试论过圆、椭圆、双曲线上一点的切线方程的统一性

合集下载

试论过圆、椭圆、双曲线上一点的切线方程的统一性

试论过圆、椭圆、双曲线上一点的切线方程的统一性

攀, 其 一 (1) 即’一 一呵 一 1, 将 ” 入、 ‘ ”得kin"kilo 代 一 即 p ”’ ‘ ’ “ ‘ 一
匕几叼 = 900.

(b2k2+ a2)x2一 b2k3娜
+b4 一,” , 一 则一bk 一 22+a2 望 △, 6 4(bk )( 24

事实上, 于平面上的任意椭圆与抛物线 由
x o 一m yo 一n

a2Y 一 Y = b2X X一 X , , oy a2y2 a O O b2x2( ) 0 : M 在 线 … x若 a2端二 双曲 上, 护 一 护护,
切线方程为

L2
_ .. , v
,_ _ 一
y 一 一 a2’ - n kx 一 y” 而二元 x01’
b2(x。 一m) (x 一 + a2(y。 ) (y 一 xo) 一n
_ 2
门 才 ,气 一 丫 于 产 二 J
, ,, 。
+1 一,, 普 8 0 即。 一 5
9

I L 、 工0
1 5 , 丈 9 一1 上求一点, 例3 在双曲线 x2一 一 使
一 5
、 1 2
r }') l 一 二~ ~ 、j
。 , 9
x 0, / 5一 T 、奋 it i
丫 少
1, 解之
用联系的 观点学习中学数学, 可使分散的 知识得到集中, 孤立的 知识得到统一, 这对于我 们构建知识网络, 有着重要意义.
证明: 由对称性知, 只要证明,
在 x 轴上 部分即可.
_ 互
轴上 部分即可.
x
了 x2,y a2一
b

31圆与椭圆抛物线双曲线相切的性质

31圆与椭圆抛物线双曲线相切的性质

· 32·
中学数学研究
2015 第 2 期
少? ( 数学通讯 2012 年 12 下半月第 31 页问题 221 ) 学生提出解法: 以点 A 为 圆心, 1 为半径的圆的方程为 2 + y2 = 1 , 则 ︴ PA ︴ 取 ( x - a) 最小值时圆与椭圆相切, 于是 2 2 ( x - a) + y = 1 , 有 x2 5 x2 y2 + = 1 9 4 - 18 ax + 9 a2 + 27 = 0 在 x ∈ 图1 [ - 3, 3 ]上有两相等实根. 由
举了应用判别式与韦达定理解题的常见错误文2中例举了一类圆锥曲线交点问题的常用解法以上文献中好的地方是举例全面不足之处是没有对为什么用判别式解题会出现错误的原因加以说本文就学生在平时训练过程中产生的问题做了分析找到了在某些特定条件下一定满足相关性质请大家斧正
2015 年第 2 期 = - xtanα, 分别与 QA 方程联立, 得 yA =
a2 为定值. 所以 P 点 c y0 的轨迹是焦点 F1 对应的准线. 又因为 k PF = , x0 + c 由 ③, ④ 化简可得 x0 = x0 = y0 b2 x a2 , 所以 k PF ·k AB = · ( - 2 0 )= c x0 + c a y0 a2 ) c
= - 1, 即 PF1 ⊥ AB. a2 a[ ( - )+ c] c 双曲线、 抛物线的证明类似, 从略. 圆锥曲线的经典性质及结论近年来受到更多的 重视, 散见于各地的高考及模拟试题中, 教师要加强 研究, 以便更好的指导教学.
a y0 c y c2 c2 x - 20, 令 y = 0 得 x = 2 x0 , 令 m = 2 x0 , 易知 2 b x0 b a a

