新高考数学二轮总复习课件专题六统计与概率小题专项练

合集下载

2021年高考数学二轮复习专题六统计与概率6.1统计与概率小题专项练课件文

2021年高考数学二轮复习专题六统计与概率6.1统计与概率小题专项练课件文
(2,2)
(3,2)
(4,2)
(5,2)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的
10 2
情况有10种,故所求的概率为 25 = 5 .
-14-
12.数据x1,x2,x3,…,xn是上海普通职工n(n≥3,n∈N*)个人的年收入,
设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首
富的年收入xn+1,那么这n+1个数据中,以下说法正确的选项是
B
(
)
A.年收入平均数大大增大,中位数一定变大,方差可能不变
B.年收入平均数大大增大,中位数可能不变,方差变大
(A,BC),(B,AC),(C,AB),(AB,C),(AC,B),(BC,A),(ABC,0)共8种情况,
其中一人没有分到书,另一人分得3本书有两种情况,根据古典概型
2 1
概率公式可得一人没有分到书,另一人分得3本书的概率为 8 = 4 .
应选B.
-13-
11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽
取1张,那么抽得的第一张卡片上的数大于第二张卡片上的数的概
率为(D
)
1
10
1
5
A.
3
10
B.
2
5
C.
D.
解析 由题意可得抽取两张卡片上的数的所有情况如下表所示(表

2019年高考数学(文)二轮复习课件专题六 统计与概率 6.2精选ppt版本

2019年高考数学(文)二轮复习课件专题六 统计与概率 6.2精选ppt版本

画频率分布直 方图;由频率估 计概率;样本估 计总体
频 方 概率 图 率、分频布率直、样 总本 体估计
观察、分析、 计算
用线性回归模
2018 全国 Ⅱ
型进行预测;并 比较哪个更可
散点图、回 归方程
回归分析
分析、计算、 判断

全国 Ⅲ
判断优劣;独立 性检验
茎叶图、列 样本数字 联表、独立 特征、独 性检验 立性检验
求相关系数; 求回归方程, 并进行预测
样本折线图、 相关系数、回 回归分析 归方程
整体代换
-5-
年份 卷别 设问特点
涉及知识点 题目类型 解题Fra bibliotek想方法全国 Ⅰ
求相关系数;判 断样本符合标 准;求样本均值 与标准差
相关系数、 均值与标准 差
相关关 系、样本 数字特征
整体代换
频率分布直
2017 全国 Ⅱ
������=∑1������������������������-������������ ������
,当 r>0 时,表示两个变量正
(������=∑������1���������2��� -������������2)(������=∑������1���������2��� -������������2)
^ ^ ������
������=∑1������������������������-������������ ������ ������=∑������1���������2��� -������������2
,
������
=
������

������
������.
������
(3)相关系数:r=

高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理

高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理
6.3 统计与概率大题
-2-
-3-
-4-
-5-
-6-
-7-
-8-
2.独立性检验 对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样本频数列 联表是:
-9-
4.二项分布 一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验 中事件A发生的概率为p,则P(X=k)= pkqn-k,其中 0<p<1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作 X~B(n,p),且E(X)=np,D(X)=np(1-p).
-15-
考向一 考向二 考向三 考向四
对点训练 1学校为了了解A,B两个班级学生在本学期前两个月内 观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行 调查,得到他们观看电视节目的时长(单位:小时)如下.
A班:5,5,7,8,9,11,14,20,22,31;B班:3,9,11,12,21,25,26,30,31,35. 将上述数据作为样本. (1)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少 写出2条); (2)分别求样本中A,B两个班级学生的平均观看时长,并估计哪个 班级的学生平均观看的时间较长; (3)从A班的样本数据中随机抽取一个不超过11的数据记为a,从B 班的样本数据中随机抽取一个不超过11的数据记为b,求a>b的概率.
考向一 考向二 考向三 考向四
根据上表中的数据作出散点图,得知产品研发费的自然对数值z (精确到小数点后第二位)和销售额y具有线性相关关系.
(1)求销售额y关于产品研发费x的回归方程 的计算结果精确到小数点后第二位);
考向一 考向二 考向三 考向四
-20-
考向一 考向二 考向三 考向四

高考数学大二轮复习 专题六 统计与概率 6.2.2 统计与概率课件 文

高考数学大二轮复习 专题六 统计与概率 6.2.2 统计与概率课件 文
M发生的概率.
12
第十二页,共三十七页。
考向一
考向二
考向三
考向四
解 (1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方
法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.
(2)①从已知的6人中随机抽取2人的所有可能(kěnéng)结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F
样本数据中身长为8.4 cm和8 cm的中国红鲤能被选为种鱼,身长为7.5 cm
以下的中国红鲤不能被选为种鱼,
由于8.3>8,所以该尾中国红鲤能被选为种鱼.
(2)根据分层抽样的原则,抽取中华彩鲤样本数为32尾,所有样本数据平均值为
40×5.1+32×4.875
=5(cm).
40+32
17
第十七页,共三十七页。
机抽取2人接受采访.
11
第十一页,共三十七页。
考向一
考向二
考向三
员工
项目
子女教育
继续教育
大病医疗
住房贷款利息
住房租金
赡养老人
考向四
A
B
C
D
E
F

