联立方程组求椭圆的切线方程
求切线方程

评:“过某点”与“在某点处”的不同.故审题应细.
练习、已知曲线C:y=x3-x+2和点A(1,2), 求在点A处的切线方程?
变式:求过点A的切线方程?
求曲线的切线方程
迟玉弟
导数的几何意义
函数y=f(x)在x=x0处的导数f′(x0)就 是曲线y=f(x)在点(x0,f(x0))处的切 线的斜率,即k=f′(x0).
f ( x) x3 例、已知曲线方程
(1)求曲线在(1,1)处的切线方程; (2)求(1)中切线Байду номын сангаас曲线是否有其他公共点; (3)变式过点(-2,-8)的切线方程。
(1)3x-y-2=0 (2)联立方程解得公共点(1,1)(-2,-8)
说明切线与曲线的公共点除了切点还可以有另外的点
分析:由(2)知(-2,-8)不一定为切点,我们可 以设出切点,求出切点处斜率,利用切点和斜率写出 点斜式方程,将点(-2,-8)代入方程得到切点的值, 再求切线。 解:设切点为(a, a 3)
专题 切线与切点弦问题-高考数学大一轮复习

专题36 切线与切点弦问题【方法技巧与总结】1、点()00 M x y ,在圆222x y r +=上,过点M 作圆的切线方程为200x x y y r +=.2、点()00 M x y ,在圆222x y r +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y r +=.3、点()00 M x y ,在圆222x y r +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y r +=.4、点()00 M x y ,在圆222()()x a y b r -+-=上,过点M 作圆的切线方程为()()200()()x a x a y b y b r --+--=.5、点()00 M x y ,在圆222()()x a y b r -+-=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b r --+--=.6、点()00 M x y ,在圆222()()x a y b r -+-=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()()200()()x a x a y b y b r --+--=.7、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.8、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y ya b+=. 9、点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a +021y yb=. 10、点()00 M x y ,在双曲线2222x y a b -=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.11、点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为A B ,,则切点弦AB 的直线方程为00221x x y ya b-=. 12、点()00 M x y ,在双曲线22x a -221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y ya b-=. 13、点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.14、点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.15、点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.【题型归纳目录】 题型一:切线问题 题型二:切点弦过定点问题题型三:利用切点弦结论解决定值问题 题型四:利用切点弦结论解决最值问题 题型五:利用切点弦结论解决范围问题 【典例例题】 题型一:切线问题例1.已知平面直角坐标系中,点(4,0)到抛物线21:2(0)C y px p =>准线的距离等于5,椭圆22222:1(0)x y C a b a b+=>>,且过点. (1)求1C ,2C 的方程;(2)如图,过点(E m ,0)(2)m >作椭圆2C 的切线交1C 于A ,B 两点,在x 轴上取点G ,使得AGE BGE ∠=∠,试解决以下问题:①证明:点G 与点E 关于原点中心对称;②若已知ABG ∆的面积是椭圆2C 四个顶点所围成菱形面积的16倍,求切线AB 的方程.【解析】(1)解:因为点(4,0)到抛物线1C 的准线2px =-的距离等于5, 所以452p +=,解得2p =,所以抛物线1C 的方程为24y x =; 因为椭圆2C,且过点,所以222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=;(2)①证明:因为2m >,且直线AB 与椭圆2C 相切, 所以直线AB 的斜率存在,设直线AB 的方程为()y k x m =-, 联立22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(41)8440k x k mx k m +-+-=, 因为直线AB 与椭圆2C 相切,所以△42222644(41)(44)0k m k k m =-+-=,即2214k m =-,联立2()4y k x m y x=-⎧⎨=⎩,得2440ky y km --=,设1(A x ,1)y ,2(B x ,2)y ,则12124,4y y y y m k+==-;设(,0)G t ,因为AGE BGE ∠=∠,所以0AG BG k k +=, 则12120y yx t x t+=--,即211212()0x y x y t y y +-+=, 即121212()()04y y y y t y y +-+=,又120y y +≠,所以124y y t m ==-,即(,0)G m -, 即点G 与点E 关于原点中心对称;②解:椭圆2C 四个顶点所围成菱形面积为122242S a b ab =⨯⨯==,所以ABG ∆的面积为16464⨯=,则1211||||222ABG S GE y y ∆=-=⨯==,令64,即22(4)256m m m -+=, 即42342560m m m -+-=,即42(256)(4)0m m m -+-=, 即22(4)[(16)(4)]0m m m m -+++=, 即32(4)(51664)0m m m m -+++=,因为2m >,所以4m =,2211412k m ==-,k =所以直线AB 的方程为4)y x =-. 