具有工作休假的单服务台排队模型

合集下载

排队模型(掌握mm1,mmc,mm1k)

排队模型(掌握mm1,mmc,mm1k)
3 6 1 5 6 7 22 3 4 6 11 45 5 2 0 4 11 9 1 2 8 26 3 10 5 12 47 4 2 3
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) i τi si ti wi i τi si ti wi i τi si ti wi 13 49 1 3 5 23 86 6 2 2 33 117 4 4 7
现实生活中的排队系统序Leabharlann 到达的顾客 号要求服务内容
服务机构
1 不能运转的机器 修理
修理技工
2 修理技工
领取修配零件 发放修配零件的管理员
3 病人
诊断或做手术 医生(或包括手术台)
4 电话呼唤
通话
交换台
5 文件搞
打字
打字员
6 提货单
提取存货
仓库管理员
7 驶入港口的货船 装(卸)货
装(卸)货码头(泊位)
二、排队系统的特征及其组成
1、排队系统的特征即拥挤现象的共性 1)、有请求服务的人或物 2)、有为顾客服务的人或物 3)、具有随机性 4)、服务的数量超过服务机构的容量
2、排队系统的三大基本组成部分
1)、输入过程(顾客到达的方式) a、顾客的总体(顾客源)的组成可能是有限的,也
可能是无限的; b、顾客相继到达的时间间隔可以是确定的,也可以
平均服务率: 41/127=0.32(人/分钟)
六、典型排队系统模型的结构及应用
M/M/C等待制排队模型研究要点: a、系统意义 b、状态转移速度图与状态转移速度矩阵 c、状态概率方程 d、系统的基本数量指标
Passion分布
设N(t)表示在时间[0, t)内到达顾客数; 令Pn(t1, t2)表示在时间区间[t1, t2)(t2 > t1)内有n(0) 个顾客到达的概率,即 Pn(t1, t2)=P{ N(t2) –N(t1)=n } (t2>t1,n0) Passion分布的三条件:

排队模型——精选推荐

排队模型——精选推荐

排队模型一 1. 一般的排队过程为:顾客由顾客源出发,到达服务机构(服务台、服务员)前,按排队规则排队等待接受服务,服务机构按服务规则给顾客服务,顾客接受完服务后就离开。

排队过程的一般过程可用下图表示。

我们所说的排队系统就是指图中方框所包括的部分:在现实生活中的排队现象是多种多样的,对上面所说的“顾客”和“服务员”要作广泛的理解。

它们可以是人,也可以是某种物质或设备。

排队可以是有形的,也可以是无形的。

尽管排队系统是多种多样的,但从决定排队系统进程的因素来看,它有三个基本的组成部分,这就是输入过程、排队规则及服务机构.1)输入过程:描述顾客来源以及顾客到达排队系统的规律。

包括:顾客源中顾客的数量是有限还是无限;顾客到达的方式是单个到达还是成批到达;顾客相继到达的间隔时间分布是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。

2)排队规则:描述顾客排队等待的队列和接受服务的次序。

包括:即时制还是等待制;等待制下队列的情况(是单列还是多列,顾客能不能中途退出,多列时各列间的顾客能不能相互转移);等待制下顾客接受服务的次序(先到先服务,后到先服务,随机服务,有优先权的服务)。

3)服务机构:描述服务台(员)的机构形式和工作情况。

包括:服务台(员)的数目和排列情况;服务台(员)的服务方式;服务时间是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。

