某些药物代谢动力学数据
药物毒理学 药物代谢动力学.

一、 动力学模型 (Kinetic model)
动力学模型
经典动力学模型 Classical Ttoxicokinetics
生理动力学模型 Physiological toxicokinetics
34
(一)经典动力学模型 Classical Ttoxicokinetics
房室概念和房室模型:
n = 1 dC/dt = - kC
零级消除动力学 (Zero order elimination kinetics)
n = 0 dC/dt = - k
40
浓度 对数浓度
零级 一级
零级 一级
41
一级消除动力学数学表达公式
dC kC1 dt Ct C0 ekt
ln Ct ln C0 kt
Carbamazepine 卡马西平
Rifampicin
利福平
Griseofulvin
灰黄霉素
Chronic alcohol intake 长期饮酒
Smoking
吸烟
26
常见的肝药酶抑制剂
Chloramphenicol Sodium valproate Sulphonamides Phenylbutazone Isoniazid Amiodarone Omeprazole
lg Ct lg C 0 k t 2.303
t lg C0 2.303
Ct
k
k ln C 0 ln Ct t
t1 / 2 ln 2 0.693
k
k
42
一级消除动力学的特点
1.体内药物浓度较低,完全在代谢排 泄的控制能力之内,此时药物按恒比 消除
药物毒理学理论第二章药物毒性代谢动力学

6.生殖毒性研究
药物对生殖能力\胚胎和胎儿生长发育及分娩前后动物 的影响.
生殖毒性研究时,中毒剂量的极限通常由母体毒性所决定。毒代动力学数据并非对所有 药物生殖毒性试验都是需要的,但在某些情况下,毒代动力学监测是有价值的,尤其是对母 体毒性低的药物。
在缺乏药理或毒理资料而难以断定全身中毒量是否足够时,毒代动力学原理有助于确 定在生殖过程不同阶段给药以达到的中毒量。
Volume (L/70kg)
40000
17000
300
250
30
27
6
Vd的临床应用意义
推测药物在体内的分布范围 Digoxin:0.5mg 0.78 ng/ml Vd = 645 L 主要分布于肌肉(包括心肌,其浓度为 血浓30倍)和脂肪组织
计算用药剂量:Vd=D/C
28
Plasma concentration
Acetaminophen
15 mg/L
>300mg/L
Chloroquine Digoxin Imipramine Lidocaine Nortriptyline Phenobarbital Phenytoin
20 ng/mL 1 ng/mL 200ng/mL 3 mg/L 100 ng/mL 15 mg/L 10 mg/L
250 ng/mL >2 ng/mL >1 mg/L >6 mg/L >500 ng/mL >30 mg/L >20 mg/L
根据靶浓度计算给药剂量和制定给药方案,药后还应及时监测3血4 药
浓度,调整剂量,以始终准确地维持在靶浓度水平。
10 峰浓度C(ss)max、谷浓度C(ss)min 11 蓄积因子R:
药物代谢动力学

还原
某些药物可被还原为更具活性的代谢物或其前体 。例如,某些硝基芳香族化合物可被还原为胺类 化合物。
结合
结合是药物代谢的最后一步,涉及药物与内源性 物质的结合,如葡萄糖醛酸、硫酸等。结合后的 药物通常更易排泄。
药物代谢的研究方法
体外实验
通过使用动物或人体组织离体实 验来研究药物代谢,如肝切片、 肝微粒体等。
02
药物吸收
药物吸收的机制
80%
被动扩散
药物通过细胞膜的被动转运进入 细胞,扩散速度与药物浓度差和 细胞膜通透性有关。
100%
主动转运
药物通过细胞膜的主动转运进入 细胞,需要载体蛋白的参与,具 有选择性。
80%
胞饮和胞吐作用
大分子药物或颗粒可通过细胞膜 的内吞或外排作用进入细胞。
影响药物吸收的因素
体内实验
通过给动物或人体注射药物,观 察其代谢过程和排泄情况,以了 解药物的代谢动力学特征。
计算模型
利用数学模型和计算机模拟技术, 对药物在体内的吸收、分布、代 谢和排泄过程进行模拟和预测。
04
药物排泄
药物排泄的途径与机制
1 2
肾脏排泄
药物通过肾小球滤过和肾小管排泄,以原形或代 谢产物的形式随尿液排出体外。
之比值。它反映了药物在体内的代谢和排泄能力。
计算方法02ຫໍສະໝຸດ Cl = (剂量 / Vd) / (峰浓度 - 谷浓度)
影响因素
03
Cl受多种因素影响,如肝肾功能、年龄等。
半衰期
定义
半衰期(t1/2)是指血药浓度下降一半所需的 时间。它反映了药物在体内的消除速度。
计算方法
t1/2 = 0.693 / Cl
药物剂型设计
全血水杨酸钠药物代谢动力学参数测定