例2.某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性质:椭圆2222:1(0)x y C a b a b +=>>在任意一点0(M x ,0)y 处的切线方程为00221xx yy a b+=.现给定椭圆22:143x y C +=,过C 的右焦点F 的直线l 交椭圆C 于P ,Q 两点,过P ,Q 分别作C 的两条切线,两切线相交于点G . (1)求点G 的轨迹方程;(2)若过点F 且与直线l 垂直的直线(斜率存在且不为零)交椭圆C 于M ,N 两点,证明:11||||PQ MN +为定值.【解析】(1)解:设直线PQ 为1x ty =+,1(P x ,1)y ,2(Q x ,2)y , 易得在P 点处切线为11143x x y y +=,在Q 点处切线为22143x x y y+=, 由11221,431,43x x y yx x y y ⎧+=⎪⎪⎨⎪+=⎪⎩得2112214()y y x x y x y -=-,又111x ty =+,221x ty =+,可得4x =,故点G 的轨迹方程4x =.(2)证明:联立l 的方程与C 的方程221,1,43x ty x y =+⎧⎪⎨+=⎪⎩消去x ,得22(34)690t y ty ++-=.由韦达定理,得122634t y y t +=-+,122934y y t =-+,所以2212(1)||34t PQ t +==+, 因为PQ MN ⊥,将t 用1t -代,得222112(1)12(1)||13434t t MN t t ++==+⋅+, 所以22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++. 例3.已知圆222:(0)O x y r r +=>.(1)求证:过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.类比前面的结论,写出过椭圆2222:1(0)x y C a b a b+=>>上一点0(N x ,0)y 的切线方程(不用证明). (2)已知椭圆22:143x y C +=,Q 为直线4x =上任一点,过点Q 作椭圆C 的切线,切点分别为A 、B ,求证:直线AB 恒过定点.【解析】(1)证明:因为圆222:O x y r +=, 故圆心(0,0)O ,半径为r , 又0(M x ,0)y , 所以0OM y k x =, 因为0(M x ,0)y 在圆上, 所以过M 的圆的切线斜率0x k y =-,所以过M 的圆的切线方程为0000()x y y x x y -=--,① 又因为22200x y r +=,② 由①②整理得,为200x x y y r +=.所以过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.过椭圆2222:1(0)x y C a b a b +=>>上一点0(N x ,0)y 的切线方程为00221x x y ya b+=;(2)设(4,)Q t ,()t R ∈,1(A x ,1)y ,2(B x ,2)y , 由(1),则直线QA 的方程11143x x y y +=, 因为Q 在QA 上,所以1113ty x +=,① 同理可得2213ty x +=,② 由①②可得直线AB 的方程为13tx y +=,令0y =,得1x =, 所以直线AB 恒过点(1,0).变式1.已知点(1,0)A -,(1,0)B ,动点P 满足||||4PA PB +=,P 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)已知圆222x y R +=上任意一点0(P x ,0)y 处的切线方程为:200x x y y R +=,类比可知椭圆:22221x y a b+=上任意一点0(P x ,0)y 处的切线方程为:00221x x y ya b+=.记1l 为曲线C 在任意一点P 处的切线,过点B 作BP 的垂线2l ,设1l 与2l 交于Q ,试问动点Q 是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.【解析】解:(Ⅰ)由椭圆的定义知P 点的轨迹为以A ,B 为焦点,长轴长为4的椭圆,设椭圆方程为2222:1x y a b +=,则241a c =⎧⎨=⎩,∴2a b =⎧⎪⎨=⎪⎩曲线C 的方程为22143x y +=.(Ⅱ)设0(P x ,0)y ,由题知直线1l 的方程为00:143x x y y+=, 当01x ≠时,001PB y k x =-,2l ∴的斜率为0201x k y -=,0201:(1)x l y x y -=-,1l 与2l 的方程联立00001(1)143x y x y x x y y -⎧=-⎪⎪⎨⎪+=⎪⎩,消y 得000034(1)(1)120(4)4(4)x x x x x x x +---=⇒-=-, 4x ∴=.动点Q 在定直线4x =上, 当01x =时,032y =±,1:142x yl ±=, 2:0l y =,(4,0)Q ,Q 在直线4x =.综上所述,动点Q 在定直线4x =上.变式2.下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为 .理由如下: .(2)椭圆22221(0)x y a b a b+=>>上一点0(x ,0)y 处的切线方程为 ;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB的方程是 .这是因为在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x xy y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=, 化简得△0=得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为 . (5)抛物线22(0)y px p =>上一点0(x ,0)y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设1(A x ,1)y ,2(B x ,2)y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上. 