2.到达和服务过程的模型2.1 到达过程的模型用表示第i 个顾客到达的时间,.i t 称为第i 个到达时间间隔.1i i T t t +=−i 我们用的特征来刻画顾客到达过程. 最常见的情况是独立同分布. 用X 表示这样的随机变量.12,,T T 12,,T T 如果X 服从参数为λ的指数分布.这时1()()i E T E X λ==即平均每隔1λ来一个顾客.换句话说,单位时间理平均有λ个顾客到来.称λ为到达速率. 用表示到时刻t 为止到达的顾客总数,则在上面的假设下()N t ()()N t P t λ∼.除了指数分布外,常用的还有爱尔朗分布,其密度函数为1()(), 0.(1)!k RxR Rx e f x x k −−=≥− 这时2(), ()i i k k E T D T R R==. k 叫形状参数, R 叫速率参数.当取λ使得R k λ=, 则爱尔朗分布可以看成是k 个独立的服从参数为λ的指数分布随机变量的和的分布.2.2服务过程的模型一般总是认为不同顾客接受服务占用的时间长短是相互独立的. 用Y表示一个客户接受服务的时间长短, 它是一个随机变量.若Y的分布是参数为μ的指数分布, 意味着一个顾客的服务时间平均为1μ. 单位时间里可以完成的平均顾客数为μ.若Y服从形状参数为k, 速率参数为R kμ=的爱尔朗分布, 则平均服务时间为1μ, 根据爱尔朗分布的性质, 可以将Y看作是k个相继子服务的总时间, 每个子服务都服从参数为1kμ的指数分布且相互独立.在排队论中,我们常用如下字母表示特定的到达时间间隔或服务时间分布:M: i.i.d. 指数分布D: i.i.d. 的确定分布E k: i.i.d. 的形参为k的爱尔朗分布GI: 到达时间间隔是i.i.d. 的某种一般分布G: 服务时间是i.i.d. 的某种一般分布在处理实际排队系统时,需要把有关的原始资料进行统计,确定顾客到达间隔和服务时间的经验分布,然后按照统计学的方法确定符合哪种理论分布。

队列的应用——单服务台排队系统的模拟

队列的应用——单服务台排队系统的模拟

队列的应用:单服务台排队系统的模拟一、三个模拟1.离散事件模拟系统在排队系统中,主要有两类事件:顾客的到达事件和服务完毕后顾客的离去事件,整个系统就是不断有到达事件和离开事件的发生,这些事件并不是连续发生的,因此这样的系统被称为离散事件模拟系统。

(1)事件处理过程如果服务员没空,就去队列中排队;否则就为这个顾客生成服务所需的时间t,表示服务员开始为它服务,所需的服务时间是t。

每当一个离开事件发生,就检查有没有顾客在排队,如果有顾客在排队,则让队头顾客离队,为它提供服务,如果没有顾客排队,则服务员可以休息。

(2)如何产生顾客到达事件和离开事件在一个排队系统中,顾客的到达时间和为每个顾客服务的时间并不一定是固定的。

但从统计上来看是服从一定的概率分布。

假设到达的间隔时间和服务时间都满足均匀分布,则可以用随机数产生器产生的随机数。

①以生成顾客到达事件为例子如顾客到达的间隔时间服从[a,b]之间的均匀分布,则可以生成一个[a,b]之间的随机数x,表示前一个顾客到达后,经过了x的时间后又有一个顾客到达。

[a,b]之间的随机数可以按照下面的过程产生:假如系统的随机数生成器生成的随机数是均匀分布在0到RAND_MAX之间,可以把0到RAND_MAX之间的区间等分成b-a+1个,当生成的随机数落在第一个区间,则表示生成的是a,当落在第二个区间,则表示生成的是a+1…当落在最后一个区间,则表示生成的是b。

这个转换可以用rand()*(b-a+1)/( RAND_MAX+1)+a实现,rand 表示系统的随机数生成函数。

2.离散的时间驱动模拟在得到了在x秒后有一个事件生成的信息时,并不真正需要让系统等待x秒再处理该事件。

在模拟系统中,一般不需要使用真实的精确事件,只要用一个时间单位即可,这个时间单位是嘀嗒tick,可以表示1秒,也可以表示1min\1h.沿着时间轴,模拟每一个嘀嗒中发生了什么事件并处理该事件。

模拟开始时时钟是0嘀嗒,随后每一步都把时钟加1嘀嗒,并检查这个时间内是否有事件发生,如果有,则处理并生成统计信息。

具有工作休假的单服务台排队模型的开题报告

具有工作休假的单服务台排队模型的开题报告

具有工作休假的单服务台排队模型的开题报告
一、研究背景
随着社会经济的不断发展,人们对生活质量的要求也越来越高。

因此,人们经常需要到服务台办理各种业务,如取号、缴费、打印等。

在繁忙的节假日或工作日高峰期,人们需要排队等候,这极大地浪费了人们的时间和精力。

如何提高服务台的效率,减少等待时间,成为了很多服务机构需要解决的问题。

队列理论,是解决排队问题的一种数学方法,可以有效地帮助服务机构进行排队管理。

因此,对于单服务台排队模型的研究非常重要。

二、研究内容及目的
本研究拟以具有工作休假的单服务台排队模型为研究对象,通过对队列理论中的等待时间、服务时间、到达率等指标的研究和分析,设计出一种适合该模型的排队策略,以优化服务台的效率,减少排队等待时间,提高服务质量。