专题 切线与切点弦问题-高考数学大一轮复习

专题 切线与切点弦问题-高考数学大一轮复习

专题36 切线与切点弦问题【方法技巧与总结】1、点()00 M x y ,在圆222x y r +=上,过点M 作圆的切线方程为200x x y y r +=.2、点()00 M x y ,在圆222x y r +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y r +=.3、点()00 M x y ,在圆222x y r +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y r +=.4、点()00 M x y ,在圆222()()x a y b r -+-=上,过点M 作圆的切线方程为()()200()()x a x a y b y b r --+--=.5、点()00 M x y ,在圆222()()x a y b r -+-=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b r --+--=.6、点()00 M x y ,在圆222()()x a y b r -+-=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()()200()()x a x a y b y b r --+--=.7、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.8、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y ya b+=. 9、点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a +021y yb=. 10、点()00 M x y ,在双曲线2222x y a b -=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.11、点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为A B ,,则切点弦AB 的直线方程为00221x x y ya b-=. 12、点()00 M x y ,在双曲线22x a -221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y ya b-=. 13、点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.14、点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.15、点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.【题型归纳目录】 题型一:切线问题 题型二:切点弦过定点问题题型三:利用切点弦结论解决定值问题 题型四:利用切点弦结论解决最值问题 题型五:利用切点弦结论解决范围问题 【典例例题】 题型一:切线问题例1.已知平面直角坐标系中,点(4,0)到抛物线21:2(0)C y px p =>准线的距离等于5,椭圆22222:1(0)x y C a b a b+=>>,且过点. (1)求1C ,2C 的方程;(2)如图,过点(E m ,0)(2)m >作椭圆2C 的切线交1C 于A ,B 两点,在x 轴上取点G ,使得AGE BGE ∠=∠,试解决以下问题:①证明:点G 与点E 关于原点中心对称;②若已知ABG ∆的面积是椭圆2C 四个顶点所围成菱形面积的16倍,求切线AB 的方程.【解析】(1)解:因为点(4,0)到抛物线1C 的准线2px =-的距离等于5, 所以452p +=,解得2p =,所以抛物线1C 的方程为24y x =; 因为椭圆2C,且过点,所以222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=;(2)①证明:因为2m >,且直线AB 与椭圆2C 相切, 所以直线AB 的斜率存在,设直线AB 的方程为()y k x m =-, 联立22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(41)8440k x k mx k m +-+-=, 因为直线AB 与椭圆2C 相切,所以△42222644(41)(44)0k m k k m =-+-=,即2214k m =-,联立2()4y k x m y x=-⎧⎨=⎩,得2440ky y km --=,设1(A x ,1)y ,2(B x ,2)y ,则12124,4y y y y m k+==-;设(,0)G t ,因为AGE BGE ∠=∠,所以0AG BG k k +=, 则12120y yx t x t+=--,即211212()0x y x y t y y +-+=, 即121212()()04y y y y t y y +-+=,又120y y +≠,所以124y y t m ==-,即(,0)G m -, 即点G 与点E 关于原点中心对称;②解:椭圆2C 四个顶点所围成菱形面积为122242S a b ab =⨯⨯==,所以ABG ∆的面积为16464⨯=,则1211||||222ABG S GE y y ∆=-=⨯==,令64,即22(4)256m m m -+=, 即42342560m m m -+-=,即42(256)(4)0m m m -+-=, 即22(4)[(16)(4)]0m m m m -+++=, 即32(4)(51664)0m m m m -+++=,因为2m >,所以4m =,2211412k m ==-,k =所以直线AB 的方程为4)y x =-. 例2.某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性质:椭圆2222:1(0)x y C a b a b +=>>在任意一点0(M x ,0)y 处的切线方程为00221xx yy a b+=.现给定椭圆22:143x y C +=,过C 的右焦点F 的直线l 交椭圆C 于P ,Q 两点,过P ,Q 分别作C 的两条切线,两切线相交于点G . (1)求点G 的轨迹方程;(2)若过点F 且与直线l 垂直的直线(斜率存在且不为零)交椭圆C 于M ,N 两点,证明:11||||PQ MN +为定值.【解析】(1)解:设直线PQ 为1x ty =+,1(P x ,1)y ,2(Q x ,2)y , 易得在P 点处切线为11143x x y y +=,在Q 点处切线为22143x x y y+=, 由11221,431,43x x y yx x y y ⎧+=⎪⎪⎨⎪+=⎪⎩得2112214()y y x x y x y -=-,又111x ty =+,221x ty =+,可得4x =,故点G 的轨迹方程4x =.(2)证明:联立l 的方程与C 的方程221,1,43x ty x y =+⎧⎪⎨+=⎪⎩消去x ,得22(34)690t y ty ++-=.由韦达定理,得122634t y y t +=-+,122934y y t =-+,所以2212(1)||34t PQ t +==+, 因为PQ MN ⊥,将t 用1t -代,得222112(1)12(1)||13434t t MN t t ++==+⋅+, 所以22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++. 例3.已知圆222:(0)O x y r r +=>.(1)求证:过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.类比前面的结论,写出过椭圆2222:1(0)x y C a b a b+=>>上一点0(N x ,0)y 的切线方程(不用证明). (2)已知椭圆22:143x y C +=,Q 为直线4x =上任一点,过点Q 作椭圆C 的切线,切点分别为A 、B ,求证:直线AB 恒过定点.【解析】(1)证明:因为圆222:O x y r +=, 故圆心(0,0)O ,半径为r , 又0(M x ,0)y , 所以0OM y k x =, 因为0(M x ,0)y 在圆上, 所以过M 的圆的切线斜率0x k y =-,所以过M 的圆的切线方程为0000()x y y x x y -=--,① 又因为22200x y r +=,② 由①②整理得,为200x x y y r +=.所以过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.过椭圆2222:1(0)x y C a b a b +=>>上一点0(N x ,0)y 的切线方程为00221x x y ya b+=;(2)设(4,)Q t ,()t R ∈,1(A x ,1)y ,2(B x ,2)y , 由(1),则直线QA 的方程11143x x y y +=, 因为Q 在QA 上,所以1113ty x +=,① 同理可得2213ty x +=,② 由①②可得直线AB 的方程为13tx y +=,令0y =,得1x =, 所以直线AB 恒过点(1,0).变式1.已知点(1,0)A -,(1,0)B ,动点P 满足||||4PA PB +=,P 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)已知圆222x y R +=上任意一点0(P x ,0)y 处的切线方程为:200x x y y R +=,类比可知椭圆:22221x y a b+=上任意一点0(P x ,0)y 处的切线方程为:00221x x y ya b+=.记1l 为曲线C 在任意一点P 处的切线,过点B 作BP 的垂线2l ,设1l 与2l 交于Q ,试问动点Q 是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.【解析】解:(Ⅰ)由椭圆的定义知P 点的轨迹为以A ,B 为焦点,长轴长为4的椭圆,设椭圆方程为2222:1x y a b +=,则241a c =⎧⎨=⎩,∴2a b =⎧⎪⎨=⎪⎩曲线C 的方程为22143x y +=.(Ⅱ)设0(P x ,0)y ,由题知直线1l 的方程为00:143x x y y+=, 当01x ≠时,001PB y k x =-,2l ∴的斜率为0201x k y -=,0201:(1)x l y x y -=-,1l 与2l 的方程联立00001(1)143x y x y x x y y -⎧=-⎪⎪⎨⎪+=⎪⎩,消y 得000034(1)(1)120(4)4(4)x x x x x x x +---=⇒-=-, 4x ∴=.动点Q 在定直线4x =上, 当01x =时,032y =±,1:142x yl ±=, 2:0l y =,(4,0)Q ,Q 在直线4x =.综上所述,动点Q 在定直线4x =上.变式2.下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为 .理由如下: .(2)椭圆22221(0)x y a b a b+=>>上一点0(x ,0)y 处的切线方程为 ;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB的方程是 .这是因为在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x xy y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=, 化简得△0=得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为 . (5)抛物线22(0)y px p =>上一点0(x ,0)y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设1(A x ,1)y ,2(B x ,2)y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上. 【解析】解:(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. 理由如下:①若切线的斜率存在,设切线的斜率为k ,则001OM OM k k y k x⋅=-⎧⎪⎨=⎪⎩,所以0x k y =-, 又过点0(M x ,0)y , 由点斜式可得,0000()x y y x x y -=--, 化简可得,220000y y x x x y +=+, 又22200x y r +=,所以切线的方程为200y y x x r +=; ②若切线的斜率不存在,则(,0)M r ±, 此时切线方程为x r =±.综上所述,圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. (3)在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x xy y +=, 因为两切线都过P 点(,)m n , 所以得到了1113x m y n +=和2213x my n +=, 由这两个“同构方程”得到了直线AB 的方程为13mxny +=; (4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-, 由22()33y n k x m x y -=-⎧⎨+=⎩,可得222(13)6()3()30k x k n km x n km ++-+--=, 由△0=,可得222(3)210(*)m k mnk n -++-=, 因为PA PB ⊥, 则1PA PB k k ⋅=-,所以(*)式中关于k 的二次方程有两个解且其乘积为1-,则2122113n k k m-⋅==--, 可得224m n +=,所以圆的半径为2,且过原点,其方程为224x y +=. 