山东省济宁地区(SWZ)2021-2022学年中考四模数学试题含解析
山东省济宁市济宁院附属中学2021-2022学年中考数学四模试卷含解析

山东省济宁市济宁院附属中学2021-2022学年中考数学四模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.如图是反比例函数ky x=(k 为常数,k≠0)的图象,则一次函数y kx k =-的图象大致是( )A .B .C .D .2.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长3.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°4.如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠B =58°,则∠OAC 的度数是( )A.32°B.30°C.38°D.58°5.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.6.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A.(0,3)B.(3,0)C.(0,2)D.(2,0)7.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a68.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是269.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±110.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.二、填空题(共7小题,每小题3分,满分21分) 11.把多项式a 3-2a 2+a 分解因式的结果是 12.方程x+1=25x +的解是_____.13.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF=__.14.函数y=36x x +- 中,自变量x 的取值范围为_____. 15.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a +b 的值是_______. 16.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .17.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.三、解答题(共7小题,满分69分)18.(10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α,(1)如图1所示,当α=60°时,求证:△DCE 是等边三角形; (2)如图2所示,当α=45°时,求证:CDDE=2; (3)如图3所示,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系:CEDE=_____.19.(5分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________; (2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.20.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?21.(10分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP . (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,求t 的值.22.(10分)如图,在平面直角坐标系中,已知OA =6厘米,OB =8厘米.点P 从点B 开始沿BA 边向终点A 以1厘米/秒的速度移动;点Q 从点A 开始沿AO 边向终点O 以1厘米/秒的速度移动.若P 、Q 同时出发运动时间为t(s). (1)t 为何值时,△APQ 与△AOB 相似? (2)当 t 为何值时,△APQ 的面积为8cm 2?23.(12分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.24.(14分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据图示知,反比例函数ky x=的图象位于第一、三象限, ∴k >0,∴一次函数y =kx −k 的图象与y 轴的交点在y 轴的负半轴,且该一次函数在定义域内是增函数, ∴一次函数y =kx −k 的图象经过第一、三、四象限; 故选:B. 2、B 【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244;22b a a b a a x x -+-+-==∵90,2aC BC AC b ∠=︒==,, ∴224a ABb =+,∴22224.422a ab a aAD b +-=+-=AD 的长就是方程的正根. 故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 3、D 【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质. 4、A 【解析】根据∠B =58°得出∠AOC=116°,半径相等,得出OC=OA ,进而得出∠OAC=32°,利用直径和圆周角定理解答即可. 【详解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故选:A.【点睛】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.5、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集.2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6、A【解析】直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【详解】如图,连结AC,CB.依△AOC∽△COB的结论可得:OC2=OA OB,即OC2=1×3=3,解得:33(负数舍去),故C点的坐标为(0, 3故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.7、B【解析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;B. a4÷a3=a4-3=a;,本选项正确;C. a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.8、C【解析】根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.9、C【解析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1故选C . 【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型. 10、D 【解析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中. 【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形. 故选A . 【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.二、填空题(共7小题,每小题3分,满分21分) 11、()2a a 1-. 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()2322a 2a a=a a 2a 1=a a 1-+-+-.12、x=1 【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到无理方程的解. 【详解】两边平方得:(x+1)1=1x+5,即x 1=4, 开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1. 故答案为x=1 13、15° 【解析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=,故答案为15°.14、x≠1.【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】根据题意得:x−1≠0,解得:x≠1.故答案为x≠1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.15、1【解析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.【详解】∵a、b是方程x2-2x-1=0的两个根,∴a2-2a=1,a+b=2,∴a 2-a+b=a 2-2a+(a+b )=1+2=1. 故答案为1. 【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-b a 、两根之积等于ca是解题的关键. 16、6或2或12 【解析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. 【详解】由方程2680x x -+=,得x =2或1. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去; 当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2. 综上所述此三角形的周长是6或12或2. 17、25【解析】解:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.三、解答题(共7小题,满分69分)18、1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出DCDE=CFAD,再证明CF=2AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴DCDE=CFAD.∵四边形ADFG是矩形,FC=2FG,∴FG=AD,CF=2AD,∴CDDE=2.(3)解:如图3中,设AC与DE交于点O.∵AE ∥BC ,∴∠EAO =∠ACB .∵∠CDE =∠ACB ,∴∠CDO =∠OAE .∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴CO EO =OD OA ,∴CO OD =EOOA.∵∠COE =∠DOA ,∴△COE ∽△DOA ,∴∠CEO =∠DAO .∵∠CED +∠CDE +∠DCE =180°,∠BAC +∠B +∠ACB =180°.∵∠CDE =∠B =∠ACB ,∴∠EDC =∠ECD ,∴EC =ED ,∴CEDE=1. 点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.19、(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,2l =. 【解析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长. 【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称, ∴1(3,3)A -,1(4,1)B -,1(0,2)C - (2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C ,∴22(40)(12)17=--+-=BC∴2扇形CBC S 2290(17)1734604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积:222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:9017171802π==l .【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键. 20、(1)20%;(2)能. 【解析】(1)设年平均增长率为x ,则2015年利润为2(1+x )亿元,则2016年的年利润为2(1+x )(1+x ),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.21、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据AD⋅BC=AP⋅BP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD⋅BC=AP⋅BP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴2253-,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值为2秒或2秒.【点睛】本题考查圆的综合题.22、(1)t=154秒;(1)t=5﹣5(s).【解析】(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;(1)过点P 作PC⊥OA 于C,利用∠OAB 的正弦求出PC,然后根据三角形的面积公式列出方程求解即可.【详解】解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵点P的速度是每秒1个单位,点Q 的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP 是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ 与△AOB相似;(1)如图,过点P 作PC⊥OA 于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故当t=5﹣5(s)时,△APQ的面积为8cm1.【点睛】本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.23、(1)A1(﹣1,﹣2),B1(2,﹣1);(2)54π.【解析】(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算.【详解】(1)如图所示:A1(﹣1,﹣2),B1(2,﹣1);(2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:22125OB=+=,线段OB扫过的面积为:290π5π.3604⨯=【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.24、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,求证:△ABC是等腰三角形;证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,∵BD,CE分别是AC,BC边上的中线,∴DE是△ABC的中位线,∴DE∥BC,∵DF∥EC,∴四边形DECF是平行四边形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC与△ECB中BD EC DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴△DBC ≌△ECB , ∴EB =DC , ∴AB =AC ,∴△ABC 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.。
山东省济宁市2021-2022学年中考四模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠13.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②BD=7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=312,正确的个数是()A.2 B.3 C.4 D.54.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.5.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)6.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35 m/s;;③图1中线段EF应表示为5005x④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④B.②③C.①②④D.①③④7.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.8.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个964( )A.-8 B.-4 C.-2 D.不存在10.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.45二、填空题(本大题共6个小题,每小题3分,共18分)11.方程233x x=-的解是.12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.13.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P 旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.14.函数y=213xx+-的自变量x的取值范围是_____.15.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.16.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.三、解答题(共8题,共72分)17.(8分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=mx(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=55,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式.(2)若AC是△PCB的中线,求反比例函数的关系式.20.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.1221.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P 为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.22.