时间序列模型经典案例

合集下载

三、案例:时间序列模型估计(王怡璇)

三、案例:时间序列模型估计(王怡璇)
Eviews
简单应用与操作
案例:时间序列模型估计
下面以1949~2001年中国人口时间序列数据(见表16-10)为例介绍: (1)画时间序列图 (2)求中国人口序列的相关图和偏相关图,识别 模型形式 (3)估计时间序列模型 (4)样本外预测
1、画时间序列图
打开工作文件窗口,双击所要选择的中国人口变量y,从而打开y的数据窗口。 点击view键,选择功能graph\line如图1,就可以得到中国人口序列图:
图6
图7
由于AR(2)项,即Dyt-2 的系数没有显著性,因此点击 Estimate键,从估计命令中剔除AR(2)项的(Dy t-2)继续 估计,得估计结果如图9:
图8
图9
对应的模型表达式是
从图9输出结果的最后一行知,特征根是1\0.49=2.04,满足平稳性要求。点击 View选择residuals test\Correlogram-Q-stastistics功能,可以得到如图11对 话框Fra bibliotek图13
图14
4、样本外预测
比如用估计模型Dyt=0.0547+0.6171Dy +v t 预测2001年中国的总人 t-1 口,在图9窗口中点击forecast键,弹出对话框窗口,如图15
图15
图16
点击OK,预测结果就会以yf、yfse为变量名保存在工作文件中,打 开y、yf、yfse数据组,2001年中国人口预测值为12.79388亿,其 标准差为0.053 已知2001中国人口实际为12.7627亿人,预测误差为
12.79388
图1
从Eviews主菜单中选择Quick键,选择Grapf\line grapf功能。在随后弹出的 对话框中填入d(y),点击OK就可得到人口序列分布图:

时间序列建模案例ARIMA(1,1,1)

时间序列建模案例ARIMA(1,1,1)

们可以观察到1978年~2006年我国GDP(现价,生产法)具有明显的上升趋势。

在ADF检验时选择含有常数项和时间趋势项,由SIC 准则确定滞后阶数(p=4)。

GDP序列的ADF检验如下:
检验结果显示,GDP序列以较大的P值,即100%的概率接受原假设,即存在单位根的结论。

将GDP序列做1阶差分,然后对ΔGDP进行ADF检验
检验结果显示,ΔGDP序列仍接受存在单位根的结论。

其他检验方法
的结果也接受原假设,ΔGDP序列存在单位根,是非平稳的。

再对ΔGDP序列做差分,则Δ2GDP的ADF检验(选择不含常数项和趋势项,)如下:
检验结果显示,二阶差分序列Δ2GDP在1%的显著性水平下拒绝原假设,接受不存在单位根的结论,因此可以确定GDP序列是2阶单整序列,即GDP ~I (2)。

GDP序列是2阶单整序列,即GDP ~I (2)。

但是检验得到GDP的对数序列ln(GDP)是1阶单整序列,所以本例建立Δln(GDP)序列的ARIMA模型。

首先观察Δln(GDP)序列的相关图
图5.10Δl n(G D P)序列的相关图
Δln(GDP)序列的自相关系数和偏自相关系数都在1阶截尾,则取模型的阶数p =1 和q =1,建立ARIMA(1,1,1) 模型(时间期间:1978~2004年,2005和2006年实际数据不参加建模,留作检验):
图5.11Δl n(G D P)序列的A R I M A(1,1,1)模型残差的相关图从图5.11的相关图中可以看出模型的残差不存在序列相关,并且模型的各项统计量也很好。