故答案为:(1)200y y x x r +=,理由见解析; (3)13mxny +=; (4)224x y +=.题型二:切点弦过定点问题例4.定义:若点0(P x ,0)y 在椭圆22221(0)x y a b a b +=>>上,则以P 为切点的切线方程为:00221x x y ya b+=.已知椭圆22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11(,)23-B .11(,)23-C .12(,)23-D .12(,)23-【解析】解:因为M 在直线260x y --=上,则可设点M 的坐标为(26,)t t +,t R ∈, 设1(A x ,1)y ,2(B x ,2)y ,所以直线MA ,MB 的方程分别为: 11221,13232x x y y x x y y +=+=,显然点M 的坐标适合两个方程, 代入可得:1122(26)132(26)132x t y tx t y t +⎧+=⎪⎪⎨+⎪+=⎪⎩,则直线AB 的方程为:(26)132x t yt++=,即2(26)360t x yt ++-=, 即(43)612x y t x +=-,令4306120x y x +=⎧⎨-=⎩,解得12,23x y ==-,所以直线AB 过定点12(,)23-,故选:C .例5.已知经过圆2221:C x y r +=上点0(x ,0)y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点0(x ,0)y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,①求证:直线AB 过定点. ②当点P 到直线AB时,求三角形PAB 的外接圆方程. 【解析】解:(1)切线方程为:00221x x y ya b+=. (2)设切点为1(A x ,2)y ,2(B x ,2)y ,点(3,)P t ,由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⨯⎧+⨯=⎪⎪⎨⨯⎪+⨯=⎪⎩,A ∴,B 满足方程:12x ty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩即直线AB 恒过点(2,0).又已知点(3,)P t 到直线AB.∴22|354t t t-=+ 425410t t ⇒--=,22(51)(1)0t t +-=,1t ∴=±.当1t =时,点(3,1)P ,直线AB 的方程为:220x y +-=. 2222066x y x y +-=⎧⎨+=⎩求得交点121(0,1),(,),(3,1)55A B P -. 设PAB ∆的外接圆方程为:220x y Dx Ey F ++++=,代入得131012529E F D E F D E F +=-⎧⎪++=-⎨⎪-+=-⎩,解得:PAB ∆的外接圆方程为223210x y x y +--+= 即PAB ∆的外接圆方程为:2239()(1)24x y -+-=.例6.已知抛物线2:2C x py =的焦点为F ,抛物线上一点(A m ,2)(0)m >到F 的距离为3. (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点. 【解析】(1)解:由题意知232p +=,得2p =,所以抛物线C 的方程为24x y =. 将点(A m ,2)(0)m >代入24xy =,得m =,所以点A 的坐标为.(2)证明:设221212(,),(,)44x x D x E x ,由题意知.直线l 的斜率存在,设直线l 的方程为y kx n =+, 联立方程24y kx nx y=+⎧⎨=⎩,得2440x kx n --=,所以△216160k n =+>,124x x k +=,124x x n =-,24x y =,即24x y =, 则2xy '=,所以抛物线C 在点D 处的切线1l 的方程为2111()24x x y x x =-+,化简得21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩. 又因为直线1l 与2l 的交点恰好在直线2y =-上,所以1224x x =-,即128x x =-. 所以1248x x n =-=-.解得2n =.故直线l 的方程为2y kx =+,所以直线l 恒过定点(0,2).题型三:利用切点弦结论解决定值问题例7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点(1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n+为定值 【解析】解:(1)由题意得:1c =,所以221a b =+,又因为点P 在椭圆C 上,所以223314a b+=, 可解得24a =,23b =,所以椭圆标准方程为22143x y +=.(2)证明:由题意:2213:144x y C +=,设点1(Q x ,1)y ,2(M x ,2)y ,3(N x ,3)y ,因为M ,N 不在坐标轴上,所以1QM OMk k =-,直线QM 的方程为2222()x y y x x y -=-, 化简得:2243x x y y +=,① 同理可得直线QN 的方程为3343x x y y +=,② 把Q 点的坐标代入①、②得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线MN 的方程为1143x x y y +=---------------③, 令0y =,得143m x =,令0x =得143n y =,所以143x m=,143y n =,又点Q 在椭圆1C 上,所以2244()3()433m n+=, 即22113m n+为定值. 例8.已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点P 在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)若过点2F 的直线l 与椭圆C 交于A ,B两点,且||AB =l 的方程; (3)过椭圆C 上异于其顶点的任一点Q ,作圆22:1O x y +=的两条切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,那么2212m n +是否为定值?若是,求出此定值;若不是,请说明理由.【解析】解:(1)椭圆C 的右焦点2F 的坐标为(1,0),∴椭圆C 的左焦点1F 的坐标为(1,0)-,由椭圆的定义得12||||2PF PF a +=,2a ∴=a ∴=,22a =由题意可得1c =,即2221b a c =-=,即椭圆C 的方程为2212x y +=;(2)直线l 与椭圆C 的两个交点坐标为1(A x ,1)y ,2(B x ,2)y , ①当直线l 垂直x轴时,易得||AB = ②当直线l 不垂直x 轴时,设直线:(1)l y k x =-联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得,2222(12)4220k x k x k +-+-=,①则2122421k x x k +=+,21222221k x x k -=+,222222222121222224228(1)||(1)[()4](1)[()24]2121(21)k k k AB k x x x x k k k k -+∴=++-=+-⨯==+++,解得1k =±,∴直线方程l 的方程为10x y --=或10x y +-=(Ⅲ)设点0(Q x ,0)y ,3(M x ,3)y ,4(N x ,4)y ,连接OM ,ON , 0M MQ ⊥,ON NQ ⊥,M ,N 不在坐标轴上,303M y k x ∴=,404N y k x =-, ∴直线MQ 的方程为3333()y y y x x x -=-,即331xx yy +=,⋯① 同理直线NQ 的方程为441xx yy +=,⋯②, 将点Q 代入①②,得0303040411x x y y x x y y +=⎧⎨+=⎩,显然3(M x ,3)y ,4(N x ,4)y 满足方程001xx yy +=,∴直线MN 的方程为001xx yy +=,分别令0x =,0y =,得到01n x =,01m y =. 01y m ∴=,01x n=, 0(Q x ,0)y 满足2212x y +=;∴221112m n+=,即22122m n +=题型四:利用切点弦结论解决最值问题例9.已知抛物线22x py =上一点0(M x ,1)到其焦点F 的距离为2. (1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.【解析】解:(1)由||122pMF =+=,得2p =, 所以抛物线的方程为24x y =. (2)设1(P x ,1)y ,2(Q x ,2)y , 由12y x '=可得在P 处的切线方程为2111()42x x y x x -=-,整理可得112()x x y y =+,同理在Q 处的切线方程为222()x x y y =+,又因为两切线都过(,2)A t -,∴11222(2)2(2)tx y tx y =-⎧⎨=-⎩,即可得直线PQ 的方程为2(2)tx y =-,所以直线过点(0,2),即(0,2)N , 又1(2x B ,0),2(2xC ,0), ∴四边形ABNC 的面积122||||ABC NBC S S S BC x x ∆∆=+==-,联立122()4tx y y x y =+⎧⎨=⎩,可得2280x tx --=,122x x t ∴+=,128x x =-所以12||3242S x x =-.(当0t =时取等号),∴四边形ABNC 面积的最小值为例10.已知(,1)T m 为抛物线2:2(0)C x py p =>上一点,F 是抛物线C 的焦点,且||2TF =. (1)求抛物线C 的方程;(2)过圆22:(2)1E x y ++=上任意一点G ,作抛物线C 的两条切线1l ,2l ,与抛物线相切于点M ,N ,与x 轴分别交于点A ,B ,求四边形ABNM 面积的最大值.【解析】解:(1)||2TF =,由抛物线定义知,122p +=,2p ∴=,24x y ∴=. (2)设1(M x ,1)y ,2(N x ,2)y ,0(G x ,0)y ,0[3y ∈-,1]-, 切线11:2()AM x x y y =+,因此:11122A y x x x ==, 切线22:2()AN x x y y =+,因此:22222B y x x x ==, 另一方面,点0(G x ,0)y 在两切线上,从而满足:011020202()2()x x y y x x y y =+⎧⎨=+⎩,因此切点弦MN 的方程为:002()x x y y =+,直线MN 与抛物线24x y =进行方程联立:200240x x x y -+=, 从而1202x x x +=,1204x x y =,且||MN ==, ABMN GMN GAB S S S ∆∆=-212011||||2222x x y =⋅-33222220001200111[(4)||](4)242x y y x x x y =---=-2200000(4)(73)x y y y y =-+=---, 当0[3y ∈-,1]-1323=, 2200073773[()]924y y y ---=-++,∴93ABMN S ,当且仅当03y =-时,取到最大值.题型五:利用切点弦结论解决范围问题例11.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,C 上一点M 关于原点O 的对称点为N ,F 为C 的右焦点,若MF NF ⊥,设MNF α∠=,且3sin()44πα+=.(1)求椭圆C 的标准方程;(2)经过圆22:10O x y+=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,求AOB ∆面积的取值范围.【解析】解:(1)由26a =,即3a =,又22122cos 2sin )4c c e a c c πααα====++所以c =2221b a c =-=,则椭圆的方程为2219x y +=;(2)设1(A x ,1)y ,2(B x ,2)y , 则直线PA 的方程为1119x x y y +=,直线PB 的方程为2219x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上, 所以101019x x y y +=,202019x x y y +=,所以直线AB 的方程为0019x xy y +=, 由00221999x xy y x y ⎧+=⎪⎨⎪+=⎩消去y ,结合220010x y +=,和220010x y =-,可得22200(810)1881810y x x x y +-+-=, △242018(8)y y =+,120|||AB x x -=0=202018108y y +=+,又点O 到直线AB的距离为d ==,2020018119||922108y S AB d y +=⋅=⋅=+,又2010y,记[1t ,9],所以9[6t t +∈,10], 所以9[10S ∈,3]2.