人教版数学-江苏省数学竞赛第07讲 函数的性质与图象(新)

合集下载

竞赛讲座函数

竞赛讲座函数

第一章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。

定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。

定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。

定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。

定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。

A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。

集合{f (x )|x ∈A }叫函数的值域。

通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。

例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。

定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。

定义7 函数的性质。

(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。

第07讲一次函数-—图象与性质(教案)

第07讲一次函数-—图象与性质(教案)
-根据图象分析一次函数的性质
-一次函数图象的变换与识别
4.练习与巩固
-判断一次函数的增减性
-根据斜率和截距绘制一次函数图象
-解答与一次函数相关的问题,运用图象分析解决实际问题
二、核心素养目标
1.培养学生的数感与符号意识,通过一次函数的学习,使学生能够理解数学符号表示的实际意义,提高运用符号进行表达和交流的能力。
-图象的变换:难点在于掌握一次函数图象的平移、压缩、拉伸等变换规律,以及这些变换对斜率和截距的影响。
-例如:当一次函数图象进行平移时,斜率k保持不变,截距b发生变化,学生需要理解这种变换背后的数学原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数—图象与性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体以固定速度移动的情况?”(如骑自行车匀速前进)。这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数图象与性质的奥秘。
2.教学难点
-一次函数图象的理解:难点在于理解一次函数图象的几何意义,如何从图象中获取信息,以及如何将实际问题转化为一次函数图象。
-例如:学生可能难以理解图象上某点的坐标如何对应实际问题中的具体情境。
-一次函数性质的深入理解:难点在于理解斜率和截距对一次函数图象的精确影响,以及如何通过性质预测图象的形态。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率和截距这两个重点。对于难点部分,如斜率的意义和截距的物理含义,我会通过举例和图象分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物体的匀速运动。

高中数学竞赛专题讲座函数2:函数的图像和性质

高中数学竞赛专题讲座函数2:函数的图像和性质
998=1002是6的整数倍,所以g(2000)=g(998),即f(2000)-2000=
f(998)-998,f(2000)=f(998)+1002=1002+1002=2004。
当 时,值域为 ;当 时,
值域为
例4.对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),
(1)求证y=f(x)的图像关于直线x=a对称;
(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和
命题意图 本题考查函数概念、图像对称问题以及求根问题
(1)求证g(x)是周期函数;
(2)如果f(998)=1002,求f(2000)的值。
解:本例的难度显然又有增加,主要是难以具体化。只能在抽象的层面来解决问题
(1)g(x)=f(x)-x,可得g(x+2)=f(x+2)-x-2,g(x+3)=f(x+3)-x-3,再以f(x+3)≤f(x)+3和f(x+2)≥f(x)+2代换,可得 ,① ,②由①可得g(x+4)≥f(x+2)-x-2≥f(x)+2-x-2=f(x)-x,g(x+6)≥f(x+2)-x-2≥f(x)-x。③由②可得g(x+6)≤f(x+3)-x-3≤f(x)-x,④ 由③、④知g(x+6)=f(x)-x=g(x)。
6、若f(x)满足f(a+x)+f(b-x)=c则f(x)的图象关于点 中心对称。
证明:设P(x,y)是图象上任一点,则y=f(x);由中点公式得P关于点 对称的点为Q(a+b-x,c-y).设t=b-x即x=b-t代入f(a+x)+f(b-x)=c得f(t)=c-f(a+b-t)即f(a+b-x) =c-f(x)=c-y,即Q在图象上。所以f(x)的图象象关于点 中心对称。

【提优教程】江苏省高中数学竞赛 第06讲 函数的概念(新)教案

【提优教程】江苏省高中数学竞赛 第06讲 函数的概念(新)教案

第6讲函数的概念本节主要内容有映射与函数的概念,函数的定义域和值域的求法,函数的对应法则f ,分段函数和绝对值函数的图象.A 类例题例1 求下列函数的定义域:(1)02)23()12lg(2)(x x x x x f -+--=(2)22()lg()lg()f x x ka x a =-+-(0>a ) 解(1)要使函数有意义,必须220,210,211,320x x x x x ⎧-≥⎪->⎪⎨-≠⎪⎪-≠⎩,即02,1,21,32x x x x ≤≤⎧⎪⎪>⎪⎨≠⎪⎪≠⎪⎩, 故函数定义域为]2,23()23,1()1,21( .(2)由题意知,函数的自变量x 满足22,,x ka x a >⎧⎨>⎩由于又0>a ,所以,x ka x a x a >⎧⎨<->⎩或.当1k ≥时,函数的定义域为),(+∞ka ; 当11k -≤<时,函数的定义域为),(+∞a ; 当1k <-时,函数的定义域为),(),(+∞-a a ka .说明 列出使解析式有意义的条件不等式,问题就可以转化为求不等式(组)的解,若含有参数,需对参数的取值进行讨论.例2 已知函数()y f x =的定义域为[-1,1],求函数()()()x F x f ax f a=+(0a >)的定义域分析 函数()F x 的定义域是()f ax ,()x f a 的定义域的交集,其中ax 和xa有相同的取值范围[-1,1],解题过程中应注意参数a 的取值范围,必要时应对a 分类讨论.解 由题意得11,11,ax x a -≤≤⎧⎪⎨-≤≤⎪⎩因为0a >,所以11,.x aa a x a ⎧-≤≤⎪⎨⎪-≤≤⎩当1a ≥时,11,a a a a ≥-≤-,不等式组的解集为11[,]a a-, 此时函数()F x 的定义域是11[,]a a -;当01a <<时,11,a a a a<->-,不等式组的解集为[,]a a -,此时函数()F x 的定义域是[,]a a -.说明 一般的,若函数()f x 的定义域为[,]a b ,则函数(())f g x 的定义域由不等式()a g x b ≤≤决定.例3 求下列函数的值域:(1)()f x =x (2)()f x =222231x x x x -+--; (3)()f x =22436x x x x +++-;(4)()f x |1||2||3|x x x =+++++;(5)()f x =解 (1t =(0t ≥),则212t x -=,所以2211()1(1)22t f x t t -=+=--. 又0t ≥,故21()1(1)12f x t =--≤, 即函数()f x 的值域为(,1]-∞.说明 函数()f x =x 可以看作由函数21()()1(1)2f xg t t ==--和()t h x ==()(())f x g h x =.为了求函数()f x 的值域,可以先通过函数()h x 求出t 得取值范围,再由t 的取值范围,通过函数()g t 求出()f x 的取值范围.(2)由y =()f x =222231x x x x -+--,得 (y ―2)x 2―(y ―2)x -y -3=0 ①,当y =2时, ①式不成立,无对应的实数x ,当y ≠2时,△=(y ―2)2―4(y ―2)(y +3)≥0,解得2y ≤-或y >2。

