因式分解-奥数精讲与测试8年级

合集下载

因式分解-奥数精讲与测试8年级

因式分解-奥数精讲与测试8年级

例1.分解因式:⑴a6−b6;⑵a2+b2+c2−2bc+2ca−2ab;⑶a7−a5b2+a2b5−b7例2.分解因式:⑴a3+b3+c3−3abc;⑵x3+y3+3xy−1. 例3.分解因式:(x−1)3+(x−2) 3+(3−2x) 3例4.分解因式:x3−5x+4.例5.分解因式:x5n+x n+1.例6.分解因式:(x+1)4+(x2−1)2十(x−1) 4.例7.分解因式:a4+b4+c4−2a2b2−2b2c2−2c2a2A卷一、填空题01.分解因式(a+b)2+(a−b) 2+c(a2+b2)=_________。

02 .计算()222200220012003 2002200220012001-⨯-⨯+的结果等于_________。

03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。

04.分解因式(x2+3x−3)(x2十3x+4)−8=_________。

05.将多项式x2−4y2−9z2−12yz分解成因式的积,结果是_________。

06.把(1− x2)(1− y2)+4xy因式分解,结果是_________。

07.已知x−1是多项式x3−3x+k的一个因式,那么这个多项式的其它因式有_________。

08.分解因式(x2−1)(x4+x2+1)− (x3+1)2 =_________。

09.分解因式a3b+ab+30b的结果是_________。

10.分解因式(x−2y)x3−(y−2x) y3=_________。

二、解答题11.分解因式a3+b3+c3−3abc.12.已知x y≠,且x3−x=7,y3−y=7,那么x2+xy+y2的值是多少?B卷一、填空题01.分解因式ab(c2−d2)−cd(a2−b2)=_________。