例12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点1(F 0),点Q 在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点. (ⅰ)求证:0OM ON +=; (ⅱ)求OAB ∆的面积的取值范围.【解析】解:(Ⅰ)由题意可得c =221314a b+=,222a b c =+,解得24a =,21b =, 所以椭圆的方程为:2214x y +=;(Ⅱ)()i 证明:设0(P x ,0)y ,①当直线PA ,PB 的斜率都存在时,设过P 与椭圆相切的直线方程为00()y k x x y =-+, 联立直线与椭圆的方程0022()440y k x x y x y =-+⎧⎨+-=⎩, 整理可得2220000(14)8()4()40k x k y kx x y kx ++-+--=,△2222000064()4(14)[4()4]k y kx k y kx =--+--,由题意可得△0=,整理可得222000(4)210x k x y k y -++-=, 设直线PA ,PB 的斜率分别为1k ,2k ,所以20122014y k k x -=-,又2205x y +=,所以220022001(5)4144x x x x ---==---, 所以PM PN ⊥,即MN 为圆O 的直径,所以0OM ON +=; ②当直线PA 或PB 的斜率不存在时,不妨设(2,1)P , 则直线PA 的方程为2x =,所以(2,1)M -,(2,1)N -,也满足0OM ON +=; ()ii 设点1(A x ,1)y ,2(B x ,2)y ,当直线PA 的斜率存在时,设直线PA 的方程为:111()y k x x y =-+,联立直线PA 与椭圆的方程11122()440y k x x y x y =-+⎧⎨+-=⎩,消y 可得2221111111(14)8()4()40k x k y k x x y k x ++-+--=,△22221111111164()4(14)[4()4]k y k x k y k x =--+--, 由题意△0=,整理可得222111111(4)210x k x y k y -++-=, 则11111122111444x y x y x k x y y -=-==--, 所以直线PA 的方程为:1111()4x y x x y y =--+, 化简可得22111144x x y y y x +=+, 即1114x xy y +=, 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-也满足1114x xy y +=,同理可得直线PB 的方程2214x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上,所以101020201414x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以可得直线AB 的方程为0014x x y y +=,而P 在圆225x y +=上,所以22005x y +=, 联立直线AB 与椭圆的方程为00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,整理可得22200(35)816160y x x x y +-+-=, 020853A B x x x y +=+,2020161653A B y x x y -=+, 所以O 到直线AB的距离d =,弦长0|||A B AB x x - 又点O 到直线AB的距离d ==,令t ,[1t ∈,4],则2144||424OAB t S d AB t t t∆=⋅==++,而4[4t t+∈,5],所以OAB ∆的面积的取值范围是4[5,1].例13.椭圆2222:1(0)x y C a b a b+=>>的两焦点分别为1F ,2F ,椭圆与y轴正半轴交于点Q ,122QF F S =.(1)求曲线C 的方程;(2)过椭圆C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC 、PD ,切点分别为C 、D ,直线CD 与椭圆C 交于E 、G 两点,O 为坐标原点,求OEG ∆的面积S 的取值范围.【解析】解:(1)椭圆与y轴正半轴交于点Q ,122QF F S=.可得121222QF F b Sc b bc ==⨯⨯==,∴2c a ==, ∴椭圆方程为22142x y +=.(2)设0(P x ,0)y ,线段OP 的中点为00(,)22x y ,22222000001,2(1)24242x y x x y +==-=-,2004x <, 以OP以OP 为直径的圆的方程为22220000()()224x y x y x y +-+-=,即00()()0x x x y y y -+-=,又圆22:1O x y +=, 两式相减00:1CD x x y y +=,由0022124x x y y x y +=⎧⎨+=⎩,消去y 并化简得22220000(2)4240x y x x x y +-+-=, ∴22222220000000164(2)(24)8(412)x x y y y x y =-+-=-+22222000008[41(4)]24(1)y x x y x =-+-=+,0000||EG ==O EG d -=∴200000001||2222S EG d x =⋅====+-=由于2004x <,所以20115x +<,2011x +<对于函数211()3(15),()30h t t t h t tt '=+<=->,()h t在上递增.(1)4,h h ===所以20431x +<1114<,62<,∴62S <.S ∈. 变式3.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,动点P 到焦点1F的距离的最大值为2+(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||ABCD的取值范围.【解析】解:(1)动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,b c ∴=, 动点P 到焦点1F 的距离的最大值为2+∴2a c +=+可得2a =,b c =所以椭圆1C 的方程为:22142x y +=;(2)圆2C 的方程为224x y +=,设直线x =-T 的坐标为)t ,设1(A x ,1)y ,2(B x ,2)y ,则直线AT 的方程为114x x y y +=,直线BT 的方程为224x x y y +=,又)T t 在直线AT 和BT上,即112244ty ty ⎧-+=⎪⎨-+=⎪⎩,故直线AB 的方程为4ty -+=.由原点O 到直线AB的距离d =得||AB =联立224142ty x y ⎧-+=⎪⎨+=⎪⎩,消去x 得22(16)8160t y yt +--=,设3(C x ,3)y ,4(D x,4)y ,则343422816,1616t y y y y t t -+==++,从而222(8)16t CD t +==+记28(8)t m m +=,则||AB CD =11(0)8y y m =<,则||AB CD =11(0)8y y m =<,所以||AB CD3()112256f y y y =+-, 所以由2()127680f y y y '=-=得18y =, 所以3()112256f y y y =+-在1(0,]8上单调递增,()(1f y ∴∈,2]即||ABCD∈. 变式4.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2+(Ⅰ)求椭圆1C 的方程;(Ⅱ)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.【解析】解:()I 由使得1290F PF ∠=︒的点P 恰有两个可得,b c a ==;动点P 到焦点1F 的距离的最大值为2+2a c +=2,a c ==所以椭圆1C 的方程是22142x y +=⋯(4分)()II 圆2C 的方程为224x y +=,设直线x =-T 的坐标为()t -设1(A x ,1)y ,2(B x ,2)y ,则直线AT的方程为114x x y y+=,直线BT的方程为224x x y y+=,又()t-在直线AT和BT上,即112244tyty⎧-+=⎪⎨-+=⎪⎩,故直线AB的方程为4ty-+=⋯(6分)联立224142tyx y⎧-+=⎪⎨+=⎪⎩,消去x得22(16)8160t y yt+--=,设3(C x,3)y,4(D x,4)y.则343422816,1616ty y y yt t-+==++,⋯(8分)从而21224(8)|||(16)tCD y yt+=-=⋯+(10分)232416t-=++,又21616t +,从而2322016t--<+,所以||[2CD∈,4)⋯(12分)变式5.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12,且直线1:1x yla b+=被椭圆1C截得的弦长为.()I求椭圆1C的方程;()II以椭圆1C的长轴为直径作圆2C,过直线2:4l y=上的动点M作圆2C的两条切线,设切点为A,B,若直线AB与椭圆1C 交于不同的两点C,D,求||||CD AB的取值范围.【解析】解:()I线1:1x yla b+=,经过点(,0)a,(0,)b,被椭圆1C227a b+=.又12ca=,222a b c=+,解得:24a=,23b=,1c=.∴椭圆1C的方程为22143x y+=.()II由()I可得:圆2C的方程为:224x y+=.设(2,4)M t,则以OM为直径的圆的方程为:222()(2)4x t y t-+-=+.与224x y+=联立可得:直线AB的方程为:2440tx y+-=,设1(C x,1)y,2(D x,2)y,联立222440143tx yx y+-=⎧⎪⎨+=⎪⎩,化为:22(3)480t x tx+--=,则12243tx xt+=+,12283x xt-=+,2236||43tCDt+==+.又圆心O到直线AB的距离d==||AB∴===,22222364||||243t tAB CD tt t+∴=+⨯=+令233t m+=,则||||8AB CD=3m,可得3233m-<,可得:2||||83AB CD<变式6.如图,已知点P在半圆22:(2)4(2)Q x y y++=-上一点,过点P作抛物线2:2(0)C x py p=>的两条切线,切点分别为A,B,直线AP,BP,AB分别与x轴交于点M,N,T,记TNB∆的面积为1S,TMA∆的面积为2S.(Ⅰ)若抛物线C的焦点坐标为(0,2),求p的值和抛物线C的准线方程;(Ⅱ)若存在点P,使得128SS=,求p的取值范围.【解析】解:(Ⅰ)22p=,4p=.准线方程为直线2y=-.(Ⅱ)设1(A x,1)y,2(B x,2)y,过点A的切线方程11:()Al x x p y y=+,于是1(,0)2xM;过点B的切线方程22:()Bl x x p y y=+,于是2(,0)2xN;点(P x,)y在两条切线上,所以10012002()()x x p y yx x p y y=+⎧⎨=+⎩,可得点P坐标为1212(,)22x x x xPp+.1212:()22ABx x x xl x p yp+=+,于是12112112121212()(,0).||||||22()x x x x x x x xT TMx x x x x x-=-=+++,2222121212()||||||22()x x x x x x TN x x x x -=-=++, 而23122111||||2||81||||2TN y S x S x TM y ⋅===⋅,所以212x x =-. 于是点211(,)2x x P p --,点P 的轨迹方程为24px y =-,问题转化为抛物线24p x y =-与半圆22:(2)4(2)Q x y y ++=-有交点. 记24()f x x p =-,则4(2)42f p=-⨯-,又因为0p >, 解得:08p <.所以p 的取值范围为(0,8].变式7.如图,设抛物线2:4C y x =的焦点为F ,点P 是半椭圆221(0)4y x x +=<上的一点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,且直线PA 、PB 分别交y 轴于点M 、N . (Ⅰ)证明:FM PA ⊥; (Ⅱ)求||||FM FN ⋅的取值范围.【解析】解:(Ⅰ)设点P 的坐标为0(x ,0)y ,直线PA 方程为00()(0)x m y y x m =-+≠.令0x =,可知点M 的坐标为00(0,)x y m-. 由,消去x 得2004440y my my mx -+-=. 因为直线与抛物线只有一个交点, 故△0=,即2000m y m x -+=. 因为点F 的坐标为(1,0), 故00(1,)x FM y m =--,00(,)xPM x m=--.则20002()0x FM PM m y m x m⋅=-+=. 因此FM PM ⊥,亦即FM PA ⊥.(Ⅱ)设直线PB 的方程为00()(0)x n y y x n =-+≠. 由(1)可知,n 满足方程2000n y n x -+=.故m ,n 是关于t 的方程2000t y t x -+=的两个不同的实根. 所以.由(1)可知:FM PA ⊥,同理可得FN PB ⊥. 故||FM ||FN =.则||||FM FN ⋅= 因为22001(0)4y x x +=<.因此,||||FM FN ⋅的取值范围是.。