第07讲 函数的定义域与值域(解析版)

第07讲 函数的定义域与值域(解析版)

第7讲:函数的定义域与值域一、课程标准1、会求一些简单函数的定义域2、会求一些简单函数的值域.二、基础知识回顾 1、常见函数的定义域: (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z . (6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.2、求值域常用的方法:图像法;配方法;换元法;分离变量法;反解法;单调性法;基本不等式法,求导;三、自主热身、归纳总结1、函数f(x)=ln (2x -x 2)x -1的定义域为( ) A . (0,1) B . (1,2)C . (0,1)∪(1,2)D . (-2,0)∪(1,2) 【答案】C .【解析】 为使函数有意义,必须且只须22010.x x x ⎧-⎨-⎩>,≠解得0<x<1或1<x<2,故所求函数的定义域为(0,1)∪(1,2).故选C .2、函数的y =-x 2-6x -5值域为( ) A . [0,+∞) B . [0,2] C . [2,+∞) D . (2,+∞) 【答案】B【解析】 设μ=-x 2-6x -5()μ≥0,则原函数可化为:y =μ. 又∵μ=-x 2-6x -5=-()x +32+4≤4,∴0≤μ≤4,故μ∈[]0,2, ∴函数y =-x 2-6x -5的值域为[]0,2.故选B .3、函数y =f (x )的图象是如图所示的折线段OAB ,其中A (1,2),B (3,0),函数g (x )=x ·f (x ),那么函数g (x )的值域为( )A .[0,2]B.⎣⎡⎦⎤0,94C.⎣⎡⎦⎤0,32D .[0,4]【答案】B【解析】 由题图可知,直线OA 的方程是y =2x ;因为k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.所以f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3, 所以g (x )=x ·f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3. 当0≤x ≤1时,g (x )=2x 2,此时函数g (x )的值域为[0,2];当1<x ≤3时,g (x )=-x 2+3x =-⎝⎛⎭⎫x -322+94,显然,当x =32时,函数g (x )取得最大值94;当x =3时,函数g (x )取得最小值0.此时函数g (x )的值域为⎣⎡⎦⎤0,94. 综上可知,函数g (x )的值域为⎣⎡⎦⎤0,94.故选B.4、下列函数中定义域是R 的有( ) A .2x y = B .y lgx = C .3y x = D .tan y x =【答案】AC【解析】对于A ,函数2x y =,定义域为R ,满足题意; 对于B ,函数y lgx =,定义域为(0,)+∞,不满足题意;对于C ,函数3y x =,定义域为R ,满足题意; 对于D ,函数tan y x =,定义域为(2k ππ-+,)2k ππ+,k Z ∈,不满足题意.故选:AC .5、(2019泰州期末)函数y =1-x 2的定义域是________. 【答案】. [-1,1]【解析】要使函数式有意义,则有1-x 2≥0,即x 2-1≤0,解得-1≤x≤1,所以函数的定义域为[-1,1]. 6、(2019苏州三市、苏北四市二调)(D28,6. 函数y =4x -16的定义域为________. 【答案】 [2,+∞)【解析】由4x -16≥0,得4x ≥16=42,解得x≥2,所以函数的定义域为[2,+∞). 7.【2020江苏扬州中学月考】函数y =_______.【答案】(,2]-∞【解析】由二次根式有意义,得:420x -≥,即2242x ≤=,因为2xy =在R 上是增函数,所以,x≤2,即定义域为:(,2]-∞.8.【2020江苏南京学期初联考】函数y 的定义域为______. 【答案】1[,)2+∞【解析】由201log 0x x >⎧⎨+≥⎩,得12x ≥,∴函数y =1,2⎡⎫+∞⎪⎢⎣⎭,故答案为1,2⎡⎫+∞⎪⎢⎣⎭.四、例题选讲考点一、求函数的定义域例1、1.【2020江苏“丹靖沭”10月联考】函数2()log (31)f x x =-的定义域为____. 【答案】()13+∞,【解析】由310x ->,解得13x >,所以定义域为1(,)3+∞. 变式1、【2020江苏镇江上学期期中考试】函数()lg(3)2f x x x 的定义域是______________.【答案】[)2,3-【解析】由题意得3020x x ->⎧⎨+≥⎩ 解得:23x -≤<,故答案为:[)2,3-.变式2、【2020江苏高邮开学考试】函数()f x =______ 【答案】(1,3]【解析】要使函数()f x =()41log 10210x x ⎧--≥⎪⎨⎪->⎩,解得13x <≤,即函数()f x =(]1,3,故答案为(]1,3. 变式3、.【2020江苏常州高三上学期期中考试】已知()f x 的定义域为[]1,1-,则()2log f x 的定义域为________________. 【答案】1,22⎡⎤⎢⎥⎣⎦【解析】因为函数()f x 的定义域为[]1,1-,所以-1≤log 2x≤1,所以122x ≤≤. 故f(log 2x)的定义域为1,22⎡⎤⎢⎥⎣⎦.变式4、已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为( )A .(-2,0)B .(-2,2)C .(0,2) D.⎝⎛⎭⎫-12,0【答案】C【解析】由题意得⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2, ∴0<x <2,∴函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为(0,2).求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 考点二、函数定义域中的参数问题例2、若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝⎛⎦⎤0,34B.