图5.12是这个模型的拟合和预测(静态)的结果,其中2005年和2006年为预测结果。

时间序列(ARIMA)案例超详细讲解

时间序列(ARIMA)案例超详细讲解

想象一下,你的任务是:根据已有的历史时间数据,预测未来的趋势走向。

作为一个数据分析师,你会把这类问题归类为什么?当然是时间序列建模。

从预测一个产品的销售量到估计每天产品的用户数量,时间序列预测是任何数据分析师都应该知道的核心技能之一。

常用的时间序列模型有很多种,在本文中主要研究ARIMA模型,也是实际案例中最常用的模型,这种模型主要针对平稳非白噪声序列数据。

时间序列概念时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。

通过对这些时间序列的分析,从中发现和揭示现象发展变化的规律,并将这些知识和信息用于预测。

比如销售量是上升还是下降,是否可以通过现有的数据预测未来一年的销售额是多少等。

1 ARIMA(差分自回归移动平均模型)简介模型的一般形式如下式所示:1.1 适用条件●数据序列是平稳的,这意味着均值和方差不应随时间而变化。

通过对数变换或差分可以使序列平稳。

●输入的数据必须是单变量序列,因为ARIMA利用过去的数值来预测未来的数值。

1.2 分量解释●AR(自回归项)、I(差分项)和MA(移动平均项):●AR项是指用于预测下一个值的过去值。

AR项由ARIMA中的参数p定义。

p值是由PACF图确定的。

●MA项定义了预测未来值时过去预测误差的数目。

ARIMA中的参数q代表MA项。

ACF图用于识别正确的q值●差分顺序规定了对序列执行差分操作的次数,对数据进行差分操作的目的是使之保持平稳。

ADF可以用来确定序列是否是平稳的,并有助于识别d值。

1.3 模型基本步骤1.31 序列平稳化检验,确定d值对序列绘图,进行ADF 检验,观察序列是否平稳(一般为不平稳);对于非平稳时间序列要先进行d 阶差分,转化为平稳时间序列1.32 确定p值和q值(1)p 值可从偏自相关系数(PACF)图的最大滞后点来大致判断,q 值可从自相关系数(ACF)图的最大滞后点来大致判断(2)遍历搜索AIC和BIC最小的参数组合1.33 拟合ARIMA模型(p,d,q)1.34 预测未来的值2 案例介绍及操作基于1985-2021年某杂志的销售量,预测某商品的未来五年的销售量。