(10分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(12分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.24.元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.2、D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.3、D【解析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算2=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=12,12POEAOPSS=,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,=∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,=,∴,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=12BC,BC=AD,∴OE=12AB=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴∴S△AOE=S△EOC =12OE•OC=12×12×3328=,∵OE∥AB,∴12 EP OEAP AB==,∴12POEAOPSS=,∴S△AOP=23S△AOE=2338⨯=312,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.4、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD 的面积的表达式是解题的关键.5、C【解析】根据题意知小李所对应的坐标是(7,4).故选C.6、A【解析】分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:50075125bk b=⎧⎨+=⎩,解得5500kb=-⎧⎨=⎩,∴y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.7、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.8、C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.9、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案.详解:∵8=-,()328-=-, ∴的立方根为-2,故选C .点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键. 10、B【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba 故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1.【解析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x ﹣1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.12、20 cm .【解析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离.根据勾股定理,得A B 20'=(cm ).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13、1【解析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14、x≥﹣12且x≠1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可.详解:根据题意得2x+1≥0,x-1≠0,解得x≥-12且x≠1.故答案为x≥-12且x≠1.点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15、52或10【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=52.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=52或10.16、8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.三、解答题(共8题,共72分)17、25°【解析】先利用正方形的性质得OA=OC ,∠AOC=90°,再根据旋转的性质得OC=OF ,∠COF=40°,则OA=OF ,根据等腰三角形的性质得∠OAF=∠OFA ,然后根据三角形的内角和定理计算∠OFA 的度数.【详解】解:∵四边形OABC 为正方形,∴OA=OC ,∠AOC=90°,∵正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,∴OC=OF ,∠COF=40°,∴OA=OF ,∴∠OAF=∠OFA ,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°. 故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.18、无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.19、(2)y=2x+2;(2)y=4x.【解析】(2)由cos∠ABO 5tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.【详解】(2)∵cos∠ABO=55,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2 ∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A(0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中线,∴P(2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=4x.【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k =tan∠ABO是解题的关键.20、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.21、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM=,∴PM=169,∴PG=PM+MG=259=PB,∴圆P与直线DC相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)100;(2)补图见解析;(3)570人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)见解析;(2)60°.【解析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.【详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)连结BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.24、(1)14;(2)116【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.。
2022年山东省济宁市中考数学模拟试题及答案解析

2022年山东省济宁市中考数学模拟试卷1. −2的倒数是( )A. 2B. 12C. −12D. −22. 新型冠状病毒(2019−nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为( )A. 2.03×10−8B. 2.03×10−7C. 2.03×10−6D. 0.203×10−63. 下列关于“健康防疫“标志的图中是轴对称图形的是( )A. B.C. D.4. 反比例函数y=kx(k≠0)的图象经过点(−4,3),这个反比例函数的图象一定经过( )A. (−4,−3)B. (3,−4)C. (3,4)D. (−3,−4)5. 下列计算正确的是( )A. a2+a2=a4B. (a2)3=a5C. (−a2b)3=a4b3D. (b+2a)(2a−b)=4a2−b26. 如图,在△ABC中,∠B=30°,∠C=40°,点D在边AB上,过点D作DE//AC交BC于点E,则∠ADE的度数为( )A. 50°B. 60°C. 70°D. 80°7. 肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程( )A. 1+x=225B. 1+x2=225C. (1+x)2=225D. 1+(1+x2)=2258. 如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A. 1B. √2C. √3D. 29. 如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为( )A. 3√3B. 2√7C. 4√3D. 2+2√310. 如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点⏜上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC B.点P为AM于点F,则下列结论正确的个数有( )π;③∠DBE=45°;④△BCF∽△PCB;⑤CF⋅CP为定值.①PB=PD;②BC⏜的长为43A. 2个B. 3个C. 4个D. 5个11. 若3x a y3和−x2y b是同类项,则这两个同类项之和为______.12. 若a、b为实数,且满足|a+2|+√3−b=0,则b−a的值为______.13. 如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,垂足分别为E,F,EF=3,则DP的长为______.14. 如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是______.15. 如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的32倍,得到矩形A1OC 1B1,再将矩形A1OC1B1以原点O为位似中心放大32倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为______.16. (1)计算:(−12)−1+4sin60°−|−2√3|+(2022−π)0;(2)解方程:4x2−1=xx+1−1.17. 为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(每人最多选一种)人数直播10录播a资源包5线上答疑8(1)求出a的值;(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.18. 如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2√3.【实践与操作】(1)利用尺规作图作线段AC的垂直平分线DE,垂足为点E,交AB与点D;(保留作图痕迹,不写作法)【化简与求值】(2)若△ADE的周长为a,T=a−√3,求T的值.19. 复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求一根跳绳和一个毽子的售价分别是多少元;(2)学校计划购买跳绳和毽子两种器材共400个,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.20. 如图,已知⊙O的直径AB=12,弦AC=10,D是BC⏜的中点,过点D作DE⊥AC,交AC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.21. 阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形______.A.平行四边形B.矩形C.菱形D.等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是______ 命题(填“真”或“假”).(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数.22. 如图,已知抛物线y=ax2+bx+c与x轴相交于A(−3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=−1,连接AC.(1)求该抛物线的表达式;(2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△ABD.请直接出所有符合条件的点P的坐标.S△BDP=32答案和解析1.【答案】C【解析】【分析】本题主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根.据倒数定义可知,−2的倒数是−12【解答】)=1,解:因为−2×(−12.所以−2的倒数是−12故选:C.2.【答案】B【解析】解:0.000000203米,该数据用科学记数法表示为2.03×10−7.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不符合题意.故选:C.根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【答案】B(k≠0)的图象经过点(−4,3),【解析】解:∵反比例函数y=kx∴k=−4×3=−12,∴反比例函数的关系式为y=−12,x当x=−4时,y=3,因此选项A不符合题意;当x=3时,y=−4,因此选项B符合题意;当x=3时,y=−4,因此选项C不符合题意;当x=−3时,y=4,因此选项D不符合题意;故选:B.根据反比例函数图象上点的坐标关系,分别代入计算即可.本题考查反比例函数图象上点的坐标特征,求出函数关系式是解决问题的关键.5.【答案】D【解析】解:A、原式=2a2,原计算错误,故此选项不符合题意;B、原式=a6,原计算错误,故此选项不符合题意;C、原式=−a6b3,原计算错误,故此选项不符合题意;D、原式=4a2−b2,原计算正确,故此选项符合题意.故选:D.根据合并同类项法则,幂的乘方的运算法则,积的乘方的运算法则,平方差公式计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.6.【答案】C【解析】解:∵∠BAC=180°−∠B−∠C,∠B=30°,∠C=40°,∴∠BAC=110°,∵DE//AC,∴∠ADE+∠BAC=180°,∴∠ADE=180°−∠BAC=70°,故选:C.由DE//AC,推出∠ADE+∠BAC=180°,只要求出∠DAC的度数即可解决问题.本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】C【解析】解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.此题可设1人平均感染x人,则第一轮共感染(x+1)人,第二轮共感染x(x+1)+x+1=(x+ 1)(x+1)人,根据题意列方程即可.此题考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.由正方形的性质和平行线的性质得出∠A=90°,∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,从而得出∠AB′E=30°,得出B′E=2AE,设BE=x,得出B′E=x,AE=3−x,从而得出2(3−x)=x,解方程求出x,即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴∠AB′E=30°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2,∴BE=2.故选D.9.【答案】B【解析】解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=AB,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,EA=EN,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°−60°−60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,DE=1,EH=√3,∴DH=12在Rt△ECH中,EC=√EH2+CH2=2√7,∴GB+GC≥2√7,∴GB+GC的最小值为2√7.故选:B.如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.利用全等三角形的性质证明∠GNB=60°,点G的运动轨迹是射线NG,易知B,E关于射线NG对称,推出GB=GE,推出GB+ GC=GE+GC≥EC,求出EC即可解决问题.本题考查旋转变换,轨迹,菱形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于常考题型.10.【答案】B【解析】解:①连接AC,并延长AC,与BD的延长线交于点H,如图,∵M,C是半圆上的三等分点,∴∠BAH=30°,∵BD与半圆O相切于点B.∴∠ABD=90°,∴∠H=60°,∵∠ACP=∠ABP,∠ACP=∠DCH,∴∠PDB=∠H+∠DCH=∠ABP+60°,∵∠PBD =90°−∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°−∠ABP , ∴∠ABP =15°,∴P 点为AM⏜的中点,但点P 为AM ⏜上的一动点, ∴∠PDB 不一定等于∠PBD , ∴PB 不一定等于PD ,故①错误; ②∵M ,C 是半圆上的三等分点, ∴∠BOC =13×180°=60°, ∵直径AB =8, ∴OB =OC =4,∴BC ⏜的长度=60π×4180=43π,故②正确; ③∵∠BOC =60°,OB =OC , ∴∠ABC =60°,OB =OC =BC , ∵BE ⊥OC ,∴∠OBE =∠CBE =30°, ∵∠ABD =90°,∴∠DBE =60°,故③错误; ④∵M 、C 是AB ⏜的三等分点, ∴∠BPC =30°, ∵∠CBF =30°, ∴∠CBF =∠BPC , ∵∠BCF =∠PCB ,∴△BCF∽△PCB ,故④正确; ⑤∵△BCF ∽△PCB , ∴CBCP =CFCB , ∴CF ⋅CP =CB 2,∵CB =OB =OC =12AB =4, ∴CF ⋅CP =16,故⑤正确.综上所述:正确结论有②④⑤,共3个.故选:B.