⎝⎛⎭⎫0,34C.⎣⎡⎦⎤0,34D.⎣⎡⎭⎫0,34【答案】 D【解析】∵函数y =mx -1mx 2+4mx +3的定义域为R , ∴mx 2+4mx +3≠0,∴m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0, 即m =0或0<m <34,∴实数m 的取值范围是⎣⎡⎭⎫0,34.变式1、函数的定义域为R ,则实数k 的取值范围是 .【解析】函数的定义域为R ,∴关于x 的不等式2kx 2﹣kx0恒成立,k =0时,不等式为0恒成立;k ≠0时,应满足△=k 2﹣4×2k 0,解得0<k <3,综上,实数k 的取值范围是[0,3).故答案为:[0,3). 变式2、设函数f (x ).(1)当a =5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围. 【解析】(1)当a =5时,f (x ),由|x ﹣1|+|x ﹣2|﹣5≥0, 得或或,解得:x ≥4或x ≤﹣1,即函数f (x )的定义域为{x |x ≤﹣1或x ≥4}. (2)由题可知|x ﹣1|+|x ﹣2|﹣a ≥0恒成立, 即a ≤|x ﹣1|+|x ﹣2|恒成立,而|x ﹣1|+|x ﹣2|≥|(x ﹣1)+(2﹣x )|=1, 所以a ≤1,即a 的取值范围为(﹣∞,1].方法总结:已知函数定义域反求参数范围的问题,是关于函数定义域的逆向问题,求解的基本思路是:逆向问题正向解,即仍然从求函数的定义域入手思考,先将问题转化成含参数的不等式,然后通过对这个含参数的不等式的研究得出参数的取值范围. 考点三、求函数的值域 例3 求下列函数的值域. (1)y =2x -1x +1,x ∈[3,5]; (2)y =x 2-4x +5x -1(x>1).【解析】(1)(方法1)(单调性法)由y =2x -1x +1=2-3x +1,结合函数的图像可知,函数在[3,5]上是单调递增函数,∴y max =32,y min =54,故所求函数的值域是⎣⎡⎦⎤54,32.(方法2)(反表示法)由y =2x -1x +1,得x =1+y 2-y .∵x ∈[3,5],∴3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎡⎦⎤54,32.(2)(基本不等式法)令t =x -1,则x =t +1(t>0),∴y =(t +1)2-4(t +1)+5t =t 2-2t +2t=t +2t -2(t>0).∵t +2t ≥2t·2t =22,当且仅当t =2,即x =2+1时,等号成立,故所求函数的值域为[22-2,+∞). 变式1、(2019·深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.【答案】(1)[3,+∞) (2)1 52 (3)2 【解析】 (1)图象法 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2. 作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎡⎦⎤12,2上是增函数,∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 变式2、函数f (x )=x 2+4x 的值域为________________. 【答案】(-∞,-4]∪[4,+∞)【解析】当x >0时,f (x )=x +4x ≥4, 当且仅当x =2时取等号;当x <0时,-x +⎝⎛⎭⎫-4x ≥4,即f (x )=x +4x ≤-4, 当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞).变式3、 (1)函数f (x )=x +21-x 的最大值为________; (2)函数y =x -4-x 2的值域为________. 【答案】(1)2 (2)[-22,2] 【解析】 (1)设1-x =t (t ≥0),所以x =1-t 2.所以y =f (x )=x +21-x =1-t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]), 则y =2cos θ-4-4cos 2θ=2cos θ-2sin θ=22cos ⎝⎛⎭⎫θ+π4,因为θ+π4∈⎣⎡⎦⎤π4,5π4,所以cos ⎝⎛⎭⎫θ+π4∈⎣⎡⎦⎤-1,22,所以y ∈[-22,2].变式4、(2018无锡期末)已知函数f(x)=⎩⎨⎧x 2+2x -1x 2,x≤-12,log 12⎝⎛⎭⎫1+x 2,x>-12,g(x)=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________. 【答案】 (-2,0)【解析】 思路分析 根据条件可以将问题等价转化为关于函数y =f(a)的值域问题,然后利用分段函数的值域求法和一元二次不等式的解法处理即可.由题意,存在a ∈R ,使得f (a )=-g (b ),令h (b )=-g (b )=b 2+2b +2.当a ≤-12时,f (a )=a 2+2a -1a 2=-1a 2+2a +1=-⎝⎛⎭⎫1a -12+2,因为a ≤-12,所以-2≤1a <0,从而-7≤f (a )<1; 当a >-12时,f (a )=log 12⎝⎛⎭⎫1+a 2,因为a >-12,所以1+a 2>14,从而f (a )<2. 综上,函数f (a )的值域是(-∞,2). 令h (b )<2,即b 2+2b +2<2,解得-2<b <0.方法总结: 1. 求函数的值域方法比较灵活,常用方法有: (1)单调性法:先确定函数的单调性,再由单调性求值域;(2)图像法:先作出函数的图像,再观察其最高点、最低点,得到值域;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值,得出值域;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,再用相应的方法求值域; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求 五、优化提升与真题演练1、已知函数f (x )=-x 2+2x +3,则函数f (3x -2)的定义域为( )A.