水杨酸钠药物代谢动力学参数测定前言:本实验通过测定不同时间点的血药浓度,作出相应的药-时曲线,用一定的数学方法对曲线加以拟合,根据相关统计学指标最终确定药物的房室模型,并计算主要药代动力学参数。
1、实验目的掌握药物代谢动力学参数的意义及其测定方法2、实验动物家兔,体重2.5~3kg,性别不拘。
3、实验药品10%水杨酸钠、0.06%水杨酸钠标准液、10%三氯醋酸、10%三氯化铁、0.5%肝素、生理盐水、盐酸利多卡因注射液、蒸馏水。
4、实验器材电子天平、兔手术台、试管架、10ml试管、10ml离心管、5ml和1ml加样枪及枪头、5ml注射器、6号针头、722分光光度计、离心机、涡旋混匀器、手术器械、动脉插管、棉球、烧杯、头皮针。
5、实验方法 1. 取10支10ml试管,用0.5%肝素润湿管壁。
2. 家兔称重,固定于手术台,剪去颈部前被毛。
在盐酸利多卡因局部麻醉下作一侧颈动脉插管,取血3ml,摇匀试管内血液,防止凝血,血管钳夹闭导管,生理盐水纱布覆盖手术部位。
3. 沿对侧耳缘静脉缓慢注射10%水杨酸钠150mg/kg,于注射后1、3、5、10、20、50、80、110min分别动脉放血1.5ml入相应的试管并摇匀。
4. 取10支10ml离心管,分别标为“对照”、“标准”及相应“取血时间”,按下表加入样品及试剂。
试管号10%三氯醋酸(ml)全血(ml)0.06%水杨酸钠(ml)蒸馏水(ml)对照 4 1 0 1标准 4 1 1 0各取血时间 4 1 0 15. 各管用涡旋混匀器充分混匀,2000rpm,离心10min。
6. 各管取上清液3ml加入另一套干净试管中,在各加入10%三氯化铁0.3ml,混匀显色。
以对照管调零,在722分光光度计上读取520nm的OD值。
7. 求出水杨酸钠在家兔体内各时间点的血药浓度(Y)。
先求出标准管浓度(Y0)与OD值(X0)的比值(K),K=Y0/X0 ,Y=XK。
8. 绘出时-药曲线,以水杨酸钠浓度的对数值作为纵坐标,对应时间为横坐标作图,分析水杨酸钠动力学模型及药动学参数计算。
药代动力学主要参数意义及计算

应用:UC常用 于药物的剂量调 整、药物相互作 用研究以及新药 开发过程中的药 代动力学评价。
04
药代动力学参数在药物研发中的应用
药物吸收阶段的预测
预测药物在体内的吸收速率 评估药物在特定组织中的分布情况 预测药物在不同生理条件下的吸收程度 指导药物制剂的改进和优化
药物分布阶段的预测
预测药物在组织中的浓度 分布
添加标题
添加标题
添加标题
添加标题
开发新型药物代谢动力学模型满 足个性化治疗需求
加强国际合作与交流共同推动药 物代谢动力学领域的发展
感谢观看
汇报人:
参数计算方法:药代动力学参数的计算方法有多种包括非房室模型和房室 模型等需要据具体研究情况和数据选择合适的计算方法。
药代动力学参数的分类
吸收参数:描述 药物从给药部位 进入血液循环的 速度和程度
分布参数:描述 药物在体内的分 布情况包括组织 分布和细胞内分 布
代谢参数:描述 药物在体内代谢 的情况包括代谢 速率和代谢产物 的性质
表观分布容积(Vd)
定义:指药物 在体内分布达 到平衡后按测 得的浓度计算 药物应占有的
体液容积
计算方法: Vd=给药量/血
药浓度
意义:反映药 物在体内分布 的 广 泛 程 度 Vd 越大药物在体
内分布越广
影响因素:药 物的脂溶性、 组织亲和力、 血浆蛋白结合
率等
清除率(Cl)
定义:清除率是指 单位时间内从体内 清除的药物量与血 浆药物浓度之间的 比值
利用药代动力学 参数制定个性化 的给药方案
通过药代动力学 研究优化给药方 案以提高疗效和 降低不良反应
根据患者的生理 和病理情况调整 给药方案以确保 药物的有效性和 安全性
药代动力学参数