⏜的中点,与题意不符,①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为AM即可判定正误;②先求出∠BOC,再由弧长公式求得BC⏜的长度,进而判断正误;③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;④证明∠CPB=∠CBF=30°,再利用公共角,可得△BCF∽△PCB,便可判断正误;⑤由等边△OBC得BC=OB=4,再由相似三角形得CF⋅CP=BC2,便可判断正误.本题属于圆综合题,主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,弧长公式,相似三角形的性质与判定,关键是熟练掌握切线的性质得到∠ABD=90°,并能灵活应用.11.【答案】2x2y3【解析】解:由题意得:a=2,b=3,∴两个单项式为3x2y3和−x2y3,∴3x2y3−x2y3=2x2y3,故答案为:2x2y3.根据同类项定义可得a=2,b=3,然后求和即可.此题主要考查同类项,以及合并同类项,关键是掌握同类项定义.12.【答案】5【解析】解:∵|a+2|≥0,√3−b≥0,|a+2|+√3−b=0,∴a+2=0,a=−2,3−b=0,b=3,∴b−a=5.故答案为5.通过|a+2|≥0,√3−b≥0,|a+2|+√3−b=0,求出a,b的值再进行计算.本题考查二次根式与绝对值的非负性,解题关键是熟练掌握二次根式与绝对值的运算.13.【答案】3【解析】解:如图,连接PB,在正方形ABCD中,AB=AD,∠BAC=∠DAC=45°,∵AP=AP,AB=AD,∠BAC=∠DAC=45°,在△ABP和△ADP中,{AB=AD∠BAC=∠DAC AP=AP,∴△ABP≌△ADP(SAS),∴BP=DP;∵PE⊥AB,PF⊥BC,∠ABC=90°,∴四边形BFPE是矩形,∴EF=PB,∴EF=DP=3,故答案为:3.根据正方形的四条边都相等可得AB=AD,正方形的对角线平分一组对角可得∠BAC=∠DAC= 45°,然后利用“边角边”证明△ABP和△ADP全等,根据全等三角形对应边相等证明即可;求出四边形BFPE是矩形,根据矩形的对角线相等可EF=PB.即可求解.本题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟记正方形的性质得到三角形全等的条件是解题的关键.14.【答案】76°或142°【解析】解:①设CD′交AB于E,设AB的中点为O,连接OD′,当EB=EC,此时∠ECB=∠ABC=38°,则∠BOD′=2∠BCD′=76°,∴点D′在量角器上对应的度数是76°;②设CD″交AB 于F ,连接OD″,当BF =BC 时,∠BCD″=12(180°−∠ABC)=12×(180°−38°)=71°,∴∠BOD″=2∠BCD″=142°, ∴点D″在量角器上对应的度数是142°; 故答案为:76°或142°.分两种情形,由圆周角定理计算即可解决问题.本题考查圆周角定理、等腰三角形的性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15.【答案】(−3n 2n ,3n2n+1)【解析】解:∵在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍, ∴矩形A 1OC 1B 1与矩形AOCB 是位似图形,点B 与点B 1是对应点, ∵OA =2,OC =1. ∵点B 的坐标为(−2,1), ∴点B 1的坐标为(−2×32,1×32),∵将矩形A 1OC 1B 1以原点O 为位似中心放大32倍,得到矩形A 2OC 2B 2…, ∴B 2(−2×32×32,1×32×32), ∴B n (−2×3n 2n ,1×3n2n ),∵矩形A n OC n B n 的对角线交点(−2×3n2n×12,1×3n2n×12),即(−3n 2n ,3n 2n+1),故答案为:(−3n 2n ,3n2n+1). 根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,即可求得B n 的坐标,然后根据矩形的性质即可求得对角线交点的坐标. 本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .16.【答案】解:(1)原式=−2+4×√32−2√3+1=−2+2√3−2√3+1=−1;(2)去分母得:4=x(x−1)−x2+1,解得:x=−3,检验:把x=−3代入得:(x+1)(x−1)≠0,∴分式方程的解为x=−3.【解析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则及分式方程的解法是解本题的关键.17.【答案】解:(1)a=40−(10+5+8)=17;(2)最喜欢“线上答疑”的学生人数为1000×840=200(人);(3)设3个女生分别为女 1,女 2,女 3,2个男生分别为男 1,男 2,所有可能出现的结果如下表:从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为1220=35.【解析】(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)画树状图展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.18.【答案】解:(1)如图,DE 为所作;(2)∵DE 垂直平分AC ,∴∠AED =90°,AE =12AC =√3, 在Rt △ADE 中,∵∠A =30°, ∴DE =√33AE =√33×√3=1, ∴AD =2DE =2,∴a =1+2+√3=3+√3, ∴T +3+√3−√3=3.【解析】(1)利用基本作图,作AC 的垂直平分线即可;(2)先DE 垂直平分AC 得到∠AED =90°,AE =√3,再利用含30度的直角三角形三边的关系得到DE =1,AD =2,则可求出a 的值,然后计算T 的值.本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质和含30度角的直角三角形三边的关系.19.【答案】解:(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,依题意得:{5x +6y =1962x +5y =120,解得:{x =20y =16.答:一根跳绳的售价为20元,一个毽子的售价是16元. (2)设学校计划购进跳绳m 根,则购进毽子(400−m)个, 依题意得:{m ≥3(400−m)m ≤310,解得:300≤m ≤310.设学校购进跳绳和毽子一共需要花w 元,则w =20m +16(400−m)=4m +6400, ∵4>0,∴w 随m 的增大而增大,∴当m =300时,w 取得最小值.此时400−m =400−300=100. 答:学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个.【解析】(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,根据“购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元”,即可得出关于x ,y 的二元一次方程组,解之即可得出跳绳及毽子的售价;(2)设学校计划购进跳绳m 根,则购进毽子(400−m)个,根据“跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,设学校购进跳绳和毽子一共需要花w 元,利用总价=单价×数量即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可得出学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个. 本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.20.【答案】(1)证明:连接OD ,∵D 为BC ⏜的中点, ∴BD⏜=CD ⏜, ∴∠BOD =∠BAE , ∴OD//AE , ∵DE ⊥AC , ∴∠AED =90°, ∴∠ODE =90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,AC=5,∴AF=CF=12∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=1AB,2∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【解析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD 与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.21.【答案】C;假【解析】解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;故选C;(2)和谐四边形不一定是轴对称图形,如图所示:∠C=45°,直角梯形ABCD是和谐四边形,但不是轴对称图形,故答案为:假;(3)∵AC是四边形ABCD的和谐线,且AB=BC,∴△ACD是等腰三角形,∵在等腰Rt△ABD中,AB=AD,∴AB=AD=BC,①如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°;②如图2,当DA=DC时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;③如图3,当CA=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD,CE⊥AD,∴AE=ED,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形,∴BF=AE.∵AB=AD=BC,∴BF=1BC,2∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB//CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=12∠BCF=15°,∴∠ABC=150°.(1)由和谐四边形的定义,即可得到菱形是和谐四边形;(2)和谐四边形不一定是轴对称图形,举出反例即可;(3)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质,即可求出∠ABC的度数.此题主要考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质以及菱形的性质,此题难度较大,解题的关键是掌握数形结合思想与分类讨论思想的应用.22.【答案】解:(1)∵抛物线的对称轴为x=−1,∴−b2a=−1,∴b=2a,∵点C的坐标为(0,2),∴c=2,∴抛物线的解析式为y=ax2+2ax+2,∵点A(−3,0)在抛物线上,∴9a−6a+2=0,∴a=−23,∴b=2a=−43,∴抛物线的解析式为y=−23x2−43x+2;(2)Ⅰ、当点D在x轴上方时,如图1,记BD与AC的交点为点E,∵∠ABD=∠BAC,∴AE=BE,∵直线x=−1垂直平分AB,∴点E在直线x=−1上,∵点A(−3,0),C(0,2),∴易得直线AC的解析式为y=23x+2,当x=−1时,y=43,∴点E(−1,43),∵点A(−3,0)点B关于x=−1对称,∴B(1,0),∴易得直线BD的解析式为y=−23x+23,即直线l的解析式为y=−23x+23;Ⅱ、当点D在x轴下方时,如图2,∵∠ABD=∠BAC,∴BD//AC,由Ⅰ知,直线AC的解析式为y=23x+2,∵B(1,0),∴易得直线BD的解析式为y=23x−23,即直线l的解析式为y=23x−23;综上,直线l的解析式为y=−23x+23或y=23x−23;(3)P(−5,−8)或(−1,83)或(−2,2).【解析】(1)先根据对称轴得出b=2a,再由点C的坐标求出c=2,最后将点A的坐标代入抛物线解析式求解,即可得出结论;(2)分两种情况,Ⅰ、当点D在x轴上方时,先判断出AE=BE,进而得出点E在直线x=−1上,再求出点E的坐标,最后用待定系数法求出直线l的解析式;Ⅱ、当点D在x轴下方时,判断出BD//AC,即可得出结论;(3)由(2)知,直线BD的解析式为y=23x−23①,∵抛物线的解析式为y =−23x 2−43x +2②, ∴{x =1y =0或{x =−4y =−103, ∴D(−4,−103),∴S △ABD =12AB ⋅|y D |=12×4×103=203, ∵S △BDP =32S △ABD ,∴S △BDP =32×203=10,∵点P 在y 轴左侧的抛物线上,∴设P(m,−23m 2−43m +2)(m <0),过P 作y 轴的平行线交直线BD 于F ,∴F(m,23m −23),∴PF =|−23m 2−43m +2−(23m −23)|=|23m 2+2m −83|,∴S △BDP =12PF ⋅(x B −x D )=12×|23m 2+2m −83|×5=10,∴m =−5或m =2(舍)或m =−1或m =−2,∴P(−5,−8)或(−1,83)或(−2,2). 此题是二次函数综合题,主要考查了待定系数法,垂直平分线的性质,坐标系中求三角形面积的方法,求出点D 的坐标是解本题的关键.。
山东省济宁院附中2021-2022学年中考数学四模试卷含解析

2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A .4565710⨯B .656.5710⨯C .75.65710⨯D .85.65710⨯2.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×1063.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×1064.不等式组1040x x +>⎧⎨-≥⎩的解集是( ) A .﹣1≤x≤4 B .x <﹣1或x≥4 C .﹣1<x <4 D .﹣1<x≤45.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位6.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个黄球的概率为( ) A .14 B .13C .512D .12 7.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3138.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( )A.16B.13C.12D.239.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.71010.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c11.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×10912.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____.14.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.16.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立.17.如图,正方形ABCD 中,AB=3,以B 为圆心,13AB 长为半径画圆B ,点P 在圆B 上移动,连接AP ,并将AP 绕点A 逆时针旋转90°至Q ,连接BQ ,在点P 移动过程中,BQ 长度的最小值为_____.18.点A(-2,1)在第_______象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元. (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?20.(6分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.21.(6分)如图,平面直角坐标系xOy 中,已知点A (0,3),点B (3,0),连接AB ,若对于平面内一点C ,当△ABC 是以AB 为腰的等腰三角形时,称点C 是线段AB 的“等长点”.(1)在点C 1(﹣2,3+22),点C 2(0,﹣2),点C 3(3+3,﹣3)中,线段AB 的“等长点”是点________; (2)若点D (m ,n )是线段AB 的“等长点”,且∠DAB=60°,求点D 的坐标;(3)若直线y=kx+33k 上至少存在一个线段AB 的“等长点”,求k 的取值范围.22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .23.(8分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 24.(10分)先化简,再求值:,其中x=1.25.(10分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC ′D ′,记旋转角为α.(I )如图①,连接BD ′,当BD ′∥OA 时,求点D ′的坐标;(II )如图②,当α=60°时,求点C ′的坐标;(III )当点B ,D ′,C ′共线时,求点C ′的坐标(直接写出结果即可).26.(12分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm .为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计).27.(12分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:5657万用科学记数法表示为75.65710⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数. 3、C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C . 考点:科学记数法—表示较大的数.4、D【解析】试题分析:解不等式①可得:x >-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D .5、C【解析】根据近似数的精确度:近似数5.0×102精确到十位. 故选C .考点:近似数和有效数字6、A【解析】设黄球有x 个,根据摸出一个球是蓝球的概率是13,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.【详解】解:设袋子中黄球有x 个, 根据题意,得:41543x =++, 解得:x=3,即袋中黄球有3个, 所以随机摸出一个黄球的概率为315434=++, 故选A .