⎣⎡⎦⎤13,53B.⎣⎡⎦⎤-1,53C .[-3,1] D.⎣⎡⎦⎤13,1【答案】A【解析】 由-x 2+2x +3≥0,解得-1≤x ≤3, 即f (x )的定义域为[-1,3]. 由-1≤3x -2≤3,解得13≤x ≤53,则函数f (3x -2)的定义域为⎣⎡⎦⎤13,53,故选A.2、(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调)函数f (x )=lg (5-x 2)的定义域是________. 【答案】 [-2,2]【解析】思路分析 被开方数lg(5-x 2)非负.由lg(5-x 2)≥0,得5-x 2≥1,即x 2-4≤0,解得-2≤x ≤2.3、(2017常州期末) 函数y =1-x +lg(x +2)的定义域为________.【答案】. (-2,1]【解析】由题意可得⎩⎪⎨⎪⎧1-x ≥0,x +2>0,解得-2<x ≤1,故所求函数的定义域为(-2,1].4、(2018苏北四市期末)函数y =log 12x 的定义域为________.【答案】(0,1]【解析】由⎩⎪⎨⎪⎧x>0,log 12x≥0,得⎩⎪⎨⎪⎧x>0,x≤1,所以0<x≤1,即该函数的定义域为(0,1]. 5、(2018南京、盐城一模)设函数y =e x+1e x -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是________.【答案】 (-∞,2]【解析】因为e x>0 ,所以y =e x+1e x -a≥2e x·1e x -a =2-a ,当且仅当e x=1,即x =0时取等号.故所求函数的值域A =[2-a ,+∞).又A ⊆[0,+∞),所以2-a≥0,即a≤2.6、(2016苏州期末)函数f (x )=⎩⎪⎨⎪⎧2x , x ≤0,-x 2+1, x >0的值域为________. 【答案】 (-∞,1]【解析】思路分析 先画出图像看看.分段画出f (x )的图像即可看出函数的值域为(-∞,1].7、[2018·江苏高考]函数f (x )=log 2x -1的定义域为 . 【答案】[2,+∞)【解析】 (1)为使函数有意义,必须且只须自变量x 满足log 2x -1≥0, 解得x ≥2.故原函数的定义域为[2,+∞).8、 已知函数y =f(x +2)的定义域为[1,2],求函数y =f(2x +1)的定义域.【答案】⎣⎡⎦⎤1,32.【解析】∵函数y =f(x +2)的定义域为[1,2],∴1≤x≤2,得3≤x +2≤4,即函数y =f(x)的定义域为[3,4].为使函数y =f(2x +2)有意义,必须且只须自变量x 满足3≤2x +1≤4,解得1≤x≤32.∴函数y =f(2x +1)的定义域为⎣⎡⎦⎤1,32.9.已知函数f(x)=2-1(12)3,121a x a x x -+⎧⎨⎩<,,≥的值域为R ,则实数a 的取值范围是【答案】0≤a <12.【解析】 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=2-1(12)3,121a x a x x -+⎧⎨⎩<,,≥的值域为R , ∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则120-a 1a -⎧⎨⎩>,12a+3≥解得0≤a <12. 10、(一题两空)设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),则f (x )的值域为________;若函数g (x )是二次函数,且函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.【答案】(-1,+∞) [0,+∞)【解析】因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化.而f (x )的值域为(-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数,所以g (x )的值域是[0,+∞).11、求函数y =x +2x +1的值域.【解析】 (方法1)令2x +1=t ,则t ≥0,且x =t 2-12.∴y =t 2-12+t =12(t 2+2t -1)=12(t +1)2-1,t ∈[0,+∞), 由二次函数的图像知,当t ∈[0,+∞)时,y =12(t +1)2-1是单调递增函数,故当t =0时,y min =-12.∴函数y =x +2x +1的值域为1,2⎡⎫-+⎪⎢⎣⎭∞(方法2)由2x +1≥0得x ≥-12,即函数y =x +2x +1的定义域为易得函数y =x +2x +1在上单调递增,∴y min =y |x =-12=-12,不存在最大值. ∴函数y =x +2x +1的值域为.12、 已知函数f(x)=x 2+4ax +2a +6.(1)若f(x)的值域是[0,+∞),求a 的值;(2)若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.【解析】(1)∵f(x)的值域是[0,+∞),即f min (x)=0, ∴4(2a +6)-(4a )24=0,∴a =-1或32.(2)若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0, 即2a 2-a -3≤0,∴-1≤a≤32,∴g(a)=2-a|a -1|=222,1 1.32,1.2a a a a a a ⎧-+-⎪⎨-++⎪⎩≤≤<≤1,2⎡⎫-+⎪⎢⎣⎭∞1,2⎡⎫-+⎪⎢⎣⎭∞1,2⎡⎫-+⎪⎢⎣⎭∞当-1≤a≤1,g(a)=a 2-a +2=⎝⎛⎭⎫a -122+74, ∴g(a)∈⎣⎡⎦⎤74,4;当1<a≤32,g(a)=-a 2+a +2=-⎝⎛⎭⎫a -122+94,∴g(a)∈⎣⎡⎭⎫54,2.∴函数g(a)=2-a|a -1|的值域是⎣⎡⎦⎤54,4.。

