口诀识别正方体展开图
正方体表面展开图的口诀

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
正方体展开图16种口诀

正方体展开图16种口诀一、正方体一边展开图上边把下端抹,左右倒把先穿,里外两边搭叉,外边把右端搭在上。
二、正方体二边同时展开图上里先对搭,左右穿入侧边,外圈旋转搭至上,右边把下边压。
三、正方体三边展开图上里对搭又旋,左右同时进入,外圈围圈连搭,下边把右边压。
四、正方体四边展开图右上边倒进去,左下穿入侧边,外圈旋转连搭,左右把下边压。
五、正方体五边展开图先把左下边穿,右上边旋转压,里外两边再搭,最后右边把下边带。
六、正方体六边展开图上下先对搭,右边再进侧边,外圈旋转搭叉,最后把左端连上。
七、正方体七边展开图右上边穿入一,下底旋转压二,外边翻转三抹,最后里外两边搭。
八、正方体八边展开图右上倒入一,下底旋转压二,四边穿入三,右下把左上压。
九、正方体九边展开图右上倒进去一,里外把右下穿二,外边旋转三连,左右把左上压。
十、正方体十边展开图右上倒进去一,里外把右下穿二,外边四边带叉,最后把左上压三。
十一、正方体十一边展开图上下先对搭至,里外把右下穿,外层旋转向外翻,最后把左右上压进。
十二、正方体十二边展开图上下两边把对搭,进入正上倒一,里外又把右下穿,两边把最后四边带。
十三、正方体十三边展开图上下两边先搭,里外把右下穿,外用旋转六边带,最后把左右上压。
十四、正方体十四边展开图上下先对搭至,里外又把右下穿,外用旋转八边带,两边最后把上压。
十五、正方体十五边展开图上下两边先搭,里外八边穿一,外用旋转七边带,最后两边把可上压。
十六、正方体十六边展开图上下先对搭至,里外把右上倒,外用旋转九边连,最后把右下压住。
以上是学习正方体展开图的16种口诀,从展开图边数以1到16编号,每一种口诀中,描述了如何将正方体展开成平面图案的步骤。
巧记口诀确定正方体表面展开图

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合; 跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1) (2) (3) (4)(5) (6)以上六种展开图可归结为四方连线,即 ,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开解析:本题可用“识图巧排‘7’、‘田’、‘凹’”来解决。
A 、D 都有“凹”形结构,B 有“田”形结构,故应选C例2.(2004扬州)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.) 解析:本题可用“跃马失蹄四分开”来解决。
图中具备了三二相连的结构,故本题有四种答案,即小方块的位置有图中 所示的四种情况之一。
试一试:1.(2004浙江金华)下列图形中,不是立方体表面展开图的是( )2.(2004镇江)如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( )3.(2004海南)如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次是().(A)0,-2,1(B)0,1,-2(C)1,0,-2(D)-2,0,1(2005济南中考题)在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试)。
正方体表面展开图口诀巧记图解

正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐.一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.
1.中间四个成一行,两边各一无规矩.
“141型”.也就是中间一行是四个图形,上下两个作为上下底面,也就是口诀2的“四方成线两相卫”;共6种情况(重复的不算).
7.相隔之间是对面.
相同的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“ ”字两端处的小正方形是正方体的对面(如下面的左图):“丽”对“化”,“赵”对“学”,“美”对“中”.
8.间二拐角面相邻.
中间邻面.
2016/11/27整编
正方体表面展开图口诀巧记图解
口诀一
中间4个面,上下各一面;中间3个面,1,2隔河见;中间2个面,楼梯天天见;中间没有面,33连一线.
口诀二
正方体盒巧展开,六个面儿七刀裁.十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯.对面相隔不相连,识图排除“7凹田”.
“33型”.两排三方,两行只能有1个正方形相连.也就是口诀一的“中间没有面,33连一线”.
5.一条线上不过四.
是指在正方体的展开图中,一条直线上的小正方形不会超过四个.如下面两个图形都不是正方体得展开图.
6.田七和凹要放弃.
是指在正方体的展开图中,不会出现“田”、“凹”和整体上的“七”型结构.如下面四个图形都不是正方体得展开图.
2.二三紧连错一个,三一相连一随意.
“231”.中间三个作侧面,共三种基本图形.另外三个分别在两边,但其中两个的要相邻;也就是口诀一的“中间3个面,1,2隔河见”.
3.两两相连各错一.
巧记口诀确定正方体表面展开图

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2) (3) (4)(5) (6) 以上六种展开图可归结为四方连线,即,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1) (2) (3) (4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯 这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连 这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
正方体展开图口诀