【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.7、B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B.8、B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.9、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.11、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.12、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D. 考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、203 301【解析】根据按一定规律排列的一列数依次为579111315,,,,,4710131619…,可得第n个数为2331nn++,据此可得第100个数.【详解】由题意,数列可改写成579111315 ,,,,, 4710131619,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为5(1)24(1)3nn+-⨯+-⨯=2331nn++,∴这列数中的第100个数为2100331001⨯+⨯+=203301;故答案为:203 301.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.14、15π【解析】根据圆的面积公式、扇形的面积公式计算即可.【详解】圆锥的母线长,圆锥底面圆的面积=9π圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,∴圆锥的侧面展开图的面积=12×6π×5=15π,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.15、3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC 的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.16、④【解析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.17、﹣1【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.【详解】如图,当Q在对角线BD上时,BQ最小.连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=22+=,∴BQ=BD﹣QD=32﹣1,即3332BQ长度的最小值为(32﹣1).故答案为21.【点睛】本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.18、二【解析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣1005x-)x﹣1100=﹣15x2+70x﹣1100=﹣15(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.20、(1)直线l的解析式为:y=-(2)2O平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.【详解】(1)由题意得OA4812=-+=,∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒,OC OAtan OAC 12tan60123∠==⨯︒=,∴C 点的坐标为()0,123-.设直线l 的解析式为y kx b =+,由l 过A 、C 两点,得123012b k b⎧-=⎪⎨=-+⎪⎩, 解得1233b k ⎧=-⎪⎨=-⎪⎩,∴直线l 的解析式为:y 3x 123=--.(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=,∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=.∵11O D O O OD 41317=+=+=,∴1111D D O D O D 17125=-=-=,∴5t 51==(秒), ∴2O 平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.21、(1)C1,C3;(2)D0)或D(3);(3【解析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B0),∴,∵点C1(﹣2,,∴AC1,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(,∴BC3∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,3∴3,tan∠OAB=OBOA3∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D3,0),∴3n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴3∴3;∴D(233)(3)如图2,∵直线y=kx+33k=k(x+33),∴直线y=kx+33k恒过一点P(﹣33,0),∴在Rt△AOP中,OA=3,OP=33,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F就是直线y=kx+33k与⊙B的切点,∴F(0,﹣3),∴3k=﹣3,∴k=3当直线3k与⊙A相切时交y轴于G切点为E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴AE AGOP PG=,23332333333kk-+3342+或3342-(舍去)∵直线3k上至少存在一个线段AB的“等长点”,,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.22、见解析【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB.【详解】证明:∆ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.23、3 5【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b +-++,=ba b +,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.24、【解析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.25、(I)(10,4)或(6,4)(II)C′(6,3)(III)①C′(8,4)②C′(245,﹣125)【解析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=23,∴OK=6,∴C′(6,23).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x,在Rt△ABC′中,BC′=22AB AC-'=8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴KCOB'=FKOF=FCBF',∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26、44cm【解析】解:如图,设BM 与AD 相交于点H ,CN 与AD 相交于点G ,由题意得,MH=8cm ,BH=40cm ,则BM=32cm ,∵四边形ABCD 是等腰梯形,AD=50cm ,BC=20cm ,∴()1AH AD BC 15cm 2=-=. ∵EF ∥CD ,∴△BEM ∽△BAH .∴EM BM AH BH =,即EM 321540=,解得:EM=1. ∴EF=EM +NF +BC=2EM +BC=44(cm ).答:横梁EF 应为44cm .根据等腰梯形的性质,可得AH=DG ,EM=NF ,先求出AH 、GD 的长度,再由△BEM ∽△BAH ,可得出EM ,继而得出EF 的长度.27、(1)6;(2)﹣(x+1),1.【解析】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义, 当x=﹣2时,原式=1。
2024届山东济宁任城区中考四模数学试题含解析

2024届山东济宁任城区中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在以下四个图案中,是轴对称图形的是()A .B .C .D .2.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F ,则CFCD的值是()A.1 B.12C.13D.143.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.64.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,275.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球6.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A.3.61×106B.3.61×107C.3.61×108D.3.61×1097.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩8.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则BC的长是( )A.πB.13πC.12πD.16π9.下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3a)•(2a)2=6a D.3a﹣a=310.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为()A.5sinαB.5sinαC.5cosαD.5cosα11.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D12.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.14.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.15.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.16.在中,,,点分别是边的中点,则的周长是__________.17.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,3AP的长为_____.18.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.(6分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率. 21.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.23.(8分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.24.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.25.(10分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.a1a2a3a4a5a6c1c2c3c4…到达窗口时刻0 0 0 0 0 0 1 6 11 16 …服务开始时刻0 2 4 6 8 10 12 14 16 18 …每人服务时长 2 2 2 2 2 2 2 2 2 2 …服务结束时刻 2 4 6 8 10 12 14 16 18 20 …根据上述表格,则第位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.分析:第n个“新顾客”到达窗口时刻为,第(n﹣1)个“新顾客”服务结束的时刻为.26.(12分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”27.(12分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【题目详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【题目点拨】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【解题分析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【题目点拨】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.3、C【解题分析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.4、A【解题分析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.5、A【解题分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【题目详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.6、C【解题分析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.故选C.7、B【解题分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【题目详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C、不等式组53xx<⎧⎨<-⎩的解集为x<-3,故C错误;D、不等式组53xx<⎧⎨>-⎩的解集为-3<x<5,故D错误.故选B.【题目点拨】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.8、B【解题分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【题目详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴BC的长=6011803ππ⋅⋅=,故选B.【题目点拨】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9、A【解题分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【题目详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【题目点拨】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.10、D【解题分析】利用所给的角的余弦值求解即可.【题目详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【题目点拨】本题主要考查学生对坡度、坡角的理解及运用.11、D【解题分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【题目详解】由题意得,2x+y=10, 所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②,解不等式①得,x >2.5, 解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象. 故选:D . 12、D 【解题分析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可. 试题解析:x 2-6x+9=(x-3)2. 故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、106.710⨯ 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】67000000000的小数点向左移动10位得到6.7, 所以67000000000用科学记数法表示为106.710⨯, 故答案为:106.710⨯. 【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14、136°. 【解题分析】由圆周角定理得,∠A=12∠BOD=44°,由圆内接四边形的性质得,∠BCD=180°-∠A=136°【题目点拨】本题考查了1.圆周角定理;2. 圆内接四边形的性质.15、4 5【解题分析】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024 105-=.考点:概率16、【解题分析】首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【题目详解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,∵点D、E、F分别是边AB、AC、BC的中点,∴DE=BC,DF=AC,EF=AB,∴C△DEF=DE+DF+EF=BC +AC +AB =(BC+AC+AB)=(4+3+5)=6.故答案为:6.【题目点拨】本题考查了勾股定理和三角形中位线定理.17、3或3【解题分析】分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP 的长,则AP 即可求得. 【题目详解】设AC 和BE 相交于点O .当P 在OA 上时, ∵AB=AD ,∠A=60°, ∴△ABD 是等边三角形, ∴BD=AB=9,OB=OD=12BD=92.则2222993=9-()2AB OB -=. 在直角△OBP 中,2222933(33)()22PB OB -=-=. 则933333-= 当P 在OC 上时,AP=OA+OP=333322+= 故答案是:33. 【题目点拨】本题考查了菱形的性质,注意到P 在AC 上,应分两种情况进行讨论是解题的关键. 18、(44116)π 【解题分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1. 【题目详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm 1; 由勾股定理得,母线长2245=41cm +, 圆锥的侧面面积21841=4412cm π⨯,∴它的表面积=(16π+441π )cm 1=()44116π+ cm 1 ,故答案为:()44116π+. 【题目点拨】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1)20;15%;35%;(2)见解析;(3)126°. 【解题分析】(1)根据被调查学生总人数,用B 的人数除以被调查的学生总人数计算即可求出m ,再根据各部分的百分比的和等于1计算即可求出n ;(2)求出D 的学生人数,然后补全统计图即可; (3)用D 的百分比乘360°计算即可得解. 