高一数学竞赛培训讲座(函数的性质)

高一数学竞赛培训讲座(函数的性质)

函数的基本性质基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题:1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤23时,f(x)=x ,则f(2003)=( ) A.-1B.0C.1D.2003解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303C.152D.2305提示:由已知,函数f(x)的图象有对称轴x =23 于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称 利用中点坐标公式,这100个根的和等于23×100=150 所有101个根的和为23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________.解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=75. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x再平方得x 4-160x 2+6400=76x 2即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b +c =61646. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a >4.f(0)=c >1 ③ 0<-a2b<1 ④ b 2≥4ac b >1-a -c c >1b <0(∵ a>0) 于是-b≥2ac所以a +c -1>-b≥2ac ∴ (c a -)2>1 ∴ c a ->1 于是c a >+1>2 ∴ a>4证法二:设f(x)的两个根为x 1,x 2, 则f(x)=a(x -x 1)(x -x 2) f⑴=a(1-x 1)(1-x 2)>1 f(0)=ax 1x 2>1 由基本不等式 x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2 ∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1∴ a 2>16 ∴ a>47. 已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥21. 解:M =|f(x)|max =max{|f⑴|,|f(-1)|,|f(-2a)|}⑴若|-2a|≥1 (对称轴不在定义域内部) 则M =max{|f⑴|,|f(-1)|} 而f⑴=1+a +b f(-1)=1-a +b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4 则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21 ⑵|-2a|<1 M =max{|f⑴|,|f(-1)|,|f(-2a)|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|}≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|)≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)]=)2a 2(412≥21 综上所述,原命题正确. 8. ⑴解方程:(x +8)2001+x2001+2x +8=0⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++⑴解:原方程化为(x +8)2001+(x +8)+x2001+x =0即(x +8)2001+(x +8)=(-x)2001+(-x)构造函数f(x)=x 2001+x原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数 于是有x +8=-x x =-4为原方程的解 ⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即 于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数, 所以:2x =x 2+1 解得:x =19. 设f(x)=x 4+ax 3+bx 2+cx +d ,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值. 解:由已知,方程f(x)=x 已知有三个解,设第四个解为m , 记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m) ∴ f(x)=(x -1)(x -2)(x -3)(x -m)+x f⑷=6(4-m)+4 f(0)=6m∴41[f⑷+f(0)]=7 10. 设f(x)=x 4-4x 3+213x 2-5x +2,当x∈R 时,求证:|f(x)|≥21 证明:配方得: f(x)=x 2(x -2)2+25(x -1)2-21 =x 2(x -2)2+25(x -1)2-1+21 =(x 2-2x)2+25(x -1)2-1+21 =[(x -1)2-1]2+25(x -1)2-1+21 =(x -1)4-2(x -1)2+1+25(x -1)2-1+21 =(x -1)4+21(x -1)2+21 ≥21练习:1. 已知f(x)=ax 5+bsin 5x +1,且f⑴=5,则f(-1)=( )A.3B.-3C.5D.-5解:∵ f⑴=a +bsin 51+1=5设f(-1)=-a +bsin 5(-1)+1=k 相加:f⑴+f(-1)=2=5+k ∴ f(-1)=k =2-5=-3 选B 2. 已知(3x +y)2001+x2001+4x +y =0,求4x +y 的值.解:构造函数f(x)=x2001+x ,则f(3x +y)+f(x)=0逐一到f(x)的奇函数且为R 上的增函数, 所以3x +y =-x 4x +y =03. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =0解:构造函数f(x)=ln(1x 2++x)+x 则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R 上是增函数(证明略) 所以f(x)=-f(2x)=f(-2x) 由函数的单调性,得x =-2x 所以原方程的解为x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.解:函数值域为R ,表示函数值能取遍所有实数,则其真数函数g(x)=x 2+ax -a 的函数值应该能够取遍所有正数 所以函数y =g(x)的图象应该与x 轴相交 即△≥0 ∴ a 2+4a≥0 a≤-4或a≥0解法二:将原函数变形为x 2+ax -a -3y=0 △=a 2+4a +4·3y≥0对一切y∈R 恒成立 则必须a 2+4a≥0成立 ∴ a≤-4或a≥05. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.提示:利用两点间距离公式处理y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和 当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c , =a(x -x 1)(x -x 2) ∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1 =(t -x 1)[a(t -x 2)+1] =a(t -x 1)(t -x 2+a1) 又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0 ∴ f(t)-x 1>0 ∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x 令g(x)=a(x -x 2)∵ a>0,g(x)是增函数,且t <x 1 ⇒ g(t)<g(x 1)=a(x 1-x 2)<-1 另一方面:f(t)=g(t)(t -x 1)+t ∴1x t t)t (f --=a(t -x 2)=g(t)<-1 ∴ f(t)-t >x 1-t ∴ f(t)>x 17. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x ,y ,使得 |xy -f(x)-g(y)|≥41 证明:(正面下手不容易,可用反证法) 若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41记|S(x ,y)|=|xy -f(x)-g(y)| 则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41 而S(0,0)=-f(0)-g(0) S(0,1)=-f(0)-g(1) S(1,0)=-f(1)-g(0) S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)| ≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)| =1 矛盾! 故原命题得证!8. 设a ,b ,c∈R,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.解:(本题为1914年匈牙利竞赛试题) f⑴=a +b +c f(-1)=a -b +c f(0)=c ∴ a=21[f⑴+f(-1)-2f(0)] b =21[f⑴-f(-1)] c =f(0)|2ax +b|=|[f⑴+f(-1)-2f(0)]x +21[f⑴-f(-1)]| =|(x +21)f⑴+(x -21)f(-1)-2xf(0)| ≤|x+21||f⑴|+|x -21||f(-1)|+2|x||f(0)|≤|x+21|+|x -21|+2|x| 接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可 9. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2.⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|; ⑵求证:|f(x 1)-f(x 2)|<1.证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2| =|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………① x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立 于是原不等式成立 ⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2| ①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立. ②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21(右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f⑴+f(0)-f(x 2)| ≤|f(x 1)-f⑴|+|f(0)-f(x 2)|<2(1-x 2)+2(x 2-0) (由⑴) =2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10. 已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1) ≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a=0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f⑴,f(-1),f(-a 21)}又f(±1)=±1≠817 ∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2。