【解析】解:(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. 理由如下:①若切线的斜率存在,设切线的斜率为k ,则001OM OM k k y k x⋅=-⎧⎪⎨=⎪⎩,所以0x k y =-, 又过点0(M x ,0)y , 由点斜式可得,0000()x y y x x y -=--, 化简可得,220000y y x x x y +=+, 又22200x y r +=,所以切线的方程为200y y x x r +=; ②若切线的斜率不存在,则(,0)M r ±, 此时切线方程为x r =±.综上所述,圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. (3)在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x xy y +=, 因为两切线都过P 点(,)m n , 所以得到了1113x m y n +=和2213x my n +=, 由这两个“同构方程”得到了直线AB 的方程为13mxny +=; (4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-, 由22()33y n k x m x y -=-⎧⎨+=⎩,可得222(13)6()3()30k x k n km x n km ++-+--=, 由△0=,可得222(3)210(*)m k mnk n -++-=, 因为PA PB ⊥, 则1PA PB k k ⋅=-,所以(*)式中关于k 的二次方程有两个解且其乘积为1-,则2122113n k k m-⋅==--, 可得224m n +=,所以圆的半径为2,且过原点,其方程为224x y +=. 故答案为:(1)200y y x x r +=,理由见解析; (3)13mxny +=; (4)224x y +=.题型二:切点弦过定点问题例4.定义:若点0(P x ,0)y 在椭圆22221(0)x y a b a b +=>>上,则以P 为切点的切线方程为:00221x x y ya b+=.已知椭圆22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11(,)23-B .11(,)23-C .12(,)23-D .12(,)23-【解析】解:因为M 在直线260x y --=上,则可设点M 的坐标为(26,)t t +,t R ∈, 设1(A x ,1)y ,2(B x ,2)y ,所以直线MA ,MB 的方程分别为: 11221,13232x x y y x x y y +=+=,显然点M 的坐标适合两个方程, 代入可得:1122(26)132(26)132x t y tx t y t +⎧+=⎪⎪⎨+⎪+=⎪⎩,则直线AB 的方程为:(26)132x t yt++=,即2(26)360t x yt ++-=, 即(43)612x y t x +=-,令4306120x y x +=⎧⎨-=⎩,解得12,23x y ==-,所以直线AB 过定点12(,)23-,故选:C .例5.已知经过圆2221:C x y r +=上点0(x ,0)y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点0(x ,0)y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,①求证:直线AB 过定点. ②当点P 到直线AB时,求三角形PAB 的外接圆方程. 【解析】解:(1)切线方程为:00221x x y ya b+=. (2)设切点为1(A x ,2)y ,2(B x ,2)y ,点(3,)P t ,由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⨯⎧+⨯=⎪⎪⎨⨯⎪+⨯=⎪⎩,A ∴,B 满足方程:12x ty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩即直线AB 恒过点(2,0).又已知点(3,)P t 到直线AB.∴22|354t t t-=+ 425410t t ⇒--=,22(51)(1)0t t +-=,1t ∴=±.当1t =时,点(3,1)P ,直线AB 的方程为:220x y +-=. 2222066x y x y +-=⎧⎨+=⎩求得交点121(0,1),(,),(3,1)55A B P -. 设PAB ∆的外接圆方程为:220x y Dx Ey F ++++=,代入得131012529E F D E F D E F +=-⎧⎪++=-⎨⎪-+=-⎩,解得:PAB ∆的外接圆方程为223210x y x y +--+= 即PAB ∆的外接圆方程为:2239()(1)24x y -+-=.例6.已知抛物线2:2C x py =的焦点为F ,抛物线上一点(A m ,2)(0)m >到F 的距离为3. (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点. 【解析】(1)解:由题意知232p +=,得2p =,所以抛物线C 的方程为24x y =. 将点(A m ,2)(0)m >代入24xy =,得m =,所以点A 的坐标为.(2)证明:设221212(,),(,)44x x D x E x ,由题意知.直线l 的斜率存在,设直线l 的方程为y kx n =+, 联立方程24y kx nx y=+⎧⎨=⎩,得2440x kx n --=,所以△216160k n =+>,124x x k +=,124x x n =-,24x y =,即24x y =, 则2xy '=,所以抛物线C 在点D 处的切线1l 的方程为2111()24x x y x x =-+,化简得21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩. 又因为直线1l 与2l 的交点恰好在直线2y =-上,所以1224x x =-,即128x x =-. 所以1248x x n =-=-.解得2n =.故直线l 的方程为2y kx =+,所以直线l 恒过定点(0,2).题型三:利用切点弦结论解决定值问题例7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点(1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n+为定值 【解析】解:(1)由题意得:1c =,所以221a b =+,又因为点P 在椭圆C 上,所以223314a b+=, 可解得24a =,23b =,所以椭圆标准方程为22143x y +=.