【题目详解】解:(1)非常了解的人数为20, 60÷400×100%=15%, 1﹣5%﹣15%﹣45%=35%, 故答案为20;15%;35%;(2)∵D 等级的人数为:400×35%=140, ∴补全条形统计图如图所示:(3)D 部分扇形所对应的圆心角:360°×35%=126°. 【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小 20、这辆车第二、三年的年折旧率为15%.【解题分析】设这辆车第二、三年的年折旧率为x ,则第二年这就后的价格为30(1-20%)(1-x )元,第三年折旧后的而价格为30(1-20%)(1-x )2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可. 【题目详解】设这辆车第二、三年的年折旧率为x ,依题意,得()()230120%117.34x --=整理得()210.7225x -=, 解得1 1.85x =,20.15x =.因为折旧率不可能大于1,所以1 1.85x =不合题意,舍去. 所以0.1515%x ==答:这辆车第二、三年的年折旧率为15%. 【题目点拨】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键. 21、(1)50;(2)115.2°;(3). 【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B 等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人) (2)B 等级的学生共有:(人).∴所占的百分比为:∴B 等级所对应扇形的圆心角度数为:.(3)列表如下: 男 女1女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男) 女1 (男,女) ﹣﹣﹣ (女,女) (女,女) 女2(男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.22、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【解题分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【题目详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【题目点拨】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.23、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的值为4622--.【解题分析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B在抛物线上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,当n=时,AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=12时,AC2有最小值,在解方程求得m的值即可.24、(1)y1=-2x+4,y2=-6x;(2)x<-1或0<x<1.【解题分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【题目详解】解:(1)把点A (﹣1,6)代入反比例函数2my x=(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a-=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩,∴24k b =-⎧⎨=⎩,∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1. 【题目点拨】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键. 25、(1)5;(2)5n ﹣4,na +6a . 【解题分析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n 个“新顾客”到达窗口时刻为5n ﹣4,由表格可知,“新顾客”服务开始的时间为6a ,7a ,8a ,…,第n ﹣1个“新顾客”服务开始的时间为(6+n ﹣1)a =(5+n )a ,第n ﹣1个“新顾客”服务结束的时间为(5+n )a +a =na +6a . 【题目详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的; 故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…, ∴第n 个“新顾客”到达窗口时刻为5n ﹣4,由表格可知,“新顾客”服务开始的时间为6a ,7a ,8a ,…, ∴第n 个“新顾客”服务开始的时间为(6+n )a ,∴第n ﹣1个“新顾客”服务开始的时间为(6+n ﹣1)a =(5+n )a , ∵每a 分钟办理一个客户,∴第n ﹣1个“新顾客”服务结束的时间为(5+n )a +a =na +6a ,故答案为:5n ﹣4,na +6a . 【题目点拨】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式. 26、x =60 【解题分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案. 【题目详解】 解:设有x 个客人,则65234x x x++= 解得:x =60; ∴有60个客人. 【题目点拨】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 27、(1)3;(2)∠DEF 的大小不变,tan ∠DEF=34;(3)7541或7517. 【解题分析】(1)当t=3时,点E 为AB 的中点, ∵A (8,0),C (0,6), ∴OA=8,OC=6, ∵点D 为OB 的中点, ∴DE ∥OA ,DE=12OA=4, ∵四边形OABC 是矩形, ∴OA ⊥AB , ∴DE ⊥AB ,∴∠OAB=∠DEA=90°, 又∵DF ⊥DE , ∴∠EDF=90°,∴四边形DFAE 是矩形, ∴DF=AE=3;(2)∠DEF 的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34 DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:80 43k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t,13t),代入直线AD的解析式y=﹣34x+6得:t=7517;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为7541或7517.考点:四边形综合题.。
2022学年山东省济宁市中考四模数学试题(含答案解析)

2022学年山东省济宁市中考四模数学测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC 边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C 平分∠BB′A′3.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.10B.103C.9 D.24.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B2C3D.25.如图,下列条件不能判定△ADB∽△ABC的是()A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC = 6.下列二次根式,最简二次根式是( )A .8B .12C .13D .0.17.计算tan30°的值等于( )A .B .C .D .8.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( )A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)9.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x =-的图象上,则下列关系式一定正确的是( ) A .120x x <<B .120x x <<C .210x x <<D .210x x << 10.若a+b=3,,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣111.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°12.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .310B .15C .12D .710二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.14.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .15.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.16.计算5个数据的方差时,得s2=15[(5﹣x)2+(8﹣x)2+(7﹣x)2+(4﹣x)2+(6﹣x)2],则x的值为_____.17.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____18.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.20.(6分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.21.(6分)先化简,再求值:221121()1a aa a a a-+-÷++,其中a=3+1.22.(8分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?23.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.24.(10分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=12,求⊙O的半径.25.(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.26.(12分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)27.(12分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1 备用图2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【答案解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.2、C【答案解析】根据旋转的性质求解即可.【题目详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确;B:CB CB =',B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''2A CB B ''∴∠=∠,ACB A CB ∠=∠''2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论,故答案:C.【答案点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件3、A【答案解析】解:如图,连接BE ,设BE 与AC 交于点P ′,∵四边形ABCD 是正方形,∴点B 与D 关于AC 对称,∴P ′D =P ′B ,∴P ′D +P ′E =P ′B +P ′E =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,为BE 的长度.∵直角△CBE 中,∠BCE =90°,BC =9,CE =13CD =3,∴BE =2293+=310.故选A .点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P 点位置是解题的关键.4、B【答案解析】首先求得AB 的中点D 的坐标,然后求得经过点D 且垂直于直线y=-x 的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D 之间的距离即可.【题目详解】AB 的中点D 的坐标是(4,-2),∵C (a ,-a )在一次函数y=-x 上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6 {y xy x--==,解得:3{3 xy==-,则交点的坐标是(3,-3).故选:B【答案点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.5、D【答案解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【题目详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【答案点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.6、C【答案解析】根据最简二次根式的定义逐个判断即可.【题目详解】A.822=,不是最简二次根式,故本选项不符合题意;B.1222=,不是最简二次根式,故本选项不符合题意;C.13是最简二次根式,故本选项符合题意;D.100.110=,不是最简二次根式,故本选项不符合题意.故选C.【答案点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.7、C【答案解析】tan30°=.故选C.8、A【答案解析】分顺时针旋转,逆时针旋转两种情形求解即可.【题目详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【答案点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.9、A【答案解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.10、B【答案解析】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.11、B【答案解析】测试卷分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.12、A【答案解析】让黄球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是3 10.故选:A.【答案点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【答案解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【题目详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【答案点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.14、16【答案解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr 2=π×2×6+π×22=16π(cm 2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15、5003【答案解析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B 地的距离.【题目详解】设甲的速度为akm/h ,乙的速度为bkm/h ,(51)()600{(65)(51)a a b a b+-+=-=- , 解得,100{25a b ==, 设第二次甲追上乙的时间为m 小时,100m ﹣25(m ﹣1)=600,解得,m=233, ∴当甲第二次与乙相遇时,乙离B 地的距离为:25×(233-1)=5003千米, 故答案为5003. 【答案点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16、1【答案解析】根据平均数的定义计算即可.【题目详解】解: 5874665x ++++== 故答案为1.【答案点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.17、143.【答案解析】解:令AE=4x,BE=3x,∴AB=7x.∵四边形ABCD为平行四边形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴3377 BF BE xDF CD x===,∴DF=14 3【答案点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.18、3.53×104【答案解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【答案解析】测试卷分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.测试卷解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.20、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,或2;(3)1【答案解析】测试卷分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出AC=CE=2a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出AC=AE=2a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.测试卷解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理得,222AC CE a a a ==+=, 则:2:2CE CD a a ==;②如图2,当AE=AC 时,设正方形ABCD 的边长为a ,由勾股定理得:222AC AE a a a ==+=,∵四边形ABCD 是正方形,∴∠ADC=90°,即AD ⊥CE ,∴DE=CD=a ,∴CE:CD=2a:a=2;即2或2;(3)∵点P 在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.21、13 【答案解析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【题目详解】原式=()()()211·11a a a a a a a ++-+- =()211a -,当a=3+1时,原式=13. 