02. 若x2+y2+54=2x+y,那么x y+y x= _________。

03.分解因式x4+x3+6x2+5x+5=_________。

初二年级奥数轴对称及因式分解测试题及答案

初二年级奥数轴对称及因式分解测试题及答案

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。

下⾯是⽆忧考为⼤家带来的初⼆年级奥数轴对称及因式分解测试题及答案,欢迎⼤家阅读。

⼀、选择题(共10⼩题,每⼩题3分,共30分)1.下列图形不是轴对称图形的是( )2.已知三⾓形两边的长分别是4和10,则此三⾓形第三边的长可能是( )A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为( )A.11B.30C.D.4.下列计算错误的是( )A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点 O连在⼀起,使AA′、BB′能绕着点O⾃由转动,就做成了⼀个测量⼯具,由三⾓形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是( )A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘⽶,AB=10厘⽶,则△EBC的周长为( )厘⽶.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为( )A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是⾓平分线,E是AB上⼀点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )A①②③ B、① C、② D、③⼆、填空题(共6⼩题,每⼩题3分,共18分)11.计算:20130﹣2﹣1=__________12.化简(1- )(m+1)的结果是 .13.如图,这是由边长为1的等边三⾓形摆出的⼀系列图形,按这种⽅式摆下去,则第n个图形的周长是 .14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的⼤⼩是 度.15.如图,已知△ABC是等边三⾓形,点B、C、D、E在同⼀直线上,且CG=CD,DF=DE,则∠E= 度.16.已知⼀个多边形的内⾓和与外⾓和的差是1260°,则这个多边形边数是 .三、解答题(共8题,共72分)17.(本题8分)计算:(1)(3a﹣2b)(9a+6b); (2)(﹣2m﹣1)2;18.(本题8分)分解因式:4m2﹣9n219.(本题8分)解分式⽅程 =20.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂⾜,AF=5,求CE的长.21.(本题10分)如图,在平⾯直⾓坐标系中,直线l是第⼀、三象限的⾓平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′ 、C′ ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(a,b)关于第⼀、三象限的⾓平分线l的对称点P′的坐标为 ;运⽤与拓⼴:22.(本题8分)2015年12⽉28⽇“青烟威荣”城际铁路正式开通,从烟台到北京的⾼铁⾥程⽐普快⾥程缩短了81千⽶,运⾏时间减少了9⼩时,已知烟台到北京的普快列车⾥程约为1026千⽶,⾼铁平均时速为普快平均时速的2.5倍.(1)求⾼铁列车的平均时速;(2)某⽇王⽼师要去距离烟台⼤约630千⽶的某市参加14:00召开的会议,如果他买到当⽇8:40从烟台⾄城市的⾼铁票,⽽且从该市⽕车站到会议地点最多需要1.5⼩时,试问在⾼铁列车准点到达的情况下他能在开会之前到达吗?23.(本题10分)如图,点E是∠AOB的平分线上⼀点,EC⊥OA,ED⊥OB,垂⾜分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(本题12分)如图,已知△ABC中,∠B=∠C,AB=8厘⽶,BC=6厘⽶,点D为AB的中点.如果点P在线段BC上以每秒2厘⽶的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘⽶的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)⽤的代数式表⽰PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案⼀、选择题1. B.2. C.3. B.4. A.5. A.6. B.7. B.8. C.9. B. 10. A⼆、填空题11. 12. m. 13. 2+n. 14. 60 15. 15 16.⼗⼀.三、解答题17.解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;18.解:4m2﹣9n2=(2m+3n)(2m﹣3n).19.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式⽅程的解.故答案为:x=2.20.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠ C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.21.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);22.解:(1)设普快的平均时速为x千⽶/⼩时,⾼铁列车的平均时速为2.5x千⽶/⼩时,由题意得,,解得:x=72,经检验,x=72是原分式⽅程的解,且符合题意,则2.5x=180,答:⾼铁列车的平均时速为180千⽶/⼩时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(⼩时),王⽼师到达会议地点的时间为1点40.故他能在开会之前到达.23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三⾓形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上⼀点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘⽶,∴CP=BC﹣BP=6﹣2=4厘⽶,∵AB=8厘⽶,点D为AB的中点,∴BD=4厘⽶,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ⼜∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t= = 秒,∴VQ= = 厘⽶/秒.。

初二年级奥数因式分解测试题及答案

初二年级奥数因式分解测试题及答案

初二年级奥数因式分解测试题及答案1.下列式子是因式分解的是(C)A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1)2.把多项式x2+ax+b分解因式,得(x+1)(x-3)则a,b的值分别是(B)A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3知识点2 提公因式法因式分解3.多项式8m2n+2mn的公因式是(A)A.2mn B.mn C.2 D.8m2n4.多项式a2-4a分解因式,结果准确的是(A)A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-45.把多项式m2(a-2)+m(2-a)因式分解,结果准确的是(C)A.(a-2)(m2-m) B.m(a-2)(m+1)C.m(a-2)(m-1) D.m(2-a)(m-1)6.用提公因式法因式分解:(1)3x3+6x4;解:原式=3x3(1+2x).(2)4a3b2-10ab3c;解:原式=2ab2(2a2-5bc).(3)-3ma3+6ma2-12ma;解:原式=-3ma(a2-2a+4).(4)6p(p+q)-4q(p+q).解:原式=2(p+q)(3p-2q).7.若m-n=-1,则(m-n)2-2m+2n的值是(A)A.3 B.2 C.1 D.-18.小玉同学在计算34.3×17.1+82.5×17.1-26.8×17.1+10×17.1=17.1×(34.3+82.5-26.8+10)=1_710.9.把多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.10.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),则这个二次三项式为x2-6x+9.11.将下列各式分解因式:(1)x4+x3+x;解:原式=x(x3+x2+1).(2)x(x-y)+y(y-x);解:原式=x(x-y)-y(x-y)=(x-y)(x-y)=(x-y)2.(3)6x(a-b)+4y(b-a);解:原式=6x(a-b)-4y(a-b)=2(a-b)(3x-2y).(4)(a2-ab)+c(a-b);解:原式=a(a-b)+c(a-b)=(a+c)(a-b).(5)4q(1-p)3+2(p-1)2.解:原式=4q(1-p)3+2(1-p)2=2(1-p)2(2q-2pq+1).12.△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.解:△ABC是等腰三角形,理由:∵a+2ab=c+2bc,∴(a-c)+2b(a-c)=0.∴(a-c)(1+2b)=0.故a=c或1+2b=0.显然b≠-12,故a=c.∴此三角形为等腰三角形.。

