装,可将大容器中和所有的小容器中的气体看做一个整体来研究;2.分装后,瓶中剩余气体的压强p1′应大于或等于小钢瓶中应达到的压强p2′,通常情况下取压强相等,但不能认为p1′=0,因通常情况下不可能将瓶中气体全部灌入小钢瓶中.1.一只轮胎容积为V=10L,已装有p1=1atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1L,要使胎内气体压强达到p2=,应至少打多少次气(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1atm)()次次次次答案 D解析本题中,胎内气体质量发生变化,选打入的和原来的气体组成的整体为研究对象.设打气次数为n,则V1=nV0+V,由玻意耳定律,p1V1=p2V,解得n=15次,故选D.2.贮气筒内压缩气体的温度为27°C,压强是20atm,从筒内放出一半质量的气体后,并使筒内剩余气体的温度降低到12°C,求剩余气体的压强为多大答案解析以筒内剩余气体为研究对象,它原来占有整个筒容积的一半,后来充满整个筒,设筒的容积为V,则初态:p1=20atm,V1=V,T1=(273+27) K=300K;末态:p2=V2=V,T2=(273+12) K=285K根据理想气体状态方程:=得:p2==atm=.2.一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V0,现将它与另一只容积为V的容器相连接,容器内的空气压强为p0,当分别作为打气筒和抽气筒时,活塞工作n次后,在上述两种情况下,容器内的气体压强分别为(大气压强为p0)()3…某同学用压强为10atm体积为的氢气瓶给足球充气,设充气前足球为真空,充完气后,足球的容积为,且充气后,氢气瓶内气体的压强?变为5atm设充气过程中温度不变,求充气后足球内气体的压强?。

【高中物理】专题封闭气体的压强和气体变质量问题 高中物理同步备课(人教版2019选择性必修第三册)

【高中物理】专题封闭气体的压强和气体变质量问题  高中物理同步备课(人教版2019选择性必修第三册)

例题分析
例:如图所示,长50 cm的玻璃管开口向上竖直放置,用15 cm长的水银柱封闭了一
段20 cm长的空气柱,外界大气压强相当于75 cm水银柱产生的压强。现让玻璃管自
由下落。不计空气阻力,求稳定时气柱的长。(可以认为气柱温度没有变化)
解析:假设自由下落过程中,水银没有溢出。根据玻意耳定律得
p1l1S=p2l2S
为p0=76 cmHg.如果使玻璃管绕底端在竖直平面内缓慢地转动一周,求在开口向下和转回到原
来位置时管中空气柱的长度(在转动过程中没有发生漏气,气体状态变化可视为等温变化)。
法二:在气体与水银相接触处,水银柱上取一液片为研
究对象,其处于静止状态,根据受力平衡确定气体各状
态的压强。
解析:
玻璃管开口向上时
知识点拨
1.一只手握住玻璃管中部,在管内灌满水银,排出空气,用另一只手指紧紧堵住
玻璃管开口端并把玻璃管小心地倒插在盛有水银的槽里,待开口端全部浸入水银槽
内时放开手指,将管子竖直固定,当管内水银液面停止下降时,读出此时水银液柱
与水槽中水平液面的竖直高度差,约为760mm。
2.逐渐倾斜玻璃管,发现管内水银柱的竖直高度不变。
析,列平衡方程求气体压强。
(2)①pA=p0-ph=71 cmHg
②pA=p0-ph=66 cmHg
③pA=p0+ph=(76+10×sin30°)cmHg=81 cmHg
④pA=p0-ph=71 cmHg pB=pA-ph=66 cmHg
例题分析
例:如图所示,在长为57 cm的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm高
(1)玻璃管水平放置时,管内气体的长度。
(2)玻璃管开口竖直向下时,管内气体的长度。(假设水银没有流出)

气体变质量问题汇总

气体变质量问题汇总

气体变质量问题汇总常见的几种变质量的情况(1)打气问题:向球、轮胎中充气是一个典型的变质量的气体问题,只要选择球内原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看做是等温膨胀过程.(3)灌气问题:将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,把大容器中的剩余气体和多个小容器中的气体视为整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:容器漏气过程中气体的质量不断发生变化,属于变质量问题. 如果选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.(5)气体混合问题:两个或两个以上容器的气体混合在一起的过程也是变质量气态变化问题.通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题来处理思路;1.将变转化为不变,因为我们只学会处理不变的规律.通过巧妙选取合适的研究对象,使这类问题转化为定质量的气体问题,从而利用气体实验定律或理想气体状态方程解决2.利用克拉珀龙方程其方程为pV=nRT。

这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数,对任意理想气体而言,R是一定的,约为8.31J/(mol·K)。