【答案点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.22、(1)共调查了50名学生;统计图见解析;(2)72°;(3).【答案解析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.【题目详解】解:(1)14÷28%=50, ∴本次共调查了50名学生.补全条形统计图如下.(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,∴抽取的2名学生恰好来自同一个班级的概率P==.【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23、(1)①证明见解析;②25;(2)为2532或503+1.【答案解析】(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【题目详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=12AB=5,∵点F是AB的中点,∴AF=12AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE ,∠EAD=60°,∵∠CAB=∠EAD ,即∠CAD+∠DAB=∠FAE+∠DAB ,∴∠CAD=∠FAE ,∴△AEF ≌△ADC (SAS );②∵△AEF ≌△ADC ,∴∠AEF=∠C=90°,EF=CD=x ,又∵点F 是AB 的中点,∴AE=BE=y ,在Rt △AEF 中,勾股定理可得:y 2=25+x 2,∴y 2﹣x 2=25.(2)①当点在线段CB 上时, 由∠DAB=15°,可得∠CAD=45°,△ADC 是等腰直角三角形,∴AD 2=50,△ADE 的面积为21253sin 6022ADE S AD ∆=⋅⋅︒=; ②当点在线段CB 的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt △ACD 中,勾股定理可得AD 23, 21sin 60503752ADE S AD ∆=⋅⋅︒= 综上所述,△ADE 的面积为32或50375. 【答案点睛】 此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.24、(1)详见解析;(2)OA =152. 【答案解析】(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【题目详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=12,∴设AB=x,则BD=2x,∴225AD AB BD x=+=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB ∽△CBD , ∴BE AB BD CD=, ∴1029x x =,解得x =∴AB =15,∴OA =152. 【答案点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.25、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【题目详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【答案点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.26、工作人员家到检查站的距离AC 的长约为92km . 【答案解析】分析:过点B 作BH ⊥l 交l 于点H ,解Rt △BCH ,得出CH=BC•sin ∠CBH=274,BH=BC•cos ∠CBH=2716.再解Rt △BAH 中,求出AH=BH•tan ∠ABH=94,那么根据AC=CH-AH 计算即可. 详解:如图,过点B 作BH ⊥l 交l 于点H ,∵在Rt △BCH 中,∠BHC=90°,∠CBH=76°,BC=7132km , ∴CH=BC•sin ∠CBH≈225242732254⨯=, BH=BC•cos ∠CBH≈225627322516⨯=. ∵在Rt △BAH 中,∠BHA=90°,∠ABH=53°,BH=2716, ∴AH=BH•tan ∠ABH≈27491634⨯=, ∴AC=CH ﹣AH=2799442-=(km ). 答:工作人员家到检查站的距离AC 的长约为92km . 点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27、见解析【答案解析】分析:(1)根据OAC OCB ∽求出点C 的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.分当平行四边形AOMN '是平行四边形时,当平行四边形AONM 是平行四边形时,当四边形AMON 为平行四边形时,三种情况进行讨论.详解:(1)易证OAC OCB ∽,得OA OC OC OB=,2· 4.OC OAOB == ∴OC =2,∴C (0,2),∵抛物线过点A (-1,0),B (4,0)因此可设抛物线的解析式为(1)(4),y a x x =+-将C 点(0,2)代入得:42a -=,即1,2a =- ∴抛物线的解析式为213 2.22y x x =-++ (2)如图2,当1CDP CAO ∽时,1CP l ⊥,则P 1(32,2), 当2P DC CAO ∽ 时,2P ACO ,∠=∠ ∴OC ∥l,∴225OC OA P H AH ==, ∴P 2H =52·OC =5, ∴P 2 (32,5) 因此P 点的坐标为(32,2)或(32,5). (3)存在.假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.如图3,当平行四边形AOMN'是平行四边形时,M(32,218),N'(12,218),当平行四边形AONM是平行四边形时,M(32,218),N(52,218),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(32,m),则5(,)2N m--,∵点N在抛物线1(1)(4)2y x x=-+-上,∴-m=-12·(-52+1)( -52-4)=-398,∴m=39 8,此时M(32,398),N(-52,-398).综上所述,M(32,218),N(12,218)或M(32,218),N(52,218) 或M(32,398),N(-52,-398).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.。
山东省济宁市、曲阜市2021-2022学年中考数学模试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示的几何体,它的左视图与俯视图都正确的是( )A .B .C .D .2.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( ) A .若该函数图象交y 轴于正半轴,则12y y < B .该函数图象必经过点()1,1--C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点 3.方程(2)0x x +=的根是( ) A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=24.估计41 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间5.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米)383940414243数量(件) 25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差7.如图,在△ABC 中,CD ⊥AB 于点D ,E ,F 分别为AC ,BC 的中点,AB=10,BC=8,DE=4.5,则△DEF 的周长是( )A .9.5B .13.5C .14.5D .178.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃B .零下3℃C .零上7℃D .零下7℃9.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角10.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .911.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A .0<r <3B .r >4C .0<r <5D .r >512.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为______dm .14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)15.计算:()235yy ÷=____________16.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.17.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB ∥CD ,CD ⊥BC 于C ,且AB 、BC 、CD 边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.18.化简:34()2b a b --=________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知点E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作CN ⊥BE ,垂足为M ,交AB 于点N . (1)求证:△ABE ≌△BCN ;(2)若N 为AB 的中点,求tan ∠ABE .20.(6分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A 处测得塔杆顶端C 的仰角是55°,乙同学站在岩石B 处测得叶片的最高位置D 的仰角是45°(D ,C ,H 在同一直线上,G ,A ,H 在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG 为4米,两处的水平距离AG 为23米,BG ⊥GH ,CH ⊥AH ,求塔杆CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.(6分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数my x= 的图象交于点()A 3,2-.()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.22.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.23.(8分)综合与探究 如图,抛物线y=﹣2323333x x -+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题: (1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值; ②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.(10分)先化简22442x x x x -+-÷(x-4x),然后从55x 的值代入求值. 25.(10分)某船的载重为260吨,容积为1000m 1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m 1,乙种货物每吨体积为2m 1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).26.(12分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a 、b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.27.(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故考点:D. 2、B 【解析】利用一次函数的性质逐一进行判断后即可得到正确的结论. 【详解】解:一次函数()()y m 1x m 2=-+-的图象与y 轴的交点在y 轴的正半轴上,则m 10->,m 20->,若12x x >,则12y y >,故A 错误;把x 1=-代入()()y m 1x m 2=-+-得,y 1=-,则该函数图象必经过点()1,1--,故B 正确; 当m 2>时,m 10->,m 20->,函数图象过一二三象限,不过第四象限,故C 错误;函数图象向上平移一个单位后,函数变为()()y m 1x m 1=-+-,所以当y 0=时,x 1=-,故函数图象向上平移一个单位后,会与x 轴负半轴有交点,故D 错误, 故选B . 【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型. 3、C 【解析】试题解析:x (x+1)=0, ⇒x=0或x+1=0, 解得x 1=0,x 1=-1. 故选C . 4、C 【解析】<,∴67<<.6和7之间. 故选C. 5、A试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.6、B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=12AC=4.1,DF=12BC=4,EF=12AB=1,∴△DEF的周长=12(AB+BC+AC)=12×(10+8+9)=13.1.故选B.【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.8、B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义9、B利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.10、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63 =84;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a≤≈1.6,取最大整数,即a=1.故选C.11、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【详解】∵点P的坐标为(3,4),∴OP==1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.12、B由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【详解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=8,∴dm.∴这圈金属丝的周长最小为dm.故答案为:dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.14、(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).15、y【解析】根据幂的乘方和同底数幂相除的法则即可解答.【详解】()23565y y y y y÷=÷=【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.16、2 5【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:5 6 7 8 95 ﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6 (5、6)﹣﹣﹣(7、6)(8、6)(9、6)7 (5、7)(6、7)﹣﹣﹣(8、7)(9、7)8 (5、8)(6、8)(7、8)﹣﹣﹣(9、8)9 (5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=82. 205=故答案为2 5 .【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.17、4或1【解析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【详解】①如图:因为AC==2,点A是斜边EF的中点,所以EF=2AC=4,②如图:因为BD==5,点D是斜边EF的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1.【点睛】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.18、47a b-+【解析】根据平面向量的加法法则计算即可【详解】34()46472b a b b a b a b --=-+=-+.故答案为:47a b -+ 【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1)证明见解析;(2) 【解析】(1)根据正方形的性质得到AB =BC ,∠A =∠CBN =90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA 推出△ABE ≌△BCN ;(2)tan ∠ABE =,根据已知求出AE 与AB 的关系即可求得tan ∠ABE. 【详解】(1)证明:∵四边形ABCD 为正方形∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90° ∵CM ⊥BE , ∴∠2+∠3=90° ∴∠1=∠3在△ABE 和△BCN 中,∴△ABE ≌△BCN (ASA );(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.20、塔杆CH的高为42米【解析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.【详解】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形. 21、(1)y=6x-,y=-x+1;(2)C(0,32+1 )或C(0,1-32). 【解析】(1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数my x=的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,即可得到32BC =,再根据1BO =,可得321CO =+或321-,即可得出点C 的坐标. 