八年级因式分解奥数专题

八年级因式分解奥数专题

八年级奥数专题第一讲:勾股定理及应用----李第二讲:实数的性质-------李第三讲:二次根式(1)第四讲:二次根式(2)第五讲:一次函数的图像和性质第六讲:待定系数法------李第七讲:一次函数的应用-第八讲:二元一次方程组和不定方程第九讲:三元一次方程组与不定方程组第十讲:二元一次方程组的应用第十一讲:等腰三角形与等边三角形-------张琼方第十二讲:线段的垂直平分线第十三讲:角平分线第十四讲:一元一次不等式与一元一次不等式组第十五讲:一元一次不等式与一元一次不等式组的应用(1)第十六讲:一元一次不等式与一元一次不等式组的应用(2)------方案设计------罗第十七讲:因式分解(1)第十八讲:因式分解(2)第十九讲:因式分解(3)第二十讲:因式分解(4)第二十一讲:因式分解(5)-----刘第二十二讲:分式第二十三讲:分式的运算第二十四讲:含字母系数的方程和分式方程第二十五讲:分式方程的应用第二十六讲:平行四边形性质与判定---杨洁第二十七讲:矩形第二十八讲:菱形第二十九讲:正方形第三十讲:三角形的中位线第三十一讲:梯形第三十二讲:梯形的中位线------张皓第一讲 勾股定理及应用1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠⇔a 2+b 2=c 22、勾股定理及逆定理的应用① 作已知线段a 的2,3, 5……倍② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。

3勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做一组勾股数. 4勾股数的推算公式a) 罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

b) 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。

c) 如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫ ⎝⎛K 是一组勾股数。

八年级奥数精讲与测试-因式分解的高级方法(解析版)

八年级奥数精讲与测试-因式分解的高级方法(解析版)

因式分解的高级方法一.双十字相乘法1.双十字相乘法原理计算()()22235316731385x y x y x xy y x y -++-=--++-.从计算过程可以发现,乘积中的二次项22673x xy y --只和乘式中的一次项有关,而与常数项无关;乘积中的一次项138x y +,只和乘式中的一次项及常数项有关系;乘积中的常数项,只和乘式中的常数项有关系。

2.所以运用双十字乘法对22Ax Bxy Cy Dx Ey F +++++型的多项式分解因式的步骤: (1)用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数在第二个十字中交叉之积之和,等于原式中含y 的一次项的系数E ,同是还必须与第一个十字中左列的两个因数交叉相乘,使其交叉之积之和等于原式中含x 的一次项的系数D .二.对称式与轮换对称式【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。

802.因式分解(二)-奥数精讲与测试8年级

802.因式分解(二)-奥数精讲与测试8年级

例1.分解因式:(x2+x+1)(x2+x+2)−12.例2.分解因式:(x2+3x+2)(4x2+8x+3)−90. 例3.分解因式:6 x4+7 x3−36 x2−7x+6. 例4.分解因式:(xy−1) 2+(x+y−2) (x+y−2xy).例5.分解因式:⑴x2−3xy−10y2+x+9y−2;⑵xy+y2+x−y−2. 例6.求证:x2−2xy+y2+x+y−4不能分解为两个一次因式的乘积。