高考之【圆锥曲线篇】-秒杀技巧切线方程

高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切线有且只有两条,过两切点的弦所在直线方程为。

那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。

联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为:证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。

(2)设过椭圆外一点引两条切线,切点分别为、。

由(1)可知过、两点的切线方程分别为:、。

又因是两条切线的交点,所以有、。

观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。

评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。

联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,过两切点的弦所在直线方程为:。

(证明同上)联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当在圆锥曲线(A,C不全为零)的外部时,过引切线有两条,过两切点的弦所在直线方程为:证明:(1)两边对求导,得得,由点斜式得切线方程为化简得………………….①因为…………………………………………………②由①-②×2可求得切线方程为:(2)同联想一(2)可证。

结论亦成立。

根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。

若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。

当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为:通过以上联想可得出以下几个推论:推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:推论2:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

推论3:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

二次曲线的切线方程及应用

二次曲线的切线方程及应用

二次曲线的切线方程及应用[摘要] 本文主要利用隐函数求导的方法推导常见二次曲线(圆、椭圆、双曲线、抛物线)上某点处的切线方程,并得出一般二次曲线的切线方程及切点弦方程,再将相应结论进行应用。

[关键词] 二次曲线切线方程切点弦方程有关二次曲线的切线方程及其应用问题,近年来在各类考试中出现的频率颇高,为更好地解决此专题的问题,笔者将常见二次曲线的切线方程及切点弦方程的有关结论及推导过程整理一遍,并简述其应用,以供广大教师及学生参考.1几个常见结论及推导1.在圆上一点处的切线方程为:.(注:为与求其它二次曲线的切线方程所用方法一致,这里利用涉及隐函数求导的方法来推导.)将圆的方程中的y视为关于x的函数(即y是x的隐函数),那么就可以在上式两边分别对x求导数.隐函数求导法则,实际与复合函数求导法则一致,将y看作中间变量,外函数是,内函数为,故.于是有:在两边分别对x求导,得,若,则有.由导数的几何意义知,曲线上某点处切线的斜率是该点的导数值.故对于圆上点,若,则有,此即为在点M处切线的斜率,故所求切线方程为.又,① 为所求.若,由图象可知,此时所求切线方程为:或.又,故所求切线方程为:或.也满足①式.故在圆上一点处的切线方程可统一写为:.2.在椭圆上一点处的切线方程为:.推导过程如下:在两边分别对x求导得:,对于点,若,则有,此即为在点M处切线的斜率.故所求切线方程为,又,故②为所求.若,此时所求切线方程为:或,也满足②式.故在椭圆上一点处的切线方程为:.3.在双曲线上一点处的切线方程为:③.注:推导过程与结论1和结论2的推导过程类似,可让学生动手推导,体会其中的思想.4.在抛物线上一点处的切线方程为:.在两边对x求导,得.对于点,若,则有,此即为在点M处的切线的斜率.故所求切线方程为,即,又在抛物线上,故,因此所求切线方程为:④.若,此时所求切线方程为:也满足④式.故在抛物线上一点处的切线方程为:.结论4的切线方程形式与前3个结论有些不同,引导学生从抛物线的方程的形式观察,得到结论:抛物线的切线方程实际上可写为,进而得到一般性的结论5.将以上四个结论推广,可得到以下结论:5.设是二次曲线上一点,则此曲线在点M处的切线方程为:⑤.注:二次曲线的方程中不含项.此结论推导过程可仿照上述结论的推导过程来完成,这里不再赘述.从结论5出发,进一步思考,若点在二次曲线外,则过点M可作曲线的两条切线,设切点分别为,那么由切点在曲线上及结论5可知,曲线在点A处的切线方程为,曲线在点B处的切线方程为,因点在切线上,故⑥,同理,⑦,综合⑥⑦得,点,的坐标都满足方程.因为经过点的直线是唯一的,故过点A,B的直线方程为:.由此,我们可以得到另一个结论:6.设是二次曲线外一点,则过点M可作曲线的两条切线,设切点分别为,则直线AB的方程(即切点弦方程)为:.由结论6,将曲线方程特殊化为高中常见的二次曲线方程,即可得到关于圆、椭圆、双曲线和抛物线的切点弦方程的相应结论.2应用有关切线方程及切点弦方程的考题,近几年均是热点,比如广州市2013届普通高中毕业班综合测试(一)数学(理科)(简称“广州市一模”)第20题,2013年普通高等学校招生全国统一考试(广东卷)数学(文科/理科)第20题,2014年清华等七校自主招生考试(简称“华约卷”)第5题等.2013年广东高考的解析几何题虽和当年广州市一模的解析几何题有较大相似度,但考试结果仍不理想,文[1]指出,2013年的解析几何题“不仅加大了计算量,而且对计算的技巧性的要求大大增强,与压轴题的难度接近(第20题得分2.85分,第21题得分2.13).”因此,有必要对切线方程及切点弦方程这一专题内容做一个梳理.现将2013年普通高等学校招生全国统一考试(广东卷)数学第20题展示如下:已知抛物线的顶点为原点,其焦点到直线 :的距离为 .设为直线上的点,过点作抛物线的两条切线 ,其中为切点.(Ⅰ) 求抛物线的方程;(Ⅱ) 当点为直线上的定点时,求直线的方程;(Ⅲ) 当点在直线上移动时,求的最小值.略解:(Ⅰ)易得所求抛物线方程是:.(Ⅱ)利用第1部分的结论6,即得所求直线的方程(即切点弦方程)为:,即.(注:高考需将结论6的过程在答卷上推演一遍,因其不是高中课本内的结论.第(Ⅲ)小题解答略.)从此题的解答看,熟知第1部分的几个结论虽可立即得正解,但在高考题的作答中仍要将推导过程再演算一遍,似乎不太便捷,这是因为此题直接考查结论(求切点弦方程),若考查的是利用切点弦方程再求其它问题,那熟知结论的优越性立刻体现.请看2014年华约卷第5题:过椭圆上一点作圆的两条切线,切点为,设直线与轴、轴分别交于点,求的面积的最小值.解析:法一:设,由结论6知,直线的方程为:,,,故的面积.又点在椭圆上,故.由基本不等式得:,即(当且仅当时,等号成立),.,即的面积的最小值为.法二:(利用椭圆的参数方程求解)因点在椭圆上,故可设,由结论6知,直线的方程为:,故,的面积(当且仅当,即或时,等号成立),故的面积最小值为.解法一与解法二虽具体利用的知识不同,但其求解思路是一致的,关键的一步在于写出直线PQ的方程,而在自主招生或竞赛类考试中,直接写出二次曲线的切线方程或切点弦方程是允许的.因此,教师可将有关二次曲线的切线方程及切点弦方程问题形成一个小专题,根据学生水平及实际需要,适当讲解以上结论作为拓展,为学生获得更佳成绩打好基础.3小结由于高中阶段没有涉及到隐函数求导的内容,因此高考题在考纲范围内只能考查形如的抛物线的切点弦方程,对于一般水平的学生,教师只需讲透高中常见的解法即可.而第1部分的结论是常见二次曲线的有关切线方程和切点弦方程的结论,结论5、结论6将常见二次曲线的切线方程、切点弦方程统一起来,得到一般二次曲线的切线方程、切点弦方程.实践表明,对于能力较强的学生,是可以理解第1部分的几个结论的推导,并且利用这些结论对于他们应对自主招生或竞赛类考试有一定的帮助.参考文献[1] 彭建开.于平凡处见“真功夫”——2013年高考广东理科试题第20题解析[J].广东教育(高中版), 2013(7·8): 59-60.。