(2)证明:由题意:2213:144x y C +=,设点1(Q x ,1)y ,2(M x ,2)y ,3(N x ,3)y ,因为M ,N 不在坐标轴上,所以1QM OMk k =-,直线QM 的方程为2222()x y y x x y -=-, 化简得:2243x x y y +=,① 同理可得直线QN 的方程为3343x x y y +=,② 把Q 点的坐标代入①、②得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线MN 的方程为1143x x y y +=---------------③, 令0y =,得143m x =,令0x =得143n y =,所以143x m=,143y n =,又点Q 在椭圆1C 上,所以2244()3()433m n+=, 即22113m n+为定值. 例8.已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点P 在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)若过点2F 的直线l 与椭圆C 交于A ,B两点,且||AB =l 的方程; (3)过椭圆C 上异于其顶点的任一点Q ,作圆22:1O x y +=的两条切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,那么2212m n +是否为定值?若是,求出此定值;若不是,请说明理由.【解析】解:(1)椭圆C 的右焦点2F 的坐标为(1,0),∴椭圆C 的左焦点1F 的坐标为(1,0)-,由椭圆的定义得12||||2PF PF a +=,2a ∴=a ∴=,22a =由题意可得1c =,即2221b a c =-=,即椭圆C 的方程为2212x y +=;(2)直线l 与椭圆C 的两个交点坐标为1(A x ,1)y ,2(B x ,2)y , ①当直线l 垂直x轴时,易得||AB = ②当直线l 不垂直x 轴时,设直线:(1)l y k x =-联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得,2222(12)4220k x k x k +-+-=,①则2122421k x x k +=+,21222221k x x k -=+,222222222121222224228(1)||(1)[()4](1)[()24]2121(21)k k k AB k x x x x k k k k -+∴=++-=+-⨯==+++,解得1k =±,∴直线方程l 的方程为10x y --=或10x y +-=(Ⅲ)设点0(Q x ,0)y ,3(M x ,3)y ,4(N x ,4)y ,连接OM ,ON , 0M MQ ⊥,ON NQ ⊥,M ,N 不在坐标轴上,303M y k x ∴=,404N y k x =-, ∴直线MQ 的方程为3333()y y y x x x -=-,即331xx yy +=,⋯① 同理直线NQ 的方程为441xx yy +=,⋯②, 将点Q 代入①②,得0303040411x x y y x x y y +=⎧⎨+=⎩,显然3(M x ,3)y ,4(N x ,4)y 满足方程001xx yy +=,∴直线MN 的方程为001xx yy +=,分别令0x =,0y =,得到01n x =,01m y =. 01y m ∴=,01x n=, 0(Q x ,0)y 满足2212x y +=;∴221112m n+=,即22122m n +=题型四:利用切点弦结论解决最值问题例9.已知抛物线22x py =上一点0(M x ,1)到其焦点F 的距离为2. (1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.【解析】解:(1)由||122pMF =+=,得2p =, 所以抛物线的方程为24x y =. (2)设1(P x ,1)y ,2(Q x ,2)y , 由12y x '=可得在P 处的切线方程为2111()42x x y x x -=-,整理可得112()x x y y =+,同理在Q 处的切线方程为222()x x y y =+,又因为两切线都过(,2)A t -,∴11222(2)2(2)tx y tx y =-⎧⎨=-⎩,即可得直线PQ 的方程为2(2)tx y =-,所以直线过点(0,2),即(0,2)N , 又1(2x B ,0),2(2xC ,0), ∴四边形ABNC 的面积122||||ABC NBC S S S BC x x ∆∆=+==-,联立122()4tx y y x y =+⎧⎨=⎩,可得2280x tx --=,122x x t ∴+=,128x x =-所以12||3242S x x =-.(当0t =时取等号),∴四边形ABNC 面积的最小值为例10.已知(,1)T m 为抛物线2:2(0)C x py p =>上一点,F 是抛物线C 的焦点,且||2TF =. (1)求抛物线C 的方程;(2)过圆22:(2)1E x y ++=上任意一点G ,作抛物线C 的两条切线1l ,2l ,与抛物线相切于点M ,N ,与x 轴分别交于点A ,B ,求四边形ABNM 面积的最大值.【解析】解:(1)||2TF =,由抛物线定义知,122p +=,2p ∴=,24x y ∴=. (2)设1(M x ,1)y ,2(N x ,2)y ,0(G x ,0)y ,0[3y ∈-,1]-, 切线11:2()AM x x y y =+,因此:11122A y x x x ==, 切线22:2()AN x x y y =+,因此:22222B y x x x ==, 另一方面,点0(G x ,0)y 在两切线上,从而满足:011020202()2()x x y y x x y y =+⎧⎨=+⎩,因此切点弦MN 的方程为:002()x x y y =+,直线MN 与抛物线24x y =进行方程联立:200240x x x y -+=, 从而1202x x x +=,1204x x y =,且||MN ==, ABMN GMN GAB S S S ∆∆=-212011||||2222x x y =⋅-33222220001200111[(4)||](4)242x y y x x x y =---=-2200000(4)(73)x y y y y =-+=---, 当0[3y ∈-,1]-1323=, 2200073773[()]924y y y ---=-++,∴93ABMN S ,当且仅当03y =-时,取到最大值.