三、研究方法
本研究将采用数学模型的方法,通过理论分析和实验模拟的方式,对具有工作休假的单服务台排队模型进行研究,探讨如何根据实际情况设计出最佳的排队策略,达
到优化服务效率的目的。

四、预计结果
本研究将对具有工作休假的单服务台排队模型进行研究,探讨在该模型下采用何种排队策略可以最大限度地提高服务效率。

通过对等待时间、服务时间、到达率等指
标的分析和实验模拟,预计可以得出相应的排队策略,以优化服务效率,减少排队等
待时间,提高服务质量。

单服务台排队模型

单服务台排队模型

n
n
Pk 95% (1 ) k 1 n1 95%
k 0
k 0
n1 5%
解得 n 15.4 16
即至少为病人准备15个座位(正在取药的人除外)。
26
例8-3 某医院欲购一台X光机,现有四种可供选择的 机型。已知就诊者按泊松分布到达,到达率每小时4 人。四种机型的服务时间均服从指数分布,其不同机 型的固定费用C1,操作费C2,服务率µ见表。若每位 就诊者在系统中逗留所造成的损失费为每小时15元, 试确定选购哪一类机型可使综合费(固定费+操作费+ 逗留损失费)最低。
过程服从泊松分布,即顾客到达间隔时间服从负 指数分布; (2)排队规则――单队,且队长没有限制,先到先服 务; (3)服务机构――单服务台,服务时间的长短是随机 的,服从相同的负指数分布 。
17
排队系统的状态n随时间变化的过程称为生灭过程, 设平均到达率为λ,平均服务率为μ,负指数分布排队系统 (M/M/1/∞/∞)的生灭过程可用下面的状态转移图表 示:
40
解:3个M/M/1系统,
0.3人/ 分钟, 0.4人/ 分钟,
(3)每个系统的平均等待队长
Lq
2 ( )
0.09 0.4(0.4 0.3)
9 4
2.25
(4)每个系统的平均队长
L 0.3 (3 人) 0.4 0.3
41
解:3个M/M/1系统,
0.3人/ 分钟, 0.4人/ 分钟,
30
31
1、状态概率
C-1
P0= k=0
k1!
k

11
C!1-
C 1
C
Pn=
n1!
n
1 C! C n-C

单服务员排队模型及其蒙特卡洛模拟

单服务员排队模型及其蒙特卡洛模拟

Carlo ) 方法是一种应用随机数来
。对于所求问题 , 模拟过程见图 1
其中 n = 1 , 2 , …; 当 n = 0 时可以得到 :
d P0 ( t) =- λ P 0 ( t) + μ P 1 ( t) dt
对于稳态情形 , P n ( t) 与 t 无关 , 其导数为 0 。因此可 得差分方程如下 : λ ) P n = 0 n ≥1 P n- 1 + μ P n+1 - (λ+ μ
4 结 语 通过对机械振动系统的 Matlab/ Simulink 建模研究 , 可以看出采用 S
Function 模块建模其模型非常简单 , 可
读性好 , 而且 S 函数的编写只要对系统自带的 S 函数模板 进行适当的修改就行了 ,这样的建模方法非常灵活 。Sim2
ulink 的仿真功能非常强大 , 利用他来解决工程实际问题 ,
- λ P0 + μ P1 = 0
解此方程得到 : P n = (

λ n λ ) ・P0 , 今设ρ = < 1, μ μ λ = 1 - ρ , 从而得到 : μ
( 1)
由于
n=0
∑P
n
= 1 , 故 P0 = 1 P0 = 1 - ρ
n ) ・ ρ Pn = ( 1 - ρ n = 1 , 2 , …
为了将仿真结果绘在一张图上便于分析 , 建立一个名 为 zhdwy 的 M 文件如下 :
subplot ( 2 ,1 ,1) plot ( tout , yout ( : , 1 ) ,′ b′ , to ut , yo ut ( : , 2 ) ,′ r′ , tout , yout ( : , ) 3) ,′ k′ ) ylabel (′ 振动物体的位移′ legend (′ x1′ ,′ x2′ ,′ x3′ ,4) ; grid mino r subplot ( 2 ,1 ,2) plot ( tout , yout ( : , 4 ) ,′ b′ , to ut , yo ut ( : , 5 ) ,′ r′ , tout , yout ( : , ) 6) ,′ k′ ) ylabel (′ 振动物体的速度′ ) xlabel (′ t 的取值范围′ legend (′ v1′ ,′ v2′ ,′ v3′ ,2) ; grid mino r