时间序列模型案例分析

时间序列模型案例分析

时间序列模型案例分析时间序列模型案例分析: 新冠疫情趋势预测背景:新冠疫情自2020年开始全球流行,给世界各国的医疗体系和经济造成了巨大冲击。

为了有效应对疫情,政府和医疗机构需要准确预测疫情未来的趋势,并做出相应的决策和应对措施。

数据:本案例使用了每天的新增确诊病例数作为时间序列数据。

数据包括了从疫情开始到某一时间点的每天新增病例数,以及历史病例数、疫情防控政策等其他相关因素。

目标:利用时间序列模型预测未来疫情的趋势,帮助政府和医疗机构制定合理的防控策略。

方法:我们采用了ARIMA模型(自回归移动平均模型)进行疫情趋势预测。

ARIMA模型是一种广泛应用于时间序列分析的经典模型,可对时间序列数据进行模拟和预测。

步骤:1. 数据预处理: 首先,我们进行了数据清洗和转换,确保数据的准确性和一致性。

我们还对数据进行了平稳性检验,如果数据不平稳,则需要进行差分操作。

2. 模型选择: 然后,我们选择了合适的ARIMA模型。

模型选择的关键是要找到合适的参数p、d和q,它们分别代表了自回归阶数、差分阶数和移动平均阶数。

3. 参数估计和模型拟合: 我们使用最大似然估计方法来估计模型的参数,并对模型进行拟合。

拟合后,我们对模型进行残差分析,以检验模型的拟合效果。

4. 模型评估和预测: 接下来,我们使用已有的数据来评估模型的预测效果。

我们将模型的预测结果与实际数据进行比较,并计算误差指标,如均方根误差(RMSE)和平均绝对误差(MAE)。

最后,我们使用拟合好的模型来进行未来疫情的趋势预测。

结果与讨论:经过模型拟合和评估,我们得到了一个较为准确的ARIMA模型来预测未来疫情的趋势。

根据模型的预测结果,政府和医疗机构可以制定对应的防控策略,以应对疫情的发展。

结论:时间序列模型在新冠疫情趋势预测中发挥了重要作用。

通过对历史疫情数据的分析和建模,我们可以预测未来疫情的走势,并相应地采取措施。

然而,需要注意的是,时间序列模型是一种基于过去数据的预测方法,其预测精度可能受到多种因素的影响。

时间序列分析模型实例

时间序列分析模型实例
则可近似地认为

步截尾
1 时间序列分析模型【ARMA模型 】简介
(2)
的截尾性判断
作如下假设检验:
存在某个
,使
,且
统计量
表示自由度为

分布
的上侧
分位数点
对于给定的显著性水平
,若
,则认为
样本不是来自AR(
)模型 ;
,可认为
样本来自AR(
)模型 。
注:实际中,此判断方法比较粗糙,还不能定阶,目前流行的方法是H.Akaike
一般地,月度资料的时间序列,其季节周期为12个月;
季度资料的时间序列,季节周期为4个季.
1 时间序列分析模型【ARMA模型 】简介
判断时间序列季节性的标准为: 月度数据,考察
时的自相关系数是否
与0有显著差异;
季度数据,考察
系数是否与0有显著差异。
时的自相关
说明各年中同一月(季)不相关,序列不存在季节性,否则存在季节性.
自相关函数 随机过程的自相关函数 样本的自相关函数 偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
自相关函数
对于平稳随机过程,滞后期为 K 的自相关函数定义为滞后期为 K 的自协方差与方差之比
样本自相关函数
样本自相关函数的性质
可以用来判断时间序列的平稳性 平稳性时间序列的样本自相关函数值随滞后期的延长很快趋近于零 可以较好描述季节性变动或其他周期性波动的规律 如果季节变化的周期是 12 期,观测值 Yt 与 Yt+12,Yt+24,Yt+36之间存在较强自相关关系 因此,当 K=12,24,36,48,……时,样本自相关函数值在绝对值上大于它周围的值

《统计学》案例——时间序列趋势分析

《统计学》案例——时间序列趋势分析

《统计学》案例——时间序列趋势分析囤积粮食可以创高价吗1、问题的提出某贸易公司是经营粮油副食品的批发公司,基于前4年当地的消费物价指数的变化,该公司认为今后两年内消费物价指数将有大幅度上涨,为此该公司计划囤积粮食至下一年(第6年)以创高价。

这个计划是否可行?2、方法的选择根据下表的数据,可采用时间序列的趋势分析方法和季节变动分析方法,进行相应的分析预测,以了解消费物价指数的发展趋势。

表23 122.434 139.373、消费物价指数的预测根据题意需预测出第6年各季的物价指数,若指数升幅较大,那么粮食价格将会提高,否则囤积货物只会增加保管成本而不可能得到高价。

在物价指数预测中,循环变动和不规则变动难以准确预测,故仅考虑长期趋势与季节变动的影响。

本案例分析应用EXCEL软件。

(1)计算移动平均数。

输出结果见下表和图:表3.(2)分离长期趋势T。

对于T×C,按照表8.14中时间顺序,用最小平方法建立长期趋势模型yc=111.498+1.173t ,据以计算各期趋势值T(见上表)。

(3)分离季节变动S。

首先剔除长期趋势的影响y/T×C,即T×C×S×I/T×C=S×I;然后根据S×I序列计算各期季节比率S。

计算结果为:1季度季节比率=0.9773,2季度季节比率=0.9874,3季度季节比率=1.0076,4季度季节比率=1.0277。

(4)预测第6年各季消费物价指数。

首先需要根据时间序列模型计算第6年各季的趋势值,即将t=19、20、21、22分别代入yc=111.498+1.173t计算得第6年各季度趋势值:1季的趋势值为133.792季趋势值为134.963季趋势值为136.144季趋势值为137.31然后分别乘以各自季节比率得到各季预测值,1季物价指数=133.79×0.9773=130.75%2季物价指数=134.96×0.9874=133.26%3季物价指数=136.14×1.0076=137.17%4季物价指数=137.31×1.0277=141.11%。

时间序列模型例子

时间序列模型例子

时间序列模型例子
1. 嘿,你知道吗,预测股票价格就是时间序列模型的一个很厉害的例子啊!比如说分析过去股票的价格走势,来试着猜一猜未来的价格会怎么变化。

这就像预测天气一样,过去的数据能给我们一些线索呢!
2. 哇塞,交通流量的预测也是时间序列模型的经典例子哦!我们可以根据以往不同时间段的交通流量情况,来估计接下来会不会拥堵。

这不就和我们根据过去对一个人的了解,去猜测他下一次的行为差不多嘛!
3. 嘿呀,还有销售额的预测呀!通过分析以前每个月或者每个季度的销售额数据,来预估未来的销售情况。

这就好像一个聪明的侦探,从过去的蛛丝马迹中找到未来的答案,是不是超级有趣!
4. 你想想看,用电量的预测也是时间序列模型的用武之地呢!观察之前的用电量变化,来推测以后的用电高峰和低谷。

这就像摸着石头过河,有了以前的经验,就更有把握了呢!
5. 哎呀呀,疾病的传播趋势也能用时间序列模型来研究呢!看看过去疾病的发展情况,说不定就能预测未来会怎么扩散。