解答题01.分解因式a3+3a2+3a+2.02.已知二次三项式x2−mx−8(m是整数)在整数范围内可以分解为两个一次因式的积,求m的可能取值。

03.分解因式(x+1) (x+2) (x+3) (x+4)−24.04.分解因式(x+1) (x+2) (x十3) (x+6)−3x2.05.分解因式x5+x+1.06.若(x−a) (x−b)−k中含有因式x+b,求用a、b表示k的代数式。

07.分解因式x4+4.08.已知x2+2x+5是x4+a x2+b的一个因式,求a+b的值。

09.若多项式8x2−2xy−3y2可写成两个整系数多项式的平方差M2−N2,求用x、y表示M、N的一种形式。

10.已知n为正整数,求证:n3−n的值必是6的倍数。

B卷解答题02.分解因式(x2+4x+8)2+3x(x2+4x+8)+2x2.03.分解因式2x2+7xy+3y2−5y−2.04.分解因式x5n+x n+1.05.分解因式(x+1)4+(x2−1)2+(x−1) 4.06.已知n是正整数,且n4−16n2+100是质数,求n的值。

07.分解因式x3+(2a+1)x2+(a2+2a−1)x+a2−1.08.分解因式x3(y−z)+y3 (z−x)+z3 (x−y).09.求证:(n+2002)(n+2003)(n+2004)(n+2005)+1是一个完全平方数(这里n为正整数)。

10.观察:33333713371337243724++=++,33334319431943244324++=++,33335329532953245324++=++,思考:用字母表示数的方法,写出一个等式,揭示所述的规律,并用因式分解的知识证明你的结论。

初二因式分解奥数竞赛题

初二因式分解奥数竞赛题

初二因式分解奥数竞赛题摘要:1.初二因式分解奥数竞赛题的概述2.初二因式分解的方法3.初二因式分解奥数竞赛题的解题技巧4.例题解析5.总结正文:【1.初二因式分解奥数竞赛题的概述】初二因式分解奥数竞赛题是针对初中二年级学生的一项重要数学竞赛内容,它涉及到的知识点主要是因式分解。

因式分解是指将一个多项式化简成若干个整式的积的形式,它可以帮助我们简化复杂的数学问题,提高解题效率。

在初二阶段,学生需要熟练掌握各种因式分解的方法,并在实际解题中灵活运用。

【2.初二因式分解的方法】初二阶段,学生需要掌握的因式分解方法主要有以下几种:(1) 提公因式法:通过提取多项式中的公因式,将多项式分解成较简单的整式积。

(2) 平方差公式法:利用平方差公式,将一个二次多项式分解成两个一次多项式的积。

(3) 完全平方公式法:利用完全平方公式,将一个二次多项式分解成一个一次多项式的平方。

(4) 分组法:将多项式按照一定规则分组,然后分别提取每组的公因式,最后将各组的因式积相乘得到原多项式的因式分解式。

(5) 公式法:利用一些已知的数学公式,如平方差公式、完全平方公式、立方差公式等,将多项式分解成简单的整式积。

【3.初二因式分解奥数竞赛题的解题技巧】(1) 熟练掌握各种因式分解方法,特别是提公因式法、平方差公式法和完全平方公式法,这些方法是解决初二因式分解奥数竞赛题的基本技巧。