(补充分太式,密度式写法)【典例1】一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0.经过太阳曝晒,气体温度由T0=300 K升至T1=350 K.(1)求此时气体的压强;(2)保持T1=350 K不变,缓慢抽出部分气体,使气体压强再变回到p0.求集热器内剩余气体的质量与原来总质量的比值.判断在抽气过程中剩余气体是吸热还是放热,并简述原因.解析(1)由题意知气体体积不变,由查理定律得p0 T0=p1 T1得p1=T1T0p0=350300p0=76p0(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V2,由玻意耳定律可得p1V0=p0V2则V2=p1V0p0=76V0所以集热器内剩余气体的质量与原来总质量的比值为ρV0ρ·76V0=67因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对外做功.由热力学第一定律ΔU=W+Q可知,气体一定从外界吸收热量.答案(1)76p0(2)67;吸热,原因见解析【典例2】用真空泵抽出某容器中的空气,若某容器的容积为V,真空泵一次抽出空气的体积为V0,设抽气时气体温度不变,容器里原来的空气压强为p,求抽出n次空气后容器中空气的压强是多少?解析设第1次抽气后容器内的压强为p1,以整个气体为研究对象.因为抽气时气体温度不变,则由玻意耳定律得pV=p1(V+V0),所以p1=VV+V0p以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内气体压强为p2,由玻意耳定律有p1V=p2(V+V0),所以p2=VV+V0p1=(VV+V0)2p以第n-1次抽气后容器内剩余气体为研究对象,设第n次抽气后容器内气体压强为p n,由玻意耳定律得p n-1V=p n(V+V0)所以p n=VV+V0p n-1=(VV+V0)n p故抽出n次空气后容器内剩余气体的压强为(VV+V0)n p.答案(VV+V0)n p例3 一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105Pa 的空气打进去125cm3.如果在打气前篮球里的空气压强也是105Pa,那么打30次以后篮球内的空气压强是多少Pa?(设在打气过程中气体温度不变)解析由于每打一次气,总是把ΔV体积,相等质量、压强为p0的空气压到容积为V0的容器中,所以打n次气后,共打入压强为p0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为p0、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为pn、体积为V0.令V2为篮球的体积,V1为n次所充气体的体积及篮球的体积之和则V1=2.5L+30×0.125L由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解;例4 某容积为20L的氧气瓶里装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为2atm,如每个小钢瓶中原有氧气压强为1atm.问最多能分装多少瓶?(设分装过程中无漏气,且温度不变)(提示):先将大、小钢瓶中的氧气变成等温等压的氧气,再分装.、例5 如图1所示,两个充有空气的容器A、B,用装有活塞栓的细管相连通,容器A浸在温度为t1=-23℃的恒温箱中,而容器B浸在t2=27℃的恒温箱中,彼此由活塞栓隔开.容器A的容积为V1=1L,气体压强为p1=1atm;容器B的容积为V2=2L,气体压强为p2=3atm,求活塞栓打开后,气体的稳定压强是多少?解析活塞栓打开后时,B中气体压强较大,将有一部分气体从B中进入A中,如图2,进入A中的气体温度又变为t1=-23℃,虽然A中气体温度不变,但由于质量发生变化,压强也随着变化(p增大),这样A、B两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,需要通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题.例6.一个容器内装有一定质量的理想气体,其压强为 6.0×105pa,温度为47℃,但因该容器漏气,试求最终容器内剩余气体的质量为原有质量的百分之几?已知外界大气压强为p0=1.0×105Pa,气温为27℃.解析设想漏出的气体被收集在另一个容器中,这样变质量问题转化为定质量问题.V1为初始状态体积,也等于末状态剩余气体体积,末状态剩余气体和漏出气体属于同温同压气体,二者具有相同密度.则剩余气体与原来气体质量之比为:mm0=ρV1ρV2=V1V2=0.18,即剩余气体质量为原来气体质量的18%.【练习】氧气瓶的容积是40L,其中氧气的压强是130atm,规定瓶内氧气压强降到10atm 时就要重新充氧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析变质量问题时,可通过巧妙地选择研究对象,使这类问题转化为一定质量的气体问题,用气体实验定律求解.
常见的几种变质量的情况
(1)打气问题:向球、轮胎中充气是一个典型的变质量的气体问题,只要选择球内原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.
(2)抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看做是等温膨胀过程.
(3)灌气问题:将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,把大容器中的剩余气体和多个小容器中的气体视为整体作为研究对象,可将变质量问题转化为定质量问题.
(4)漏气问题:容器漏气过程中气体的质量不断发生变化,属于变质量问题. 如果选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.
(5)气体混合问题:两个或两个以上容器的气体混合在一起的
过程也是变质量气态变化问题.通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题来处理
思路;
1.将变转化为不变,因为我们只学会处理不变的规律.通过巧妙选取合适的研究对象,使这类问题转化为定质量的气体问题,从而利用气体实验定律或理想气体状态方程解决
2.利用克拉珀龙方程其方程为pV=nRT。

这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数,对任意理想气体而言,R是一定的,约为8.31J/(mol·K)。

(补充分太式,密度式写法)
【典例1】一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0.经过太阳曝晒,气体温度由T0=300 K升至T1=350 K.
(1)求此时气体的压强;
(2)保持T1=350 K不变,缓慢抽出部分气体,使气体压强再变回到p0.求集热器内剩余气体的质量与原来总质量的比值.判断在抽气过程中剩余气体是吸热还是放热,并简述原因.
解析(1)由题意知气体体积不变,由查理定律得
p0 T0=p1 T1
得p1=T1
T0
p0=
350
300
p0=
7
6
p0
(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V2,由玻意耳定律可得p1V0=p0V2
则V2=p1V0
p0