药代动力学参数
药代动力学,是将药物从投入体系中一直推移到最终的
受体(激活受体的功能的靶点)的过程,这一过程中药物经历了吸收,分布,代谢和排泄等多个步骤。
药代动力学研究是一种在医药领域中很常用的数据描述方法,是药物动力学效应的定量测定,公认的药代动力学研究以及其中的参数都是有定量的,随着不同的实验条件的变化,所获得的参数就会有所不同,比如吸收过程中的Cmax和Tmax等等,而这些参数式定量的研究药物动力学效应的表示形式,也是重要的看放和研究指标。
同样也是了解药物动力学特征的重要参数,比如AUC(积
分当量),T1/2(半衰期),Cmax(最大浓度)等,可以帮助解决
口服、滴眼、吸入或注射药物的动力学行为特征,并帮助完善药物研发以及药物调节,这样一来就可以保证药物有效使用,提高实际的药物疗效。
而在开发新药上,这些参数的测定也会在慢性疾病的治疗中扮演至关重要的角色。
药代动力学参数也即是药代动力学参数,其中,AUC(积
分当量)和T1/2(半衰期)也即药代动力学参数,可以从吸收、
代谢和排泄等各个步骤以及激活受体的功能的靶点的角度来解释它们的作用,比如Cmax(最大浓度)可以简单的描述药物在
体内的变化情况以及吸收、分布、代谢和排泄的时间和量等情况。
最后,药代动力学参数可以用于研究药物的动力学特征,以此提高药物的有效使用,更好地实现药物疗效。
药物代谢动力学章

消除 5单位/h 2.5单位/h
1.25单位/h
消除2.5单位/h 2.5单位/h 2.5单位/h
一级动力学: 恒比消除
back 图
零级动力学: 恒量消除
3、米氏动力学过程: aspirin, digoxin,ethanol等。 Michaelis-Menten方程:
VmC dC/dt =
A: t1/2 = 0.693/Kel = 0.693/0.5 = 1.39 h
Ⅱ、一级消除半衰期(half-life, t1/2)及意义: 血药浓度下降一半所需的时间。是决定
给药间隔时间等的重要参数。 于X,血但浆受药C物l及消V除d半双衰重期制(约t。1/2)虽然独立
Cl大, t1/2短; Vd 大, t1/2长。
T1/2在0.5~8 h之间,主要考虑TI和给药方便: TI低:每个T1/2或更短时间给药一次,或iv; TI高:每个T1/2或更长时间间隔给药。
T1/2在8~24 h: 每隔一个T1/2给药一次,必要时首剂加倍。
T1/2 > 24 h: 一天一次,必要时首剂加倍。
(六)稳态血药浓度(Css) Css是恒速连续给药达到稳态时的平均
当每t1/2给药一次时,其峰值(Css- max) 与谷值(Css- min)的比值为2,缩短给药 间隔可以减少Css波动(图)。
稳态血药浓度Css:药物吸收与消除速度 相等(经5个半衰期达到稳态浓度或从体内 消除)。
相对生物利用度可作为评价药物制剂质量
86 %
3、分析体内药物排泄、蓄积情况。 经过7个t1/2后:消除99.
药物B对白蛋白也具有高亲和力,但药物B给药量是白蛋白结合容量的100倍。 60 kg个体含60%体液, 6%体重是血浆. (一)单次静脉注射: 半衰期(T1/2=0. = RA/Kel ·Vd (静脉注射) 使用透析法或超离心法可将二者分离,以
药物代谢动力学1