题型五:利用切点弦结论解决范围问题例11.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,C 上一点M 关于原点O 的对称点为N ,F 为C 的右焦点,若MF NF ⊥,设MNF α∠=,且3sin()44πα+=.(1)求椭圆C 的标准方程;(2)经过圆22:10O x y+=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,求AOB ∆面积的取值范围.【解析】解:(1)由26a =,即3a =,又22122cos 2sin )4c c e a c c πααα====++所以c =2221b a c =-=,则椭圆的方程为2219x y +=;(2)设1(A x ,1)y ,2(B x ,2)y , 则直线PA 的方程为1119x x y y +=,直线PB 的方程为2219x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上, 所以101019x x y y +=,202019x x y y +=,所以直线AB 的方程为0019x xy y +=, 由00221999x xy y x y ⎧+=⎪⎨⎪+=⎩消去y ,结合220010x y +=,和220010x y =-,可得22200(810)1881810y x x x y +-+-=, △242018(8)y y =+,120|||AB x x -=0=202018108y y +=+,又点O 到直线AB的距离为d ==,2020018119||922108y S AB d y +=⋅=⋅=+,又2010y,记[1t ,9],所以9[6t t +∈,10], 所以9[10S ∈,3]2.例12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点1(F 0),点Q 在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点. (ⅰ)求证:0OM ON +=; (ⅱ)求OAB ∆的面积的取值范围.【解析】解:(Ⅰ)由题意可得c =221314a b+=,222a b c =+,解得24a =,21b =, 所以椭圆的方程为:2214x y +=;(Ⅱ)()i 证明:设0(P x ,0)y ,①当直线PA ,PB 的斜率都存在时,设过P 与椭圆相切的直线方程为00()y k x x y =-+, 联立直线与椭圆的方程0022()440y k x x y x y =-+⎧⎨+-=⎩, 整理可得2220000(14)8()4()40k x k y kx x y kx ++-+--=,△2222000064()4(14)[4()4]k y kx k y kx =--+--,由题意可得△0=,整理可得222000(4)210x k x y k y -++-=, 设直线PA ,PB 的斜率分别为1k ,2k ,所以20122014y k k x -=-,又2205x y +=,所以220022001(5)4144x x x x ---==---, 所以PM PN ⊥,即MN 为圆O 的直径,所以0OM ON +=; ②当直线PA 或PB 的斜率不存在时,不妨设(2,1)P , 则直线PA 的方程为2x =,所以(2,1)M -,(2,1)N -,也满足0OM ON +=; ()ii 设点1(A x ,1)y ,2(B x ,2)y ,当直线PA 的斜率存在时,设直线PA 的方程为:111()y k x x y =-+,联立直线PA 与椭圆的方程11122()440y k x x y x y =-+⎧⎨+-=⎩,消y 可得2221111111(14)8()4()40k x k y k x x y k x ++-+--=,△22221111111164()4(14)[4()4]k y k x k y k x =--+--, 由题意△0=,整理可得222111111(4)210x k x y k y -++-=, 则11111122111444x y x y x k x y y -=-==--, 所以直线PA 的方程为:1111()4x y x x y y =--+, 化简可得22111144x x y y y x +=+, 即1114x xy y +=, 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-也满足1114x xy y +=,同理可得直线PB 的方程2214x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上,所以101020201414x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以可得直线AB 的方程为0014x x y y +=,而P 在圆225x y +=上,所以22005x y +=, 联立直线AB 与椭圆的方程为00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,整理可得22200(35)816160y x x x y +-+-=, 020853A B x x x y +=+,2020161653A B y x x y -=+, 所以O 到直线AB的距离d =,弦长0|||A B AB x x - 又点O 到直线AB的距离d ==,令t ,[1t ∈,4],则2144||424OAB t S d AB t t t∆=⋅==++,而4[4t t+∈,5],所以OAB ∆的面积的取值范围是4[5,1].例13.椭圆2222:1(0)x y C a b a b+=>>的两焦点分别为1F ,2F ,椭圆与y轴正半轴交于点Q ,122QF F S =.(1)求曲线C 的方程;(2)过椭圆C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC 、PD ,切点分别为C 、D ,直线CD 与椭圆C 交于E 、G 两点,O 为坐标原点,求OEG ∆的面积S 的取值范围.【解析】解:(1)椭圆与y轴正半轴交于点Q ,122QF F S=.可得121222QF F b Sc b bc ==⨯⨯==,∴2c a ==, ∴椭圆方程为22142x y +=.