第十五章排队系统分析单服务台模型 30页PPT文档

第十五章排队系统分析单服务台模型 30页PPT文档
运筹学
顾客到达就能理发的概率 相当于理发店内没有顾客
P01 1 N111 (33//44)80.2778
等待顾客数的期望值
Ls1 (N 1 1 )N N 111 33 /4 /418 (3 (3 //44 )8 )82.11
LqLs(1P 0)2.1 1(10.27)7 18 .39 运筹学
Little公式(相互关系)
Ls Ws
Ws
Wq
1

Lq Wq

Ls
Lq


运筹学
例15-2:某医院手术室每小时就诊病人数和手术时间的 记录如下:
到达的病人数
n 0 1 2 3 4 5 6 以上 合计
出现次数
un 10 28 29 16 10
6 1 100
完成手术时间
r 0.0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0~1.2 1.2 以上
平衡方程:
pn 1 p0
n
P nP 1 0 P P n 11 0()P n0
n 0 n 1
求解:令: ,且当 1时
P P0 n 1 (1)n n1
运筹学
关于 的几点说明:
(1) (2)
合计
出现次数
vr 38 25 17 9 6 5 0 100 运筹学
解:2.1,2.5每小时病人平均到达率
到完达成的手病术人时数间
nr 0.0~00.2 0.2~10.4 0.4~20.6 0.6~30.8
出现次数
vur n 3180 2258 1279 19 6
nun 2.1(人/小时)
其中
Cn

数学建模之排队论模型

数学建模之排队论模型
第五讲 排队论模型
【修理工录用问题】工厂平均每天有一台机器发生故障而需要修理,机器的故障数 服从泊松分布。 修理一台机器平均花费 20 元。 现有技术水平不同的修理工人 A 和 B, A 种修理工平均每天能修理 1.2 台机器, 每天工资 3 元; B 种修理工平均每天能修理 1.5 台机器,每天工资 5 元,两种修理工修理机器的时间为负指数分布。问工厂录用 哪种工人较合算?
Ls = ∑ np n = ∑ n(1 − ρ )ρ n = ρ /(1 − ρ ) = λ /( µ Nhomakorabea− λ ).
n =0 n =1


(2) 排队长: (等待的平均顾客数)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Lq = ∑ (n − 1) p n = ∑ (n − 1) ρ n (1 − ρ )
本讲主要内容
1. 2. 3. 4. 5. 排队论的基本概念 单服务台的排队模型 多服务台的排队模型 排队系统的最优化问题 数学建模实例:校园网的设计和调节收费问题
5.1 排队论的基本概念
5.1.1 什么是排队系统
排队论也称随机服务系统理论,它是 20 世纪初由丹麦数学家 Erlang 应用数学方法在研 究电话话务理论过程中而发展起来的一门学科, 在实际中有广泛的应用。 它涉及的是建立一 些数学模型, 藉以对随机发生的需求提供服务的系统预测其行为。 现实世界中排队的现象比 比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同, 但有如下共同特征: (1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为 “顾客” 。 (2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员” 。由顾 客和服务员就组成服务系统。 (3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间 不一定是确定的, 服务过程的这种随机性造成某个阶段顾客排长队, 而某些时候服务员又空 闲无事。 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 1.输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到 达的规律、 作出经验分布, 然后按照统计学的方法 (如卡方检验法) 确定服从哪种理论分布, 并估计它的参数值。 我们主要讨论顾客来到服务台的概率分布服从泊松分布, 且顾客的达到 是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的 影响。 2.排队规则 即顾客排队和等待的规则。排队规则一般有即时制和等待制两种。所谓即 时制就是服务台被占用时顾客便随即离去; 等待制就是服务台被占用时, 顾客便排队等候服 务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论 先到先服务的系统。 3.服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档