×
×

×


×
×

×

×

×
×

×

×

×
×
×
×

×

×
×


×

×

2024届新教材高考数学二轮复习 概率 课件(69张)

2024届新教材高考数学二轮复习 概率 课件(69张)

A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件
种不同的
C 15 C 110
取法,所求概率为 2
C 15
=
50
105
=
10
.
21
4.(2021江西萍乡高三检测,8)算盘是中国传统的计算工具,其形长方,周为
木框,内贯直柱,俗称“档〞,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每
珠作数一.算珠梁上局部叫上珠,梁下局部叫下珠.例如:在十位档拨上一颗
=
4
4
P(B|A2)= ,P(B|A3)= ,而
11
11
1
3
,P(A3)= ;P(B|A1)=
5
10
=
5
,由此知选项
11
B 正确.
P(B)=P(A1B)+P(A2B)+P(A3B)
1
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2
此知选项 AC 不正确.
1 5
×
2 11
1
2
×
5
11
1
+5
×
4
11
+
3
10
×
4
11
=
9
.由
22
考向四
相互独立事件及二项分布
10.(2021天津,13)甲、乙两球落入盒子的概率分别为
落入盒子互不影响,那么甲、乙两球都落入盒子的概率为
乙两球至少有一个落入盒子的概率为
答案
1
6
1 1
.假定两球是否

2 3
;甲、
.
2
3
解析 两球都落入
1
p1=2
1
2 2

最新高考数学(理)二轮专题复习课件:第二部分 专题六 统计与概率3.1

最新高考数学(理)二轮专题复习课件:第二部分 专题六  统计与概率3.1

������≈1.331-0.103×4≈0.92.
所以,y 关于 t 的回归方程为���^���=0.92+0.10t.
将 2018 年对应的 t=11 代入回归方程得���^���=0.92+0.10×11=2.02.
核心知识
考点精题
-19-
考向一 考向二 考向三
对点训练1(2017河北石家庄二中模拟,理18)下表是某校高三一次
数字表示个位数;当数据是三位数,前两位相对比较集中时,常以前
两位为茎,第三位(个位)为叶(其余类推).
核心知识
考点精题
-8-
2.样本的数字特征
(1)众数:是指出现次数最多的数,体现在频率分布直方图中,是指
高度最高的小矩形的宽的中点的横坐标;
(2)中位数是指从左往右小矩形的面积之和为0.5处的横坐标;
质:E(aX+b)=aE(X)+b;E(ξ+η)=E(ξ)+E(η);D(aX+b)=a2D(X).
6.3.1 统计与统计案例
核心知识
考点精题
-15-
考向一 考向二 考向三
相关关系的判断及回归分析 例1下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿 吨)的折线图.
注:年份代码1-7分别对应年份2008-2014. (1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系 数加以说明;
������=1
回归方程���^���
=
���^���
+
^
������t
中斜率和截距最小二乘估计公式分别为:
������
^
������
=
∑ (������������-������)(������������-������ )

2019届高考数学(文)二轮复习课件:第2部分 专题6 统计与概率 6.2

2019届高考数学(文)二轮复习课件:第2部分 专题6 统计与概率 6.2

-5-
年份 卷别 设问特点 求相关系数;判 全国 断样本符合标 Ⅰ 准;求样本均值 与标准差
涉及知识点 题目类型 解题思想方法 相关系数、 相关关 均值与标准 系、样本 整体代换 差 数字特征
频率分布直 方图、 频率、 频率估计概率; 2017 全国 概率、列联 独立性检 观察、分析、 独立性检验;样 Ⅱ 表、独立性 验 判断 本估计总体 检验、样本 数据特征 频率估计概率; 全国 频率、 概率、样本估计 分析、抽象概 求利润及利润 Ⅲ 函数关系 总体 括 为正的概率
������=1 ������
^ ^
^
^
∑ ������������ ������������ -������������ ������
2 ∑ ������2 ������������ ������ ������=1
������
, ������ = ������ − ������ ������.
∑ ������������ ������������ -������������ ������
பைடு நூலகம்
②概率公式是 P(A)= ②概率公式是 P(A)=
事件������中所含的基本事件数 试验的基本事件总数
.
(2)几何概型:①特点为无限性,等可能性;
构成事件������的区域长度(面积或体积) 试验全部结果所构成的区域长度(面积或体积)
.
-6-
-7-
1.统计图表 (1)在频率分布直方图中:①各小矩形的面积表示相应各组的频 率,各小矩形的高=
频率 组距
;②各小矩形面积之和等于 1.
(2)茎叶图:当数据是两位数时,用中间的数字表示十位数,两边 的数字表示个位数;当数据是三位数时,前两位相对比较集中时,常以 前两位为茎,第三位(个位)为叶(其余类推). 2.样本的数字特征 (1)众数:是指出现次数最多的数,体现在频率分布直方图中,是 指高度最高的小矩形的宽的中点的横坐标; (2)中位数是指从左往右小矩形的面积之和为 0.5 处的横坐标; (3)平均数������ =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档