【详解】(1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入my x=,解得:6m =-. ∴所求反比例函数表达式为:6y x=-.∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+. (2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,∴32BC =. 又∵1BO =,∴321CO =+或321-,∴(0C ,321+)或(0C ,132). 【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用. 22、作图见解析;CE=4. 【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD 和△ABE 即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.23、(1)A (﹣3,0),y=﹣3x+3;(2)①D (t ﹣3+3,t ﹣3),②CD 最小值为6;(3)P (2,﹣3),理由见解析. 【解析】(1)当y=0时,﹣2323333x x -+=0,解方程求得A (-3,0),B (1,0),由解析式得C (0,3),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标. 【详解】(1)当y=0时,﹣2323333x x -+=0,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧, ∴A (﹣3,0),B (1,0), 由解析式得C (0,3),设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得b=3mk ﹣3, 故直线l 的表达式为y=﹣3x+3; (2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N , ∠DMN+∠CMO=90°,∠CMO+∠MCO=90°, ∴∠MCO=∠DMN , 在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠, ∴△MCO ≌△DMN ,∴MN=OC=3,DN=OM=3﹣t , ∴D (t ﹣3+3,t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t ﹣3,△MCO ≌△DMN ,MN=OC=3,ON=t ﹣3+3,DN=OM=t ﹣3, ∴D (t ﹣3+3,t ﹣3). 综上得,D (t ﹣3+3,t ﹣3).将D 点坐标代入直线解析式得t=6﹣23,线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小, ∵M 在AB 上运动,∴当CM ⊥AB 时,CM 最短,CD 最短,即CM=CO=3,根据勾股定理得CD 最小6; (3)当点M 在AO 上运动时,如图,即0<t <3时,∵tan ∠CBO=OCOB∴∠CBO=60°,∵△BDP 是等边三角形, ∴∠DBP=∠BDP=60°,BD=BP ,∴∠NBD=60°,DN=3﹣t ,NB=4﹣t ﹣tan ∠NBO=DNNB,,解得t=3经检验t=3过点P 作x 轴的垂线交于点Q ,易知△PQB ≌△DNB ,∴BQ=BN=4﹣t ,,OQ=2,P (2); 同理,当点M 在OB 上运动时,即3≤t≤4时, ∵△BDP 是等边三角形, ∴∠DBP=∠BDP=60°,BD=BP ,∴∠NBD=60°,DN=t ﹣3,NB=t ﹣1=t ﹣tan ∠NBD=DNNB,t=3,经检验t=3t=3.故P (2. 【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度. 24、当x=-1时,原式=1=11+2-; 当x=1时,原式=11=1+23【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算. 【详解】原式=22(2)4(2)x x x x x--÷-=()2(2)•(2)2(2)x xx x x x --+-=12x +∵x x 为整数, ∴若使分式有意义,x 只能取-1和1 当x =1时,原式=13.或:当x =-1时,原式=1 25、这艘船装甲货物80吨,装乙货物180吨. 【解析】根据题意先列二元一次方程,再解方程即可. 【详解】解:设这艘船装甲货物x 吨,装乙货物y 吨, 根据题意,得260821000x y x y +=⎧⎨+=⎩.解得80180x y =⎧⎨=⎩.答:这艘船装甲货物80吨,装乙货物180吨. 【点睛】此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键. 26、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级. 【解析】试题分析:(1)根据题中数据求出a 与b 的值即可; (2)根据(1)a 与b 的值,确定出m 与n 的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.试题解析:(1)根据题意得:31671819110 6.710{111110a b a b ⨯++⨯+⨯+⨯+=⨯+++++= 解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为111105+==20%,即n=20%; (3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定, 故八年级队比七年级队成绩好.考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.27、(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx-≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.。
山东省济宁院附中2024届中考数学四模试卷含解析

山东省济宁院附中2024年中考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 2+a 2=a 3D .a 6÷a 2=a 3 2.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .43.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( )A .m >﹣2B .m ≥﹣2C .m ≥﹣2且m ≠0D .m >﹣2且m ≠04.估计5介于( )A .0与1之间B .1与2之间C .2与3之间D .3与4之间 5.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3 D .2π36.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是( )A .B .C .D .7.如图,正六边形ABCDEF 内接于O ,M 为EF 的中点,连接DM ,若O 的半径为2,则MD 的长度为( )A .7B .5C .2D .18.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )A .11B .16C .17D .16或179.计算1+2+22+23+…+22010的结果是( ) A .22011–1B .22011+1C .()20111212-D .()201112+12 10.如图,已知△ABC 中,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .90°B .135°C .270°D .315°11.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+12.如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:()235y y ÷=____________14.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.15.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数y 1和过P ,A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与射线AC 相交于点D .当△ODA 是等边三角形时,这两个二次函数的最大值之和等于__.16.小明把一副含45°,30°的直角三角板如图摆放,其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠α+∠β等于_____.17.在直角坐标系平面内,抛物线y=3x 2+2x 在对称轴的左侧部分是_____的(填“上升”或“下降”)18.若方程x 2+2(1+a )x+3a 2+4ab+4b 2+2=0有实根,则b a=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20.(6分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.21.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.22.(8分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.23.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:2≈1.41,3≈1.73)24.(10分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)25.(10分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:AD AF BC AC.26.(12分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A 、B 、C 三点的抛物线解析式;(2)设抛物线的对称轴l 与BC 边交于点D ,若P 是对称轴l 上的点,且满足以P 、C 、D 为顶点的三角形与△AOC 相似,求P 点的坐标;(3)在对称轴l 和抛物线上是否分别存在点M 、N ,使得以A 、O 、M 、N 为顶点的四边形是平行四边形,若存在请直接写出点M 、点N 的坐标;若不存在,请说明理由.图1 备用图27.(12分)已知一个二次函数的图象经过A (0,﹣3),B (1,0),C (m ,2m+3),D (﹣1,﹣2)四点,求这个函数解析式以及点C 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】试题解析:A.235,a a a ⋅=故错误. B.正确.C.不是同类项,不能合并,故错误.D.624.a a a ÷=故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.2、B【解题分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【题目详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a +b =1.故②正确; ③由图可知:当x =1时,y =a +b +c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【题目点拨】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3、C【解题分析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【题目详解】解:∵抛物线288y mx x =--和x 轴有交点, 20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩, 解得:m 2≥﹣且m 0≠.故选C .【题目点拨】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键.4、C【解题分析】解:∵459,<<,即23<<∴估计5在2~3之间故选C .【题目点拨】本题考查估计无理数的大小.5、D【解题分析】分析:连接OD ,则根据垂径定理可得出CE =DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD ,∵CD ⊥AB ,∴13,2CE DE CD === (垂径定理), 故OCE ODES S ,= 即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理),∴OC =2,故S 扇形OBD =260π22π3603⨯=, 即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.6、A【解题分析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .7、A【解题分析】连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可.【题目详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin ∠MFO=2×32=3, ∴MD=()2222327OM OD +=+=,故选A .【题目点拨】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.8、D【解题分析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想9、A【解题分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【题目详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【题目点拨】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.10、C【解题分析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【题目详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【题目点拨】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.11、B【解题分析】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCEBE CE =,3CE x∴=,在直角△ABE中,3x,AC=50米,3350x x-=,解得253x=即小岛B到公路l的距离为253,故选B.12、A【解题分析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、y【解题分析】根据幂的乘方和同底数幂相除的法则即可解答.【题目详解】()23565y y y y y÷=÷=【题目点拨】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.14、2【解题分析】分析:首先由S△PAB=13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.详解:设△ABP中AB边上的高是h.∵S△PAB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴2222=44=42AB AE++即PA+PB的最小值为2.故答案为2.点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.15、3【解题分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【题目详解】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×33,即两个二次函数的最大值之和等于3故答案为3【题目点拨】本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.16、210°【解题分析】根据三角形内角和定理得到∠B =45°,∠E =60°,根据三角形的外角的性质计算即可.【题目详解】解:如图:∵∠C =∠F =90°,∠A =45°,∠D =30°,∴∠B =45°,∠E =60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B =∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【题目点拨】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.17、下降【解题分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【题目详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,故答案为下降.【题目点拨】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.18、1 2【解题分析】因为方程有实根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非负性求出a,b的值即可. 【题目详解】∵方程有实根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化简得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣12,∴ba=﹣12.故答案为﹣1 2 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、7.6 m.【解题分析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【题目详解】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.∵在Rt△BDC中,tan∠BDC=.∴BC=CD=40 m.∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【题目点拨】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.20、(1)证明见解析;(2)4.【解题分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【题目详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【题目点拨】考点:全等三角形的判定与性质.21、(1)32;(2)1. 