江苏省数学竞赛提优教案:第07讲 函数的性质与图象(新)

江苏省数学竞赛提优教案:第07讲  函数的性质与图象(新)
例6函数f定义在实数集上,且对一切实数x满足等式 和 。设x=0是f(x)=0的一个根,记f(x)=0在区间[-1000,1000]中的根的个数为N。求N的最小值。
(1984年美国数学邀请赛)
解由题意知,函数f(x)的图象关于直线 和 对称,
所以 , ,
于是f(x)=0在(0,10]上至少有两个根。
则f(x)=f(x+4)=x+4。
当x∈[0,1]时,x+2∈[2,3],于是f(x+2)=x+2,
则f(x)=f(x+2)=x+2。
又由于f(x)为偶函数,故f(-x)=f(x)。
当x∈[-1,0)时,-x∈(0,1],则f(x)=f(-x)=-x+2。
所以f(x)==3-|x+1|(x∈[-2,0])。
情景再现
1.函数f(x)=-()
A.是偶函数但不是奇函数B.是奇函数但不是偶函数
C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数
ቤተ መጻሕፍቲ ባይዱ(2002年全国联赛一试)
2.已知f(x)是定义在(0,+∞)上的减函数,若f(2a2+a+1)<f(3a2-4a+1)成立,则a的取值范围是。
(2005年全国联赛一试)
说明本题是根据周期函数和偶函数得性质来求解的。本题还可以画出函数的图象来解。
例3设函数f0(x)=|x|,f1(x)=|f0(x)-1|,f2(x)=|f1(x)-2|,求函数y=f2(x)的图象与x轴所围成图形中的封闭部分的面积.
(1989年全国联赛一试)
解图1是函数f0(x)=|x|的图形,把此图形向下平行移动1个单位就得到函数f0(x)=|x|-1的图形,作该图形的在x轴下方的部分关于x轴的对称图形得出图2,其中在x轴上方的部分即是f1(x)=|f0(x)–1|的图象,再把该图象向下平行移动2个单位得到f0(x)=|x|-2的图象,作该图象在x轴下方的部分关于x轴的对称图形得到图3,其中x轴上方的部分即是f2(x)=|f1(x)–2|的图象。易得所求面积为7。

函数的基本性质ppt课件

函数的基本性质ppt课件


1
即函数f(x)=x+ 为奇函数.

函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+


解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).

1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲函数的性质与图象本节主要内容有函数的单调性、奇偶性(包括对称性)和周期性,函数图象的画法和变换等内容.A类例题例1 求函数f(x)=log1(x2-2x-3)的单调递增区间。

2(2002年全国联赛一试)解:由x2-2x-3>0,得x<-1或x>3.u,u= x2-2x-3。

由于f(u)在(0,+∞)上令y=f(u)= log12是单调减函数,u= x2-2x-3在区间(-∞,-1)上是单调减函数,那么由复合函数的单调性可知,函数f(x)在区间(-∞,-1)上单调递增。