正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间Z端是对面,间二拐角面相邻。
1.中间四个成一行,两边各一无规矩
"141"型,中间一行4个作侧面。
上下两个各作为上下底面,共有6种基本图形。
2.二三紧连错一个,三一相连一随意
“231”型,中间3个作侧面,共3种基本图形
3.两两相连各错一
"222"型,两行只能有1个正方形相连
4.三个两排一对齐
5.一条线上不过四
指在正方形展开图中,一条直线上的小正方形不会超过四个。
如以下的图形都不是正方体的展开图。
6.田七和凹要放弃
指在正方体展开图中,不会有“田”字型、“凹”字型的形状。
如以下的图形都不是正方体的展开图。
7.相间Z端是对面
相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“z”字端处的小正方形是正方体的对面。
如下面的展开图中,“1”对“5”,“2”对“4”,“3”对“6”。
8.间而拐角两面相邻
中间隔着两个小正方形或拐角型的三个面是正方形的邻面。
拐角型如下图所示。
正方体表面展开图口诀巧记图解

1解疑答惑材料正方体表面展开图口诀巧记图解口诀一中间4个面,上下各一面;中间3个面,1,2隔河见;中间2个面,楼梯天天见;中间没有面,33连一线.口诀二正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯.对面相隔不相连,识图排除“7凹田"。
口诀三正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐.一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻。
1. 中间四个成一行,两边各一无规矩。
“141型”.也就是中间一行是四个图形,上下两个作为上下底面,也就是口诀2的“四方成线两相卫”;共6种情况(重复的不算)。
2。
二三紧连错一个,三一相连一随意。
“231”。
中间三个作侧面,共三种基本图形。
另外三个分别在两边,但其中两个的要相邻;也就是口诀一的“中间3个面,1,2隔河见”.3。
两两相连各错一。
“222型”。
三排两方,成阶梯状,两行只能有1个正方形相连. 也就是口诀一的“中间两个面,楼梯天天见”。
4. 三个两排一对齐。
“33型”.两排三方,两行只能有1个正方形相连.也就是口诀一的“中间没有面,33连一线”。
5. 一条线上不过四。
是指在正方体的展开图中,一条直线上的小正方形不会超过四个。
如下面两个图形都不是正方体得展开图。
6。
田七和凹要放弃.是指在正方体的展开图中,不会出现“田”、“凹”和整体上的“七”型结构。
如下面四个图形都不是正方体得展开图。
7。
相隔之间是对面。
相同的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“”字两端处的小正方形是正方体的对面(如下面的左图):“丽"对“化”,“赵”对“学”,“美”对“中”。
8.间二拐角面相邻.中间隔着两个小正方形或拐角形(如下面右图)的三个面是正方体的邻面。
2016/11/27整编。
正方体展开图找对面口诀

正方体展开图找对面口诀
口诀是正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻。
正方体展开图找对面的规律是:在通过正方体展开图形找相对面时,首先在同层中隔一面寻找,再在异层中隔两面寻找,剩下的两面自然相对。
6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:141型中间一行4个作侧面,上下两个各作为上下底面,可以有6种基本图形;231型中间一行3个作侧面,可以有3种基本图形;222型中间两个面,只有1种基本图形;33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
口诀识别正方体展开图
正方体有六个面,沿其中七条棱剪开可以得到一个由六个相同的正方形组成的平面图形,该图形虽然千姿百态,但六个正方形的排列是有一定规律的,并非胡乱拼接。
因此,在判断由六个正方形组成的图形中哪个是正方体展开图,哪个不是往往令人眼花缭乱。
为解决这个问题我们对正方体所有展开图用口诀归纳如下:
首先,把六个正方形排列的行数和列数中较小的规定为行(当行数大于列数时,将图形旋转90°,列数便成了行数),则行数最小是2,最大是3。
行数二或三,个个边相连,不论何排列,去掉凹和田。
行二唯一见,每行三个现。
三行比大小,中间不能少。
“行数二或三”,指的是正方体展开图中的六个正方形要么排成两行,要么三行。
比如图1的行数是2,图2、图3的行数都是3,图4、图5的行数都是4,把它们旋转90°后行数就变成了3.
“个个边相连”是指每个正方形都至少有一边与其他正方形是公共的。
否则它一定不是正方体展开图。
比如图3不是正方体展开图;
“不论何排列,去掉凹和田”的意思是:不管六个正方形如何排列,一旦出现“凹”字型(如图6)或“田”字型(如图7)的,一定
不是正方体展开图。
“行二唯一见,每行三个现”指的是排成两行的只有图1这种情形,每行都是3个正方形。
“三行比大小,中间不能少”说的是六个正方形排成三行的最多,而且排列方式五花八门,在这些排列中只要中间一行的个数不少于其他行的个数,再去掉图3、6、7这三种情形,那么它们都是正方体展开图。
显然,上述图1、图2、图4、图5都满足口诀条件,所以它们都是正方体展开图。
练习:下列由六个相同的正方形组成的图形中,哪些是正方体展开图?
答案:(1)(3)(5)是,(2)(4)不是。