高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论)清华附中高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质1.5年真题考点分布5年考情考题示例考点分析关联考点2024年新I卷,第12题,5分求双曲线的离心率无2024年新Ⅱ卷,第19题,17分求直线与双曲线的交点坐标由递推关系证明等比数列向量夹角的坐标表示2023年新I卷,第16题,5分利用定义解决双曲线中集点三角形问题求双曲线的离心率或离心率的取值范围无2023年新Ⅱ卷,第21题,12分根据a、b、c求双曲线的标准方程直线的点斜式方程及辨析双曲线中的定直线问题2022年新I卷,第21题,12分求双曲线标准方程求双曲线中三角形(四边形)的面积问题根据韦达定理求参数2022年新Ⅱ卷,第21题,12分根据双曲线的渐近线求标准方程求双曲线中的弦长由中点弦坐标或中点弦方程、斜率求参数根据韦达定理求参数2021年新I卷,第21题,12分求双曲线的标准方程双曲线中的轨迹方程双曲线中的定值问题2021年新Ⅱ卷,第13题,5分根据a,b,c齐次式关系求渐近线方程由双曲线的离心率求参数的取值范围2020年新I卷,第9题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2020年新Ⅱ卷,第10题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度中等或偏难,分值为5-17分【备考策略】1.熟练掌握双曲线的定义及其标准方程,会基本量的求解2.熟练掌握双曲线的几何性质,并会相关计算3.能熟练计算双曲线的离心率4.会求双曲线的标准方程,会双曲线方程简单的实际应用5.会求双曲线中的相关最值【命题预测】本节内容是新高考卷的常考内容,常常考查标准方程的求解、基本量的计算及离心率的求解,需重点强化训练知识讲解1.双曲线的定义平面上一动点M x ,y 到两定点F 1-c ,0 ,F 2c ,0 的距离的差的绝对值为定值2a 且小于F 1F 2 =2c 的点的轨迹叫做双曲线这两个定点F 1,F 2叫做双曲线的焦点,两焦点的距离F 1F 2 叫做双曲线的焦距2.数学表达式:MF 1 -MF 2 =2a <F 1F 2 =2c3.双曲线的标准方程焦点在x 轴上的标准方程焦点在y 轴上的标准方程标准方程为:x 2a 2-y 2b2=1(a >0,b >0)标准方程为:y 2a 2-x 2b2=1(a >0,b >0)4.双曲线中a ,b ,c 的基本关系(c 2=a 2+b 2)5.双曲线的几何性质焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b2=1(a >0,b >0)y 2a 2-x 2b2=1(a >0,b >0)范围x ≤-a 或x ≥ay ∈R y ≤-a 或y ≥ax ∈R 顶点坐标A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)实轴A 1A 2 =2a 实轴长,A 1O =A 2O =a 实半轴长虚轴B 1B 2 =2b 虚轴长,B 1O =B 2O =b 虚半轴长焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2 =2c 焦距,F 1O =F 2O =c 半焦距对称性对称轴为坐标轴,对称中心为(0,0)渐近线方程y =±baxy =±a bx离心率e =ca(e >1)e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=1+b a 2⇒e =1+b a2离心率对双曲线的影响e 越大,双曲线开口越阔e 越小,双曲线开口越窄6.离心率与渐近线夹角的关系e =1cos α7.通径:(同椭圆)通径长:MN =EF =2b 2a,半通径长:MF 1 =NF 1 =EF 2 =FF 2 =b 2a8.双曲线的焦点到渐近线的距离为b考点一、双曲线的定义及其应用1.(2024·河北邢台·二模)若点P 是双曲线C :x 216-y 29=1上一点,F 1,F 2分别为C 的左、右焦点,则“PF 1 =8”是“PF 2 =16”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件2.(2023·全国·模拟预测)已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线交双曲线左支于A 、B 两点,且AB =5,若双曲线的实轴长为8,那么△ABF 2的周长是()A.5B.16C.21D.263.(2024高三·全国·专题练习)若动点P x ,y 满足方程x +2 2+y 2-x -2 2+y 2 =3,则动点P 的轨迹方程为()A.x 294-y 274=1 B.x 294+y 274=1C.x 28+y 24=1D.x 216-y 212=11.(2024·陕西榆林·模拟预测)设F 1,F 2是双曲线C :x 24-y 28=1的左,右焦点,过F 1的直线与y 轴和C 的右支分别交于点P ,Q ,若△PQF 2是正三角形,则|PF 1|=()A.2B.4C.8D.162.(23-24高三下·山东青岛·阶段练习)双曲线x 2a2-y 212=1(a >0)的两个焦点分别是F 1与F 2,焦距为8;M 是双曲线上的一点,且MF 1 =5,则MF 2 =.3.(23-24高二上·四川凉山·期末)已知点M 2,0 ,N -2,0 ,动点P 满足条件PM -PN =2,则动点P 的轨迹方程为()A.x 23-y 2=1x ≥3B.x 23-y 2=1x ≤-3C.x 2-y 23=1x ≥1 D.x 2-y 23=1x ≤-1 考点二、双曲线的标准方程1.(2024高三下·全国·专题练习)双曲线方程为x 2k -2+y 25-k =1,则k 的取值范围是()A.k >5B.2<k <5C.-2<k <2D.-2<k <2或k >52.(2023高三上·湖北孝感·专题练习)过点2,2 且与椭圆9x 2+3y 2=27有相同焦点的双曲线方程为()A.x 26-y 28=1B.y 26-x 28=1C.x 22-y 24=1D.y 22-x 24=13.(22-23高二下·甘肃武威·开学考试)求适合下列条件的双曲线的标准方程:(1)a =4,经过点A 1,4103;(2)焦点y 轴上,且过点3,-42 ,94,5.4.(23-24高三上·河北张家口·开学考试)“k >2”是“x 2k +1-y 2k -2=1表示双曲线”的( ).A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2024·辽宁·二模)已知双曲线C :x 2-y 2=λ(λ≠0)的焦点为(0,±2),则C 的方程为()A.x 2-y 2=1B.y 2-x 2=1C.x 2-y 2=2D.y 2-x 2=26.(2022高三·全国·专题练习)已知某双曲线的对称轴为坐标轴,且经过点P3,27,Q-62,7,求该双曲线的标准方程.考点三、双曲线的几何性质1.(2024·福建福州·模拟预测)以y=±3x为渐近线的双曲线可以是()A.x23-y2=1 B.x2-y29=1 C.y23-x2=1 D.y2-x29=12.(2024·广西柳州·模拟预测)双曲线x24-y216=1的一个顶点到渐近线的距离为( ).A.5B.4C.455D.233.(2024·河南新乡·三模)双曲线E:x2a2+a+2-y22a+3=1的实轴长为4,则a=.4.(2024·湖南益阳·模拟预测)已知双曲线x2m -y2n=1(m>0,n>0)与椭圆x24+y23=1有相同的焦点,则4m+1n的最小值为()A.6B.7C.8D.95.(2022·福建三明·模拟预测)已知双曲线C1:x2+y2m=1m≠0与C2:x2-y2=2共焦点,则C1的渐近线方程为( ).A.x±y=0B.2x±y=0C.x±3y=0D.3x±y=06.(2024·贵州·模拟预测)我们把离心率为5+12的双曲线称为“黄金双曲线”.已知“黄金双曲线”C:x2 25-2-y2b2=1(b>0),则C的虚轴长为.1.(24-25高三上·江苏南通·开学考试)过点P2,3的等轴双曲线的方程为.2.(2024·安徽合肥·一模)双曲线C:x2-y2b2=1的焦距为4,则C的渐近线方程为()A.y=±15xB.y=±3xC.y=±1515x D.y=±33x3.(23-24高三上·河南漯河·期末)已知双曲线C:mx2-y2=1(m>0)的一条渐近线方程为mx+3y =0,则C的焦距为.4.(24-25高三上·山东泰安·开学考试)若双曲线x2a2-y2b2=1a>0,b>0的一个焦点F5,0,一条渐近线方程为y=34x,则a+b=.5.(2024·河南新乡·模拟预测)(多选)已知a>0,b>0,则双曲线C1:x2a2-y2b2=1与C2:x2a2-y2b2=4有相同的()A.焦点B.焦距C.离心率D.渐近线考点四、双曲线的离心率1.(2023·北京·高考真题)已知双曲线C的焦点为(-2,0)和(2,0),离心率为2,则C的方程为.2.(2024·上海·高考真题)三角形三边长为5,6,7,则以边长为6的两个顶点为焦点,过另外一个顶点的双曲线的离心率为.3.(2024·全国·高考真题)已知双曲线的两个焦点分别为0,4,0,-4,点-6,4在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.24.(2022·浙江·高考真题)已知双曲线x2a2-y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A x1,y1,交双曲线的渐近线于点B x2,y2且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是.5.(2022·全国·高考真题)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.52B.32C.132D.1726.(2024·广东江苏·高考真题)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.1.(2024·河南周口·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距与其虚轴长之比为3:2,则C 的离心率为()A.5B.455C.355D.522.(2024·四川成都·模拟预测)双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则其离心率为( ).A.233B.63C.103D.2633.(2024·湖北武汉·模拟预测)已知双曲线y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线的倾斜角为5π6,则此双曲线的离心率为()A.2B.3C.2D.54.(2024·山东·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2的直线与E 的右支交于A ,B 两点,且BF 2 =2AF 2 ,若AF 1 ⋅AB=0,则双曲线E 的离心率为()A.3B.173C.233D.1035.(2024·福建泉州·一模)O 为坐标原点,双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F 1,点P 在E 上,直线PF 1与直线bx +ay =0相交于点M ,若PM =MF 1 =2MO ,则E 的离心率为.考点五、双曲线中的最值问题1.(22-23高三上·湖北黄冈·阶段练习)P 为双曲线x 2-y 2=1左支上任意一点,EF 为圆C :(x -2)2+y 2=4的任意一条直径,则PE ⋅PF的最小值为()A.3B.4C.5D.92.(22-23高三下·江苏淮安·期中)已知F 1,F 2分别为双曲线x 29-y 24=1的左、右焦点,P 为双曲线右支上任一点,则PF 12-PF 2PF 2最小值为()A.19B.23C.25D.853.(22-23高二上·浙江湖州·期末)双曲线x 2m -y 2n =1(m >0,n >0)的离心率是2,左右焦点分别为F 1,F 2,P 为双曲线左支上一点,则PF 2 PF 1的最大值是()A.32B.2C.3D.41.(22-23高三下·福建泉州·阶段练习)双曲线C :x 2-y 2=1的左、右顶点分别为A ,B ,P 为C 上一点,直线P A ,PB 与x =12分别交于M ,N 两点,则MN 的最小值为.2.