(2)设0(P x ,0)y ,线段OP 的中点为00(,)22x y ,22222000001,2(1)24242x y x x y +==-=-,2004x <, 以OP以OP 为直径的圆的方程为22220000()()224x y x y x y +-+-=,即00()()0x x x y y y -+-=,又圆22:1O x y +=, 两式相减00:1CD x x y y +=,由0022124x x y y x y +=⎧⎨+=⎩,消去y 并化简得22220000(2)4240x y x x x y +-+-=, ∴22222220000000164(2)(24)8(412)x x y y y x y =-+-=-+22222000008[41(4)]24(1)y x x y x =-+-=+,0000||EG ==O EG d -=∴200000001||2222S EG d x =⋅====+-=由于2004x <,所以20115x +<,2011x +<对于函数211()3(15),()30h t t t h t tt '=+<=->,()h t在上递增.(1)4,h h ===所以20431x +<1114<,62<,∴62S <.S ∈. 变式3.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,动点P 到焦点1F的距离的最大值为2+(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||ABCD的取值范围.【解析】解:(1)动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,b c ∴=, 动点P 到焦点1F 的距离的最大值为2+∴2a c +=+可得2a =,b c =所以椭圆1C 的方程为:22142x y +=;(2)圆2C 的方程为224x y +=,设直线x =-T 的坐标为)t ,设1(A x ,1)y ,2(B x ,2)y ,则直线AT 的方程为114x x y y +=,直线BT 的方程为224x x y y +=,又)T t 在直线AT 和BT上,即112244ty ty ⎧-+=⎪⎨-+=⎪⎩,故直线AB 的方程为4ty -+=.由原点O 到直线AB的距离d =得||AB =联立224142ty x y ⎧-+=⎪⎨+=⎪⎩,消去x 得22(16)8160t y yt +--=,设3(C x ,3)y ,4(D x,4)y ,则343422816,1616t y y y y t t -+==++,从而222(8)16t CD t +==+记28(8)t m m +=,则||AB CD =11(0)8y y m =<,则||AB CD =11(0)8y y m =<,所以||AB CD3()112256f y y y =+-, 所以由2()127680f y y y '=-=得18y =, 所以3()112256f y y y =+-在1(0,]8上单调递增,()(1f y ∴∈,2]即||ABCD∈. 变式4.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2+(Ⅰ)求椭圆1C 的方程;(Ⅱ)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.【解析】解:()I 由使得1290F PF ∠=︒的点P 恰有两个可得,b c a ==;动点P 到焦点1F 的距离的最大值为2+2a c +=2,a c ==所以椭圆1C 的方程是22142x y +=⋯(4分)()II 圆2C 的方程为224x y +=,设直线x =-T 的坐标为()t -设1(A x ,1)y ,2(B x ,2)y ,则直线AT的方程为114x x y y+=,直线BT的方程为224x x y y+=,又()t-在直线AT和BT上,即112244tyty⎧-+=⎪⎨-+=⎪⎩,故直线AB的方程为4ty-+=⋯(6分)联立224142tyx y⎧-+=⎪⎨+=⎪⎩,消去x得22(16)8160t y yt+--=,设3(C x,3)y,4(D x,4)y.则343422816,1616ty y y yt t-+==++,⋯(8分)从而21224(8)|||(16)tCD y yt+=-=⋯+(10分)232416t-=++,又21616t +,从而2322016t--<+,所以||[2CD∈,4)⋯(12分)变式5.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12,且直线1:1x yla b+=被椭圆1C截得的弦长为.()I求椭圆1C的方程;()II以椭圆1C的长轴为直径作圆2C,过直线2:4l y=上的动点M作圆2C的两条切线,设切点为A,B,若直线AB与椭圆1C 交于不同的两点C,D,求||||CD AB的取值范围.【解析】解:()I线1:1x yla b+=,经过点(,0)a,(0,)b,被椭圆1C227a b+=.又12ca=,222a b c=+,解得:24a=,23b=,1c=.∴椭圆1C的方程为22143x y+=.()II由()I可得:圆2C的方程为:224x y+=.设(2,4)M t,则以OM为直径的圆的方程为:222()(2)4x t y t-+-=+.与224x y+=联立可得:直线AB的方程为:2440tx y+-=,设1(C x,1)y,2(D x,2)y,联立222440143tx yx y+-=⎧⎪⎨+=⎪⎩,化为:22(3)480t x tx+--=,则12243tx xt+=+,12283x xt-=+,2236||43tCDt+==+.又圆心O到直线AB的距离d==||AB∴===,22222364||||243t tAB CD tt t+∴=+⨯=+令233t m+=,则||||8AB CD=3m,可得3233m-<,可得:2||||83AB CD<变式6.如图,已知点P在半圆22:(2)4(2)Q x y y++=-上一点,过点P作抛物线2:2(0)C x py p=>的两条切线,切点分别为A,B,直线AP,BP,AB分别与x轴交于点M,N,T,记TNB∆的面积为1S,TMA∆的面积为2S.(Ⅰ)若抛物线C的焦点坐标为(0,2),求p的值和抛物线C的准线方程;(Ⅱ)若存在点P,使得128SS=,求p的取值范围.【解析】解:(Ⅰ)22p=,4p=.准线方程为直线2y=-.