同样可以得到函数f(x)在区间(3,+∞)上单调递减。

所以函数f(x)=log1(x2-2x-3)的单调递增区间是(-∞,-1)。

2说明分析函数的单调区间一般可以根据原函数的定义域以及复合函数的单调性的判断方法进行判断,也可以利用函数的图象进行判断。

论证函数的单调性常常利用定义或导数。

例2 设f(x)是定义在实数集上的周期为2的函数,且是偶函数,已知当x∈[2,3]时,f(x)=x,求x∈[-2,0]时f(x)的解析式。

(1990年全国联赛一试)分析由T=2,可以得出x∈[-2,-1]和x∈[0,1]时f(x)的解析式;再由奇偶性,即可得到x∈[-2,0]时f(x)的解析式。

解因为函数f(x)是以T=2为周期的周期函数,所以f(x+2)=f(x)。

当x∈[-2,-1]时,x+4∈[2,3],于是f(x+4)=x+4,则f(x)= f(x+4)=x+4。

打印版打印版当x ∈[0,1]时,x +2∈[2,3],于是f (x +2)=x +2,则f (x )= f (x +2)=x +2。

又由于f (x )为偶函数,故f (-x )=f (x )。

当x ∈[-1,0)时,-x ∈(0,1],则f (x )= f (-x )=-x +2。

所以f (x )=⎩⎨⎧3-(-x -1)=x+4 (x ∈[-2,-1]),3-(x+1)=-x+2 (x ∈(-1,0)). =3-|x +1|(x ∈[-2,0])。

说明 本题是根据周期函数和偶函数得性质来求解的。

本题还可以画出函数的图象来解。

例3 设函数f 0(x )=|x |,f 1(x )=|f 0(x )-1|,f 2(x )= |f 1(x )-2|,求函数y=f 2(x )的图象与x 轴所围成图形中的封闭部分的面积.(1989年全国联赛一试)解 图1是函数f 0(x )=|x |的图形,把此图形向下平行移动1个单位就得到函数f 0(x )=|x |-1的图形,作该图形的在x 轴下方的部分关于x 轴的对称图形得出图2,其中在x 轴上方的部分即是f 1(x )=|f 0(x )–1|的图象,再把该图象向下平行移动2个单位得到f 0(x )=|x |-2的图象,作该图象在x 轴下方的部分关于x 轴的对称图形得到图3,其中x 轴上方的部分即是f 2(x )= |f 1(x )–2|的图象。

易得所求面积为7。

情景再现1.函数f (x )=x 1-2x-x 2( ) A .是偶函数但不是奇函数 B .是奇函数但不是偶函数打印版C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数 (2002年全国联赛一试)2.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 。

(2005年全国联赛一试)3.若f (x ) (x ∈R )是以2为周期的偶函数,当x ∈[ 0,1 ]时,f (x )=x 11000,则f (9819),f (10117),f (10415)由小到大排列是 .(1998年全国联赛一试) B 类例题例4 设x ,y 为实数,且满足⎩⎨⎧(x -1)3+1997(x -1)=-1,(y -1)3+1997(y -1)=1.求x +y 的值。

(1997年全国联赛一试)分析 由方程组可以观察到x -1、1-y 是方程t 3+1997t +1=0的根。

解:原方程组即⎩⎨⎧(x -1)3+1997(x -1)+1=0,(1-y )3+1997(1-y )+1=0.取 f (t )=t 3+1997t +1,则f '(t )=3t 2+1997>0,故f (t )是单调增函数, 所以方程t 3+1997t +1=0至多只有一个实数解,所以x -1=1-y ,即x +y=2.例5 设曲线C 的方程是,3x x y -=将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1。

(1)写出曲线C 1的方程;(2)证明曲线C 与C 1关于点)2,2(st A 对称; (3)如果C 与C 1有且仅有一个公共点,证明304t s t t =-≠且。

打印版(1998年全国高考题)分析 第(1)小题直接由函数图象平移性质可得;第(2)小题“证明曲线C 与C 1关于点)2,2(s t A 对称”应转化为证明“设B 1(x 1,y 1) 为C 上任意一点,证明点(t -x 1,s -y 1)必在曲线C 1上”,反之亦然;第(3)小题即为两曲线方程构成的方程组有且仅有一组解。

(1)解 曲线C 1的方程为3()()y x t x t s =---+。

(2)证明 在曲线C 上任取一点B 1(x 1,y 1)。

设B 2(x 2,y 2)是B 1关于点A 的对称点,则有 .,.22,2221212121y s y x t x s y y t x x -=-=∴=+=+ 代入曲线C 的方程,得3222()()s y t x t x -=---,3222()()y x t x t s =---+即,故点B 2的坐标满足C 1的方程, 可知点B 2(x 2,y 2)在曲线C 1上。

反过来,也可以证明,在曲线C 1上的点关于点A 对称点在曲线C 上。

因此,曲线C 与C 1关于点A 对称。

(3)证明 因为曲线C 与C 1有且仅有一个公共点,所以方程组⎩⎨⎧+---=-=.)()(,33s t x t x y x x y 有且仅有一组解。

消去y ,整理得,0)(33322=--+-s t t x t tx这个关于x 的一元二次方程有且仅有一个根。

所以0≠t 并且其根的判别式⎩⎨⎧=--≠=---=∆.0)44(,0,0)(129334s t t t t s t t t t 即打印版 所以304t s t t =-≠且。

说明 在证明不同的两条曲线C 1和C 2关于点(或线)对称时,必须证明C 1上任意一点的对称点在C 2上,且C 2上任意一点的对称点在C 1上,即正反两个方面都要证明。