这和顺着一根线去找它的源头有啥区别呢!
6. 嘿,农作物的产量预测也可以靠它哦!依据以往年份的产量数据,去琢磨接下来会有多少收获。

这就跟我们期待一份惊喜一样,充满了未知和期待呢!
7. 哇哦,人口增长的分析也少不了时间序列模型呀!看看过去人口的变化,来想想以后人口会怎么变。

这就如同跟着时间的脚步,一点点探索未来的模样。

我觉得时间序列模型真是太神奇了,能在这么多不同的领域发挥作用,帮助我们更好地理解和预测各种现象啊!。

数据分析中的时间序列模型

数据分析中的时间序列模型

数据分析中的时间序列模型时间序列模型是数据分析中一种重要的统计方法,它用于揭示数据随时间变化的模式和趋势。

时间序列模型可以应用于多个领域,例如经济学、气象学、市场营销等等。

本文将介绍时间序列模型的基本概念、常见的方法和应用案例。

一、时间序列模型的基本概念时间序列是按照时间顺序排列的一系列数据,它可以是离散的或连续的。

时间序列模型的目标是对时间序列数据进行建模和预测。

在实际应用中,时间序列通常具有趋势(Trend)、季节性(Seasonality)和周期性(Cyclical)等组成部分。

1. 趋势:指时间序列数据在长期内表现出的整体上升或下降的趋势,可以是线性或非线性的。

2. 季节性:指时间序列数据在特定时间段内重复出现的规律,比如每年夏季的销售额通常会高于其他季节。

3. 周期性:指时间序列数据在较长时间内出现的波动,可能是由于经济周期或其他周期性因素引起。

二、常见的时间序列模型方法时间序列模型包括很多不同的方法和算法,下面介绍几种常见的方法。

1. 移动平均模型(Moving Average,MA):MA模型基于数据的移动平均值,用于捕捉数据的平稳性和周期性。

它通常表示为MA(q),其中q表示模型中的滞后阶数。

2. 自回归模型(Autoregressive,AR):AR模型假设当前的观测值可以由过去若干观测值的线性组合表示,用于描述趋势和周期性。

它通常表示为AR(p),其中p表示模型中的滞后阶数。

3. 自回归移动平均模型(Autoregressive Moving Average,ARMA):ARMA模型结合了AR和MA模型,用于同时考虑趋势和周期性。

它通常表示为ARMA(p, q),其中p和q分别表示AR和MA模型中的滞后阶数。

4. 季节性自回归移动平均模型(Seasonal Autoregressive Moving Average,SARMA):SARMA模型用于处理具有明显季节性的时间序列数据,它在ARMA模型的基础上添加了季节性因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列模型经典案例
时间序列模型是一种以时间为基础的统计模型,旨在对给定的时间序列数据进行建模
和分析。

它的基本策略是使用历史先前的行为来预测未来的行为。

它可以用于一些经济领域,如股市价格预测、可用机器预测成本、销售预测、金融账户预测和疾病蔓延预测等等。

在这种情况下,时间序列模型可以帮助人们找出未来的可能性和未来可能出现的潜在变异。

其中,一个经典的时间序列模型案例就是服务水平分析。

服务水平分析是一种应用时
间序列分析的方法,用来评估服务和/或产品的可用性、可靠性和性能。

它通过定时监测
服务或产品的可用性,反映回客户的使用情况以评估服务或产品的能力。

服务水平分析可
以对质量、可靠度和性能感兴趣的组织有所帮助,因为可以根据“服务水平政策”来识别
并跟踪服务或产品的可用性和服务质量的缺陷。

时间序列模型的另一个经典案例是客流量预测。

客流量预测是一种应用时间序列模型
的方法,它可以用来预测某一段时期内客流量的实际变化趋势。

它具有很强的精准性和灵
活性,可以精确推断客流量的预测水平,从而向组织有关以及如何优化客流资源分配方面
发出更多建议。

此外,时间序列模型的应用还包括气象分析、饮用水质量预测、能源需求识别和预测、环境污染预测以及各种其他社会问题预测等等。

例如,应用气象分析模型来识别和预测气
温变化可以帮助人们更好地处理气象灾害,而应用能源需求识别和预测则可以为能源市场
提供更多信息,进而实现环境友好型、可持续发展的社会。

相关文档
最新文档