7
6
V0
所以集热器内剩余气体的质量与原来总质量的比值为ρV0
ρ·7
6V0

6
7
因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对外做功.由热力学第一定律ΔU=W+Q可知,气体一定
从外界吸收热量.答案(1)7
6
p0(2)
6
7
;吸热,原因见解析
【典例2】用真空泵抽出某容器中的空气,若某容器的容积为V,真空泵一次抽出空气的体积为V0,设抽气时气体温度不变,容器里原来的空气压强为p,求抽出n次空气后容器中空气的压强是多少?
解析设第1次抽气后容器内的压强为p1,以整个气体为研究对象.因为抽气时气体温度不变,则由玻意耳定律得
pV=p1(V+V0),所以p1=
V
V+V0
p
以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内气体压强为p2,由玻意耳定律有
p1V=p2(V+V0),所以p2=
V
V+V0
p1=(
V
V+V0
)2p
以第n-1次抽气后容器内剩余气体为研究对象,设第n次抽气后容器内气体压强为p n,
由玻意耳定律得p n-1V=p n(V+V0)
所以p n=
V
V+V0
p n-1=(
V
V+V0
)n p
故抽出n次空气后容器内剩余气体的压强为(
V
V+V0
)n p.
答案(
V
V+V0
)n p
例3 一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105Pa 的空气打进去125cm3.如果在打气前篮球里的空气压强也是105Pa,那么打30次以后篮球内的空气压强是多少Pa?(设在打气过程中气体温度不变)
解析由于每打一次气,总是把ΔV体积,相等质量、压强为p0的空气压到容积为V0的容器中,所以打n次气后,共打入压强为p0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为p0、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为pn、体积为V0.
令V2为篮球的体积,V1为n次所充气体的体积及篮球的体积之和则V1=2.5L+30×0.125L
由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解;
例4 某容积为20L的氧气瓶里装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为2atm,如每个小钢瓶中原有氧气压强为1atm.问最多能分装多少瓶?(设分装过程中无漏气,且温度不变)
(提示):先将大、小钢瓶中的氧气变成等温等压的氧气,再分装.

例5 如图1所示,两个充有空气的容器A、B,用装有活塞栓的细管相连通,容器A浸在温度为t1=-23℃的恒温箱中,而容器B浸在
t2=27℃的恒温箱中,彼此由活塞栓隔开.容器A的容积为V1=1L,气体压强为p1=1atm;容器B的容积为V2=2L,气体压强为p2=3atm,求活塞栓打开后,气体的稳定压强是多少?
解析活塞栓打开后时,B中气体压强较大,将有一部分气体从B中进入A中,如图2,进入A中的气体温度又变为t1=-23℃,虽然A
中气体温度不变,但由于质量发生变化,压强也随着变化(p增大),这样A、B两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,需要通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题.
例6.一个容器内装有一定质量的理想气体,其压强为 6.0×105pa,温度为47℃,但因该容器漏气,试求最终容器内剩余气体的质量为原有质量的百分之几?已知外界大气压强为p0=1.0×105Pa,气温为27℃.
解析设想漏出的气体被收集在另一个容器中,这样变质量问题转化为定质量问题.
V1为初始状态体积,也等于末状态剩余气体体积,末状态剩余气体和漏出气体属于同温同压气体,二者具有相同密度.则剩余气体与原来气体质量之比为:
mm0=ρV1ρV2=V1V2=0.18,即剩余气体质量为原来
气体质量的18%.
【练习】氧气瓶的容积是40L,其中氧气的压强是130atm,规定瓶内氧气压强降到10atm 时就要重新充氧。

有一个车间,每天需要用1atm的氧气400L,这瓶氧气能用几天?假定温度不变。

理想气体状态方程解法:
由V1→V2:p1V1=p2V2,
V2==L=520L,
由(V2-V1)→V3:p2(V2-V1)=p3V3
V3==L=4800L
则=12(天)
克拉伯龙方程解法:
由PV=nRT及n=(m为气体质量,M为某种气体的摩尔质量,在本题中M为氧气的摩尔质量)得:m=
设氧气瓶中压强为130atm时氧气的质量为m1,此时的压强为P1、体积为V1、温度为T1,氧气瓶中压强为10atm时氧气的质量为m2,此时的压强为P2、体积为V2、温度为T2,每天所用氧气的质量为m3,此时的压强为P3、体积为V3、温度为T3,所用天数为N,根据题意可得:m1=m2+Nm3,
根据题意可知:V1=V2,T1=T2=T3,带入数据可得:N=12(天)
通过比较我们不难发现,对于变质量问题用克拉伯龙方程解决要比用理想气体状态方程解决方便许多,尤其是处理打气问题、抽气问题、气体分装问题时很容易理解。

相关文档
最新文档