而在证明一条曲线关于点(或线)对称时,只要在该曲线上任取一点,证明此点的对称点仍在曲线上即可。

例6 函数f 定义在实数集上,且对一切实数x 满足等式(2)(2)f x f x -=+和(7)(7)f x f x -=+。

设x =0是f (x )=0的一个根,记f (x )=0在区间[-1000,1000]中的根的个数为N 。

求N 的最小值。

(1984年美国数学邀请赛)解 由题意知,函数f (x )的图象关于直线2x =和7x =对称, 所以(4)(22)(22)(0)0f f f f =+=-==,(10)(73)(73)(4)0f f f f =+=-==,于是f (x )=0在(0,10]上至少有两个根。

另一方面,由(2)(2),(7)(7)f x f x f x f x -=+⎧⎨-=+⎩可得()(4),()(14)f x f x f x f x =-⎧⎨=-⎩,所以(4)(14)f x f x -=-,即()(10)f x f x =+,从而知函数()y f x =是以10T =为周期的周期函数,因此f (x )=0在区间[-1000,1000]中的根的个数至少有200×2+1=401个根。

如图可以构造出一个“锯齿形”的函数()y f x =,满足上述所打印版打印版例7 已知函数f (x )定义在R 上且对一切实数x ,y ∈R ,有f (x +y )+f (x -y )=2f (x )f (y ),且f (0) ≠0。

(1)求证f (0)=1,且f (x )是偶函数;(2)若存在常数c ,使f c ()20=, ①求证对于任意x ∈R ,有f (x +c )=-f (x )成立;②试问函数f (x )是否是周期函数,若是,求出它的一个周期。

解(1)令x =y =0,则f (0)+f (0)=2f (0)f (0),因为f (0) ≠0,所以f (0)=1;任取y ∈R ,令x =0,则f (y )+f (-y )=2f (0)f (y ),所以f (-y )=f (y ),即函数f (x )是偶函数。

(2)①令x =a +2c ,y =2c ,则f (a +c )+f (a )=0, 即f (x +c )=-f (x )成立。

②因为f (x +2c )=-f (x +c )=f (x )所以函数f (x )是周期函数,它的一个周期T =2c 。

例8 设函数f (x )在[0,1]上有定义,f (0)=f (1).如果对于任意不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|.求证:|f (x 1)-f (x 2)|<12. (1983年全国高中数学联赛二试)分析 把条件|f (x 1)-f (x 2)|<|x 1-x 2|与结论|f (x 1)-f (x 2)|<12对照,把|x 1-x 2|与12联系比较。

证明 不妨取0≤x 1<x 2≤1。

若|x 1-x 2|≤12,则必有|f (x 1)-f (x 2)|<|x 1-x 2|<12. 若|x 1-x 2|>12,则x 2-x 1>12,于是1-(x 2-x 1)<12,打印版即1-x 2+x 1-0<12. |f (x 1)-f (x 2)|= |(f (x 1)- f (0))-(f (x 2)-f (1))|≤|f (x 1)-f (0)|+ |f (1)-f (x 2)|<| x 1-0|+|1-x 2|=1-x 2+x 1-0<12. 综上可知,|f (x 1)-f (x 2)|<12成立。

情景再现4.已知函数f (x )是R 上的奇函数,g (x )是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( ) A .1292-+-x xB .1292-+x xC .1292+--x xD .1292+-x x (2004年湖南数学竞赛)5.函数)(x f y =的图象为C ,而C 关于直线1=x 对称的图象为1C ,将1C 向左平移1个单后得到的图象为2C ,则2C 所对应的函数为( )A .)(x f y -=B .)1(x f y -=C .)2(x f y -=D .)3(x f y -=(2005年湖南数学竞赛)6.设f (x )是定义在实数集R 上的函数,且满足下列关系f (10+x )=f (10-x ), f (20-x )=-f (20+x ),则f (x )是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数打印版C .奇函数,又是周期函数D .奇函数,但不是周期函数 (1992年全国联赛一试)7.已知f (x )是定义在R 上的增函数.设F (x )=f (x )–f (a –x )(1)用函数单调性定义证明F (x )是R 上的增函数;(2)证明函数y =F (x )的图象关于点)0,2(a为中心对称. C 类例题例9 设k ∈N ,若存在函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f [f (n )]=kn , 求证:对每个n ∈N ,都有2)1()(12n k n f k kn +≤≤+. (1990第五届冬令营选拔赛)证明 先证后一半,即证明2f (n )≤kn +n =f [f (n )]+n ,把这个式子改写为f (n )-n ≤f [f (n )]-f (n ). ⑴1︒ f (n )≥n ,这是因为f (n )是自然数,且函数f :N →N 是严格递增的,即f (1)<f (2)<f (3)<…<f (n ).2︒ 若m >n ,则f (m )-f (n )≥m -n ,这是因为若m >n ,设m =n +p ,(p ∈N ),则f (m )=f (n +p )≥f (n +p -1)+1≥f (n +p -2)+2≥…≥f (n )+p ,即f (m )-f (n )≥p =m -n . ⑵在⑵式中取m =f (n )即得⑴式.于是2)1()(nk n f +≤成立.再证前一半,即证明)(12n f k kn ≤+,即证2f [f (n )]≤(k +1)f (n ), 即证f [f (n )]≤21+k f (n ).这只要在⑴式中以f (n )代n 即可得证. 所以对每个n ∈N ,都有2)1()(12n k n f k kn +≤≤+。

相关文档
最新文档