(Ⅱ)设1(A x,1)y,2(B x,2)y,过点A的切线方程11:()Al x x p y y=+,于是1(,0)2xM;过点B的切线方程22:()Bl x x p y y=+,于是2(,0)2xN;点(P x,)y在两条切线上,所以10012002()()x x p y yx x p y y=+⎧⎨=+⎩,可得点P坐标为1212(,)22x x x xPp+.1212:()22ABx x x xl x p yp+=+,于是12112112121212()(,0).||||||22()x x x x x x x xT TMx x x x x x-=-=+++,2222121212()||||||22()x x x x x x TN x x x x -=-=++, 而23122111||||2||81||||2TN y S x S x TM y ⋅===⋅,所以212x x =-. 于是点211(,)2x x P p --,点P 的轨迹方程为24px y =-,问题转化为抛物线24p x y =-与半圆22:(2)4(2)Q x y y ++=-有交点. 记24()f x x p =-,则4(2)42f p=-⨯-,又因为0p >, 解得:08p <.所以p 的取值范围为(0,8].变式7.如图,设抛物线2:4C y x =的焦点为F ,点P 是半椭圆221(0)4y x x +=<上的一点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,且直线PA 、PB 分别交y 轴于点M 、N . (Ⅰ)证明:FM PA ⊥; (Ⅱ)求||||FM FN ⋅的取值范围.【解析】解:(Ⅰ)设点P 的坐标为0(x ,0)y ,直线PA 方程为00()(0)x m y y x m =-+≠.令0x =,可知点M 的坐标为00(0,)x y m-. 由,消去x 得2004440y my my mx -+-=. 因为直线与抛物线只有一个交点, 故△0=,即2000m y m x -+=. 因为点F 的坐标为(1,0), 故00(1,)x FM y m =--,00(,)xPM x m=--.则20002()0x FM PM m y m x m⋅=-+=. 因此FM PM ⊥,亦即FM PA ⊥.(Ⅱ)设直线PB 的方程为00()(0)x n y y x n =-+≠. 由(1)可知,n 满足方程2000n y n x -+=.故m ,n 是关于t 的方程2000t y t x -+=的两个不同的实根. 所以.由(1)可知:FM PA ⊥,同理可得FN PB ⊥. 故||FM ||FN =.则||||FM FN ⋅= 因为22001(0)4y x x +=<.因此,||||FM FN ⋅的取值范围是.。
高中数学函数的切线问题

函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
专题14 圆锥曲线的切线问题

专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
求椭圆切线方程(3篇)

第1篇椭圆是平面解析几何中的一种基本曲线,其方程一般形式为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴,且 $a > b$。
在数学分析、几何学以及物理学中,椭圆切线方程的研究具有重要意义。
本文将探讨椭圆切线方程的求解方法。
一、椭圆切线的几何性质椭圆的切线具有以下几何性质:1. 切线与椭圆相切于一点,且在该点处切线斜率存在。
2. 对于椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其切线斜率 $k$ 与椭圆上切点坐标 $(x_0, y_0)$ 满足关系 $k = -\frac{b^2}{a^2} \cdot\frac{x_0}{y_0}$。
3. 对于椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其切线方程可以表示为 $y = kx + m$,其中 $m$ 为切线在 $y$ 轴上的截距。
二、椭圆切线方程的求解方法1. 直接法直接法是指直接根据椭圆的方程和切线的几何性质,推导出椭圆切线方程的方法。
设椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上的切点坐标为 $(x_0,y_0)$,切线斜率为 $k$。
根据切线斜率的几何性质,有 $k = -\frac{b^2}{a^2} \cdot \frac{x_0}{y_0}$。
又因为切点 $(x_0, y_0)$ 满足椭圆方程,所以 $\frac{x_0^2}{a^2} +\frac{y_0^2}{b^2} = 1$。
联立上述两个方程,解得 $x_0 = \frac{a^2k}{\sqrt{k^2 + b^4/a^4}}$,$y_0 = \frac{b^2}{\sqrt{k^2 + b^4/a^4}}$。
将 $x_0$ 和 $y_0$ 代入切线方程 $y = kx + m$,得 $y = k \cdot\frac{a^2k}{\sqrt{k^2 + b^4/a^4}} + m$。
过椭圆外一点的切线方程

过椭圆外一点的切线方程全文共四篇示例,供读者参考第一篇示例:椭圆是一个常见的几何图形,其形状类似于圆形,但长轴和短轴不相等。
在平面几何中,椭圆是一个非常重要的图形,具有许多独特的性质和特点。
在本文中,我们将讨论关于过椭圆外一点的切线方程,探讨其性质和推导过程。
让我们回顾一下椭圆的基本定义和方程。
椭圆是平面上到两个定点(焦点)到距离之和为常数的点的集合。
其标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a 和b 分别是长轴和短轴的长度,焦点位于椭圆的长轴上。
现在考虑一个椭圆上一点P(x_1, y_1) 处的切线,我们知道切线与椭圆相切于该点,并且切线与椭圆的切点与P 连线垂直。
我们要求的是过点P 外部一点Q(x, y) 处的切线方程。
我们可以设过点Q 的切线方程为y = mx + c。
由于切线过点P(x_1, y_1),所以切线方程满足y_1 = mx_1 + c。
由于切线与椭圆相切,切线与椭圆的切点与P 连线垂直,所以切线的斜率与PQ 相切的直线的斜率相同。
我们知道PQ 的斜率为\frac{y - y_1}{x - x_1},切线的斜率为m。
根据切线的性质,这两个斜率应该相等,即:\[m = \frac{y - y_1}{x - x_1}\]经过整理,我们可以得到切线方程的一般形式:\[y = \frac{b^2x_1}{a^2y_1}x + \frac{b^2}{a^2}x + y_1 -\frac{b^2x_1}{a^2}\]这就是过椭圆外一点的切线方程的一般形式。