(2022高三·全国·专题练习)长为11的线段AB 的两端点都在双曲线x 29-y 216=1的右支上,则AB 中点M 的横坐标的最小值为()A.75B.5110C.3310D.323.(23-24高二下·江苏南京·期中)已知A ,B 分别是双曲线C :x 29-y 25=1的左、右顶点,P 是双曲线C上的一动点,直线P A ,直线PB 与x =2分别交于M ,N 两点,记△PMN ,△P AB 的外接圆面积分别为S 1,S 2,则S 1S 2的最小值为()A.316B.181 C.34D.2581考点六、双曲线的简单应用1.(23-24高三上·江西·期末)阿波罗尼斯(约公元前262年~约公元前190年),古希腊著名数学家﹐主要著作有《圆锥曲线论》、《论切触》等.尤其《圆锥曲线论》是一部经典巨著,代表了希腊几何的最高水平,此书集前人之大成,进一步提出了许多新的性质.其中也包括圆锥曲线的光学性质,光线从双曲线的一个焦点发出,通过双曲线的反射,反射光线的反向延长线经过其另一个焦点.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,其离心率e =5,从F 2发出的光线经过双曲线C 的右支上一点E 的反射,反射光线为EP ,若反射光线与入射光线垂直,则sin ∠F 2F 1E =()A.56B.55C.45D.2552.(22-23高二上·山东德州·期末)3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为()A.5748cm B.2878cm C.5744cm D.2874cm 3.(2023·浙江杭州·二模)费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P 为双曲线(F 1,F 2为焦点)上一点,点P 处的切线平分∠F 1PF 2.已知双曲线C :x 24-y 22=1,O 为坐标原点,l 是点P 3,102 处的切线,过左焦点F 1作l 的垂线,垂足为M ,则OM=.4.(2024·全国·模拟预测)在天文望远镜的设计中,人们利用了双曲线的光学性质:从双曲线的一个焦点射出的光线,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.如图,已知双曲线的离心率为2,则当入射光线F 2P 和反射光线PE 互相垂直时(其中P 为入射点),cos ∠F 1F 2P 的值为()A.5+14B.5-14C.7+14D.7-145.(2024·吉林延边·一模)祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.某同学在暑期社会实践中,了解到火电厂的冷却塔常用的外形可以看作是双曲线的一部分绕其虚轴旋转所形成的曲面(如图).现有某火电厂的冷却塔设计图纸,其外形的双曲线方程为x 2-y 24=1(-2≤y ≤1),内部虚线为该双曲线的渐近线,则该同学利用“祖暅原理”算得此冷却塔的体积为.6.(2023·广东茂名·三模)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:F 1,F 2是双曲线的左、右焦点,从F 2发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过F 1;当P 异于双曲线顶点时,双曲线在点P 处的切线平分∠F 1PF 2.若双曲线C 的方程为x 29-y 216=1,则下列结论正确的是()A.射线n 所在直线的斜率为k ,则k ∈-43,43B.当m ⊥n 时,PF 1 ⋅PF 2 =32C.当n过点Q7,5时,光线由F2到P再到Q所经过的路程为13D.若点T坐标为1,0,直线PT与C相切,则PF2=12一、单选题1.(23-24高三下·重庆·期中)已知双曲线y212-x2b2=1b>0的焦距为8,则该双曲线的渐近线方程为()A.y=±13x B.y=±3x C.y=±3x D.y=±33x2.(2024·湖南邵阳·模拟预测)若点-3,4在双曲线C:x2a2-y2b2=1a>0,b>0的一条渐近线上,则C的离心率为()A.259B.2516C.53D.543.(2024·全国·模拟预测)设双曲线x2a2-y2b2=1(a>0,b>0)的一个顶点坐标为(-2,0),焦距为23,则双曲线的渐近线方程为()A.y=±2xB.y=±2xC.y=±12x D.y=±22x4.(2024高三上·全国·专题练习)已知双曲线C的左、右焦点分别是F1,F2,P是双曲线C上的一点,且PF1=5,PF2=3,∠F1PF2=120°,则双曲线C的离心率是()A.7B.72C.73D.745.(2024·全国·模拟预测)若双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F c,0到其渐近线的距离为32c,则该双曲线的离心率为()A.12B.32C.2D.26.(2024·四川·模拟预测)已知F1,F2分别为双曲线C的左、右焦点,过F1的直线与双曲线C的左支交于A ,B 两点,若AF 1 =2F 1B ,AB =BF 2 ,则cos ∠F 1BF 2=()A.118B.19C.29D.237.(2024·全国·模拟预测)设椭圆x 2a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1的离心率分别为e 1,e 2,若e 1∈55,1 ,则e 2的取值范围是()A.1,255B.1,355C.255,+∞D.355,+∞二、填空题8.(2024·湖南岳阳·三模)已知双曲线C 过点(1,6),且渐近线方程为y =±2x ,则C 的离心率为.9.(2024高三·全国·专题练习)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C ,则C 的方程为.10.(2024高三·全国·专题练习)求适合下列条件的曲线的标准方程:(1)过点A (3,2)和点B (23,1)的椭圆;(2)焦点在x 轴上,离心率为2,且过点(-2,2)的双曲线.一、单选题1.(2024·江西·模拟预测)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线交双曲线左支于A ,B 两点,AB ⊥AF 2,tan ∠AF 2B =43,则双曲线C 的渐近线方程为()A.y =±32xB.y =±3xC.y =±32x D.y =±62x 2.(2024·山西太原·模拟预测)在平面直角坐标系中,已知点A 坐标为0,-6 ,若动点P 位于y 轴右侧,且到两定点F 1-3,0 ,F 23,0 的距离之差为定值4,则△APF 1周长的最小值为()A.3+45B.3+65C.4+45D.4+653.(2024·广东广州·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,一条渐近线的方程为y =2x ,直线y =kx 与C 在第一象限内的交点为P .若PF =PO ,则k 的值为()A.52B.32C.255D.4554.(2024·湖南长沙·二模)已知A 、B 分别为双曲线C :x 2-y 23=1的左、右顶点,过双曲线C 的左焦点F作直线PQ 交双曲线于P 、Q 两点(点P 、Q 异于A 、B ),则直线AP 、BQ 的斜率之比k AP :k BQ =()A.-13B.-23C.-3D.-325.(2024·河北·三模)已知O 是坐标原点,M 是双曲线x 2a 2-y 2b2=1a >0,b >0 右支上任意一点,过点M作双曲线的切线,与其渐近线交于A ,B 两点,若△AOB 的面积为12b 2,则双曲线的离心率为()A.2B.3C.5D.26.(2024·陕西商洛·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线与双曲线C 的左、右两支分别交于A ,B 两点.若AB =83AF 1 ,且cos ∠F 1BF 2=14,则双曲线C 的离心率为()A.2B.53C.43D.37.(2024·宁夏银川·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为(0,b ),若C 上存在点P使得PB <b 成立,则C 的离心率取值范围是()A.2+12,+∞ B.5+32,+∞ C.2,+∞D.5+12,+∞二、填空题8.(2024·浙江·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M 为双曲线渐近线上的点,且F 1M ⋅F 2M=0,若MF 1 =2MF 2 ,则该双曲线的离心率e =.9.(2024·辽宁·模拟预测)设O 为坐标原点,F 1,F 2为双曲线C :x 29-y 26=1的两个焦点,点P 在C 上,cos ∠F 1PF 2=45,则|OP |=10.(2024·广西来宾·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若双曲线的左支上一点P 满足sin ∠PF 1F 2sin ∠PF 2F 1=3,以F 2为圆心的圆与F 1P 的延长线相切于点M ,且F 1M =3F 1P ,则双曲线的离心率为.1.(2024·天津·高考真题)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=12.(2023·全国·高考真题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.4553.(2023·全国·高考真题)设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-44.(2023·天津·高考真题)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.过F 2向一条渐近线作垂线,垂足为P .若PF 2 =2,直线PF 1的斜率为24,则双曲线的方程为()A.x 28-y 24=1B.x 24-y 28=1C.x 24-y 22=1D.x 22-y 24=15.(2023·北京·高考真题)已知双曲线C 的焦点为(-2,0)和(2,0),离心率为2,则C 的方程为.6.(2023·全国·高考真题)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点-4,0 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于点P .证明:点P 在定直线上.7.(2022·天津·高考真题)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=45x 的准线l 经过F 1,且l 与双曲线的一条渐近线交于点A ,若∠F 1F 2A =π4,则双曲线的方程为()A.x 216-y 24=1B.x 24-y 216=1C.x 24-y 2=1D.x 2-y 24=18.(2022·北京·高考真题)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =.9.(2022·全国·高考真题)若双曲线y 2-x 2m2=1(m >0)的渐近线与圆x 2+y 2-4y +3=0相切,则m =.10.(2022·全国·高考真题)记双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值.11.(2021·全国·高考真题)双曲线x 24-y 25=1的右焦点到直线x +2y -8=0的距离为.12.(2021·全国·高考真题)若双曲线x 2a 2-y 2b2=1的离心率为2,则此双曲线的渐近线方程.13.(2021·北京·高考真题)若双曲线C :x 2a 2-y 2b2=1离心率为2,过点2,3 ,则该双曲线的方程为()A.2x 2-y 2=1B.x 2-y 23=1 C.5x 2-3y 2=1D.x 22-y 26=114.(2021·全国·高考真题)已知双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则C 的焦距为.15.(2021·全国·高考真题)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA ⋅TB =TP ⋅TQ ,求直线AB 的斜率与直线PQ 的斜率之和.。