【解题分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可; (2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【题目详解】解:(1)∵△AEF ∽△ABC ,∴EF AK BC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK =12﹣x ,EF =32(12﹣x ), ∴S =32x (12﹣x )=﹣32(x ﹣6)2+1. 当x =6时,S 有最大值为1.【题目点拨】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.22、(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解题分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【题目详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12;故答案为﹣12;②AB的解析式为1122 y x=+当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得21112222y x xy x⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB=2221=5,设M到AB的距离为h,由三角形的面积,得h=15=55.点M到直线AB的距离的最大值是55.【题目点拨】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键23、7.3米【解题分析】:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=3x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+3x =10,解方程即可.【题目详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米【题目点拨】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.24、这棵树CD的高度为8.7米【解题分析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×2(米).答:这棵树CD的高度为8.7米.考点:解直角三角形的应用25、见解析【解题分析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【题目详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BC AE AD=,∴△CBA∽△DAE,∴∠BAC=∠AE D.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE BC AC=,∵∠AFE=∠D,∴∠AFE =∠C ,∴EF ∥BC ,∵AD ∥BC ,∴EF ∥AD ,∵∠BAC =∠AED ,∴DE ∥AC ,∴四边形ADEF 是平行四边形,∴DE =AF , ∴AD AF BC AC=. 【题目点拨】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26、见解析【解题分析】分析:(1)根据OAC OCB ∽求出点C 的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.分当平行四边形AOMN '是平行四边形时,当平行四边形AONM 是平行四边形时,当四边形AMON 为平行四边形时,三种情况进行讨论.详解:(1)易证OAC OCB ∽,得OA OC OC OB =,2· 4.OC OAOB == ∴OC =2,∴C (0,2),∵抛物线过点A (-1,0),B (4,0)因此可设抛物线的解析式为(1)(4),y a x x =+-将C 点(0,2)代入得:42a -=,即1,2a =- ∴抛物线的解析式为213 2.22y x x =-++ (2)如图2,当1CDP CAO ∽时,1CP l ⊥,则P 1(32,2), 当2P DC CAO ∽ 时,2P ACO ,∠=∠ ∴OC ∥l, ∴225OC OA P H AH ==, ∴P 2H =52·OC =5, ∴P 2 (32,5) 因此P 点的坐标为(32,2)或(32,5). (3)存在.假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.如图3,当平行四边形AOMN '是平行四边形时,M (32,218),N '(12,218), 当平行四边形AONM 是平行四边形时,M (32,218),N (52,218), 如图4,当四边形AMON 为平行四边形时,MN 与OA 互相平分,此时可设M (32,m ),则 5(,)2N m --,∵点N在抛物线1(1)(4)2y x x=-+-上,∴-m=-12·(-52+1)( -52-4)=-398,∴m=39 8,此时M(32,398),N(-52,-398).综上所述,M(32,218),N(12,218)或M(32,218),N(52,218) 或M(32,398),N(-52,-398).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.27、y=2x2+x﹣3,C点坐标为(﹣32,0)或(2,7)【解题分析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【题目详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得32 ca b ca b c=-⎧⎪++=⎨⎪-+=-⎩,解得213 abc=⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣32,m2=2,∴C点坐标为(﹣32,0)或(2,7).【题目点拨】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁地区(SWZ)2021-2022学年中考四模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=2.下列四个图形中,是中心对称图形的是()A.B.C.D.3.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kg.A.180 B.200 C.240 D.3004.不等式组1030xx+>⎧⎨->⎩的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<35.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1096.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC7.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.19.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A.B.C.D.10.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:(a+1)(a﹣1)﹣2a+2=_____.12.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.14.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则ba21.15.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.16.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)三、解答题(共8题,共72分)17.(8分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.18.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.19.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.20.(8分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF21.(8分)计算:-2-2 - 12+2 1sin60π3⎛⎫-︒+-⎪⎝⎭22.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)23.(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?24.已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】A 、、∵y =x 2,∴对称轴x=0,当图象在对称轴右侧,y 随着x 的增大而增大;而在对称轴左侧,y 随着x 的增大而减小,故此选项错误B 、k >0,y 随x 增大而增大,故此选项错误C 、B 、k >0,y 随x 增大而增大,故此选项错误D 、y=1x(x >0),反比例函数,k >0,故在第一象限内y 随x 的增大而减小,故此选项正确 2、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确;故选D .考点:中心对称图形.3、B【解析】根据题意去设所进乌梅的数量为xkg ,根据前后一共获利750元,列出方程,求出x 值即可.【详解】解:设小李所进甜瓜的数量为()x kg ,根据题意得: 3000300040150(150)20x x x⨯⨯--⨯⨯%%=750, 解得:200x =,经检验200x =是原方程的解.答:小李所进甜瓜的数量为200kg .故选:B .本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.4、B【解析】根据解不等式组的方法可以求得原不等式组的解集.【详解】1030x x +>⎧⎨->⎩①②, 解不等式①,得x >-1,解不等式②,得x >1,由①②可得,x >1,故原不等式组的解集是x >1.故选B .【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.5、A【解析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】39000000000=3.9×1.故选A .【点睛】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.6、D【解析】解:根据图中尺规作图的痕迹,可得∠DAE=∠B ,故A 选项正确,∴AE ∥BC ,故C 选项正确,∴∠EAC=∠C ,故B 选项正确,∵AB >AC ,∴∠C >∠B ,∴∠CAE >∠DAE ,故D 选项错误,【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.7、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b <0<a ,故①正确,因为b 点到原点的距离远,所以|b |>|a |,故②错误,因为b <0<a ,所以ab <0,故③错误,由①知a -b >a +b ,所以④正确.故选B.8、A【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x 解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.9、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C .考点:中心对称图形的概念.10、A【解析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.二、填空题(本大题共6个小题,每小题3分,共18分)11、(a﹣1)1.【解析】提取公因式(a−1),进而分解因式得出答案.【详解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案为:(a﹣1)1.【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键.12、1 4【解析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=14.故答案为14.13、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP 度数是67.5°-45°=22.5°14、①②③④⑤⑥⑦.【解析】将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH .证明△MAN ≌△HAN ,得到MN=NH ,根据三角形周长公式计算判断①;判断出BM=DN 时,MN 最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF 绕点A 顺时针性质90°得到△ABH ,连接HE .证明△EAH ≌△EAF ,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A 到MN 的距离等于正方形ABCD 的边长、三角形的面积公式计算,判断⑦.【详解】将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH .则∠DAH=∠BAM ,∵四边形ABCD 是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN 和△HAN 中,AM AH MAN HAN AN AN ⎧⎪∠∠⎨⎪⎩===,∴△MAN ≌△HAN ,∴MN=NH=BM+DN ,①正确;∵(当且仅当BM=DN 时,取等号)∴BM=DN 时,MN 最小,∴BM=12b , ∵DH=BM=12b , ∴DH=DN ,∵AD ⊥HN ,∴∠DAH=12∠HAN=11.5°,在DA 上取一点G ,使DG=DH=12b , ∴∠DGH=45°,HG=2DH=22b , ∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD ,∴AG=HG=22b , ∴AB=AD=AG+DG=22b+12b=212+b=a , ∴222221b a==-+, ∴222b a≥-, 当点M 和点B 重合时,点N 和点C 重合,此时,MN 最大=AB ,即:1b a=, ∴222-≤b a ≤1,⑧错误; ∵MN=NH=BM+DN∴△CMN 的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD ,∴△CMN 的周长等于正方形ABCD 的边长的两倍,②结论正确;∵△MAN ≌△HAN ,∴点A 到MN 的距离等于正方形ABCD 的边长AD ,④结论正确;如图1,将△ADF 绕点A 顺时针性质90°得到△ABH ,连接HE .∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE ,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴,,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=12AN•MP=12AM•AN•sin45°,S△AEF=12AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN=212ABMN AB=1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.15、115°【解析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.16、4【解析】根据圆柱的侧面积公式,计算即可.【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故答案为:4π.【点睛】题考查了圆柱的侧面积公式应用问题,是基础题.三、解答题(共8题,共72分)17、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的值为4622--.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B在抛物线上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,当n=时,AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=12时,AC2有最小值,在解方程求得m的值即可.18、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF 是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.19、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4)1 6 .【解析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下:2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.8 11.1 57.9 新能源商用车18.4 1.4 19.8 (2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,补全图形如下:(3)总销量越高,其个人购买量越大.(4)画树状图如下:∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.【点睛】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.20、详见解析【解析】根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)21、753 4【解析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=137523113 4242--+-+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.22、(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.23、(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)m≥﹣;(2)m的值为2.【解析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.。