在实际问题中,我们可以根据具体的点P 和椭圆的参数a 和b 来求解切线方程。
通过这个公式,我们可以轻松地求解过椭圆外一点的切线方程,进而解决各种与椭圆相关的几何问题。
总结一下,我们已经讨论了过椭圆外一点的切线方程的推导过程和一般形式。
切线方程的求解是椭圆几何中一个重要的问题,它可以帮助我们解决诸多与椭圆相关的实际问题。
高等数学习题九课后答案

习题九1. 求下曲线在给定点的切线和法平面方程:(1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t =;(2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π4t =的切向量为 {}πππ,,,0,444T x y z a c ⎧⎫⎛⎫⎛⎫⎛⎫'''==-⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭当π4t =时, ,,222a b c x y z === 切线方程为2220a b c x y z a c---==-. 法平面方程为0()0.222a b c a c x y z ⎛⎫⎛⎫⎛⎫++-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22022a c ax cz --+=.(2)联立方程组2226x y z x y z ⎧++=⎨++=⎩ 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得d d 2220d d d d 10d d y z x y z x xy z x x⎧+⋅+⋅=⎪⎪⎨⎪++=⎪⎩ 解得d d ,,d d y z x z x yx y z x y z--==--在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}.故切线方程为121101x y z -+-==- 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得d d 22,21d d y zy m z x x ==- 于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为00000,112x x y y z z m y z ---==-法平面方程为000001()()()02m x x y y z z y z -+---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2t在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。
高考数学椭圆的标准方程常考知识点

高考数学椭圆的标准方程常考知识点高考数学椭圆的标准方程常考知识点数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,更好的学习高中数学,在高考时数学发挥的更好。
下面是店铺为大家精心推荐高考数学椭圆的标准方程的一些高频考点,希望能够对您有所帮助。
椭圆的标准方程常考点1.椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x/a+y/b=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y/a+x/b=1,(a>b>0);2.设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。
3.椭圆的方程几何性质X,Y的范围当焦点在X轴时-a≤x≤a,-b≤y≤b当焦点在Y轴时-b≤x≤b,-a≤y≤a对称性不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
顶点:焦点在X轴时:长轴顶点:(-a,0),(a,0)短轴顶点:(0,b),(0,-b)焦点在Y轴时:长轴顶点:(0,-a),(0,a)短轴顶点:(b,0),(-b,0)注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。
焦点:当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)4.S=πab((其中a,b分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或S=πAB/4(其中A,B分别是椭圆的长轴,短轴的长)。
5.圆和椭圆之间的关系:椭圆包括圆,圆是特殊的椭圆。
直线、圆的位置关系知识点总结1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.①dR,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.切线的性质⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的切线.切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.空间几何体表面积计算公式1、直棱柱和正棱锥的表面积设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的.侧面积计算公式S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、2、正棱台的表面积正棱台的侧面展开图是一些全等的等腰梯形、设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式:S=1/2*n(a+a')h'=1/2(c+c')h'、3、球的表面积S=4πR、即球面面积等于它的大圆面积的四倍、4.圆台的表面积圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即S=π(r'+r+r'l+rl)空间几何体体积计算公式1、长方体体积V=abc=Sh2、柱体体积所有柱体V=Sh、即柱体的体积等于它的底面积S和高h的积、圆柱V=πrh、3、棱锥V=1/3*Sh4、圆锥V=1/3*πrh5、棱台V=1/3*h(S+(√SS')+S')6、圆台V=1/3*πh(r+rr'+r')7、球V=4/3*πR3【高考数学椭圆的标准方程常考知识点】。