(2) 在解题过程中,要善于观察多项式的特点,根据多项式的形式选择合适的因式分解方法。

(3) 注意分解过程中的符号问题,确保因式分解的正确性。

(4) 多做练习题,提高解题速度和准确度。

【4.例题解析】例题:将多项式x^2 - 4x + 4 分解因式。

解:利用完全平方公式,将多项式分解为(x - 2)^2。

【5.总结】初二因式分解奥数竞赛题是初中阶段数学竞赛的重要内容,学生需要熟练掌握各种因式分解方法,并在实际解题中灵活运用。

初二因式分解竞赛例题,练习题

初二因式分解竞赛例题,练习题

张铭乾2010-12-15初二因式分解竞赛例题,练习题一、提公因式法. 二、运用公式法. 三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +--- 注意这两个例题的区别!练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.分解因式:
⑴a6-b6;
⑵a2+b2+c2-2bc+2ca-2ab;
⑶a7-a5b2+a2b5-b7
例2.分解因式:
⑴a3+b3+c3-3abc;⑵x3+y3+3xy-1. 例3.分解因式:(x-1)3+(x-2) 3+(3-2x) 3例4.分解因式:x3-5x+4.
例5.分解因式:x5n+x n+1.
例6.分解因式:(x+1)4+(x2-1)2十(x-1) 4.例7.分解因式:a4+b4+c4-2a2b2-2b2c2-2c2a2
A卷
一、填空题
01.分解因式(a+b)2+(a-b) 2+c(a2+b2)=_________。

02
.计算
2
22
200220012003
2002200220012001
的结果等于_________。

03.已知x3+x2+x+1=0,那么x2008十2x2000+5x1996的值是_________。

04.分解因式(x2+3x-3)(x2十3x+4)-8=_________。

05.将多项式x2-4y2-9z2-12yz分解成因式的积,结果是_________。

06.把(1- x2)(1- y2)+4xy因式分解,结果是_________。

07.已知x-1是多项式x3-3x+k的一个因式,那么这个多项式的其它因式有_________。

08.分解因式(x2-1)(x4+x2+1)- (x3+1)2 =_________。

09.分解因式a3b+ab+30b的结果是_________。

10.分解因式(x-2y)x3-(y-2x) y3=_________。

二、解答题
11.分解因式a3+b3+c3-3abc.
12.已知x y,且x3-x=7,y3-y=7,那么x2+xy+y2的值是多少?
B卷
一、填空题
01.分解因式ab(c2-d2)-cd(a2-b2)=_________。

02. 若x2+y2+5
4
=2x+y,那么x y+y x= _________。

03.分解因式x4+x3+6x2+5x+5=_________。

04.分解因式x2(y-z)十y2 (z-x)+z2 (x-y) =_________。

05.已知a为正数,且a[a(a+b)+b]+b=1,则a+b的值是_________。

06.若x+1
x
=t,则x3+3
1
x
=_________。

07.若A=(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1),则A-2002的末位数字是_________。

08.分解因式(c2-b2+d2-a2)2-4(ab-cd)2=_________。

09.若两个不等实数m、n满足:m2+2m=a,n2+2n=a,m2+n2=3,那么实数a的绝对值是_________。

10.分解因式(x-1) 3+(x-2)3+(3-2x) 3=_________。

二、解答题
11.分解因式ab2+bc2+ca2+a2b+b2c+c2a+2abc.
12.是否存在两个正整数m和n,能使m2-n2= 2002
C卷
解答题
01.分解因式(x+y) (x+y+2xy)+(xy+1) (xy-1).
02.分解因式(xy-1)2-(x+y-2xy) (2-x-y).
03.分解因式(a+b-2x)3- (a-x) 3- (b-x) 3.
04.设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,则mn也可表示成两个整数的平方和,其形式是什么?
05.若a、b、c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c) 2+(c-a) 2的最大值是多少?
06.已知x3+y3-z3=96,xyz=4,x2+y2+z2-xy+xz+yz=12:则x+y-z的值是多少?07.立方体的每个面上都写有一个正整数,并且相对两个面所写两数之和都
相等,若18的对面写的是a,14的对面是b,35的对面写的是c,试求a2+b2+c2-ab-bc-ca的值。

08.已知a≠0,且14(a2+b2+c2)=(a+2b+3c) 2,求a :b :c.
09.已知
1
x a
a
,x3-2x2-3x+6=0,求2
2
1
2
a
a
的值。

10,若m、n是整数,且n2+3m2n2=30m 2+517,求3m2n2的值。

相关文档
最新文档