椭圆曲线“切点弦”的性质

椭圆曲线“切点弦”的性质

椭圆曲线“切点弦”的性质_本人通过对椭圆曲线性质的研究,得出椭圆曲线切点弦的一条有趣的性质,现把它的探索过程写出来,与大家分享。

为了方便,不防从抛物线进行探究,然后再推广到其他椭圆曲线。

y2=2px的准线l上任意一点p作抛物线的两条切线,设切点分别为A、B,我们把线段AB称为切点弦,则切点弦AB必过定点所以切点弦AB所在的直线方程是tp=p(x-,即为抛物线y2=2px 的焦点探究1:如果性质1中直线L非抛物线的准线l,而是直线l:x=-c(c0),那么切点弦AB是否也具有类似的性质呢?自直线l:x=-c(c0)上任意一点p作抛物线y2=2px的两条切线,设切点分别为A、B,则切点弦AB必恒经过定点证明:设AB,P(c0)则经过点P的两条切线的方程是Ty1=p(x1-c)③,ty2=p(x2-c)④由③④得,显然AB都在直线ty=p(x-c)上,切点弦AB所在的直线的方程是ty=p(x-c)切点弦恒过定点显然性质1是性质2的特殊情形探究2:一般地,如果性质2中直线x=-c(c0)改为直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,那么切点弦AB是否也具有类似的性质呢?若直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,自直线l上任意一点P作抛物线的两条切线,设切点分别为A、B,那么切点弦AB恒过定点我们之所以假设直线l与抛物线没有公共点,是因为如果直线l 与抛物线相交,那么过l上任意一点并不总能作抛物线的切点;如果直线l与抛物线相切,那么切点弦显然恒过定点y=p(x+t)上,所以切点弦AB所在的直线的方程是y=p(x+t)k0,(y-k(p))=p(x-k(b)),所以切点弦AB恒过定点现在我们将抛物线切点弦的这条性质推广到椭圆和双曲线设直线l:y=kx+m(其中k,m为常量)与椭圆C:a2(x2)+b2(y2)=1没有公共点,直线l上任意一点p作椭圆C的两条切线,设切点分别为A、B则切点弦AB恒过定点,B,P(t,kt+m)同理可以得出:设直线l:y=kx+m(其中k,m为常量)与圆C:x2+y2=r2没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点综上所述,我们得到椭圆曲线切点弦的性质如下:已知定直线l与椭圆曲线C没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档