药物代谢动力学〔pharmacokinetics〕简称药代动学或药动学,主要是定量研究药物在生物体内的过程〔吸收、分布、代谢和排泄〕,并运用数学原理和方法阐述药物在机体内的动态规律的一门学科。
确定药物的给药剂量和间隔时间的依据,是该药在它的作用部位能否到达平安有效的浓度。
药物在作用部位的浓度受药物体内过程的影响而动态变化。
在创新药物研制过程中,药物代谢动力学研究与药效学研究、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究的重要组成局部。
包括药物消除动力学:一级消除动力学〔单位时间内消除的药量与血浆药物浓度成正比,又叫恒比消除〕和零级消除动力学〔单位时间内体内药物按照恒定的量消除,又叫恒量消除〕药物代谢动力学的重要参数:1、药物去除半衰期〔half life,t1/2〕,是血浆药物浓度下降一半所需要的时间。
其长短可反映体内药物消除速度。
2、去除率〔clearance,CL〕,是机体去除器官在单位时间内去除药物的血浆容积,即单位时间内有多少体积的血浆中所含药物被机体去除。
使体内肝脏、肾脏和其他所有消除器官去除药物的总和。
3、表观分布容积〔apparent volume of distribution,V d〕,是指当血浆和组织内药物分布到达平衡后,体内药物按此时的血浆药物浓度在体内分布时所需的体液容积。
4、生物利用度〔bioavailability,F〕,即药物经血管外途径给药后吸收进入全身血液循环药物的相对量。
可分为绝对生物利用度和相对生物利用度。
体内过程即药物被吸收进入机体到最后被机体排出的全部历程,包括吸收、分布、代谢和排泄等过程。
其中吸收、分布和排泄属物理变化称为转运。
代谢属于化学变化亦称转化。
机体对药物作用的过程,表现为体内药物浓度随时间变化的规律。
药物动力学是研究药物体内过程规律,特别是研究血药浓度随时间而变化的规律。
1.吸收〔absorption〕药物从给药部位进入血液循环的过程称为吸收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磺胺嘧啶sulfadiazine
100
57
54
0.55
0.29
9.9
磺胺异恶唑sulfafurazole
96
49
91.4
0.33
0.15
6.6
磺胺甲恶唑sulfamethoxazol
100
14
62
0.32
0.21
10.1
舒林酸sulindac
-
0
99.4
1.5
2
15
特布他林terbutaline
49
41
96
-
0.11
0.8
氟尿嘧啶fluorouracil
28
<10
8~12
16
0.25
11
氟奋乃静fluphenazine
-
-
-
-
20
14.7~15.3
呋噻米furosemide
61
66
98.8
2.0
0.11
92
庆大霉素gentamicin
-
>90
<10
0.82
0.31
2~3
格列本脲glibenclamide
52
69
15
10.4
1.3
2.1
利福平rifampin
-
7
89
3.5
0.97
3.5
东莨菪碱scopolamine
27
6
-
16
1.4
2.9
索他洛尔sotalol
60
60
54
-
0.7
9
链激酶streptokinase
-
0
-
0.15
0.016
1.4
链霉素streptomycin
-
50~60
48
1.2
0.25
-
<1
-
5.5
0.16
0.33
阿托品atropine
50
57
14~22
5.9
1.7
4.3
硫唑嘌呤azathioprine
60
<2
-
57
0.81
0.16
倍他米松betamethasone
72
4.8
64
2.9
1.4
5.6
博莱霉素bleomycin
-
68
-
1.1
0.27
3.1
布美他尼bumetanide
81
1.5~1.9
7~14
青霉素G penicillin G
22
70
60
-
0.2
0.6
青霉素V penicillin V
60~73
26~65
75~89
-
0.5
0.5
戊巴比妥pentobarbital
>90
<1
35~45
0.8
1
35~45
哌替啶pethidine
52
1~25
58
17
4.4
3.2
苯巴比妥phenobarbital
-
-
70~80
18
13
12
普罗帕酮propafenone
3~40
<1
97
-
-
9~25(PM) 3~8(EM)
普萘洛尔propafenone
26
<0.5
87
16
4.3
3.9
乙胺嘧啶pyrimethamine
-
65
87
0.41
2.9
83
奎尼丁quinidine
80
18
87
4.7
2.7
6.2
雷尼替丁ranitidine
1.2
0.09
2.1
头孢噻肟cefotaxime
-
50
36
3.7
0.23
1.1
头孢拉定cefradine
>90
86
14
5.1
0.25
0.77
头孢曲松ceftriaxone
-
46
90~95
0.24
0.16
7.3
头孢呋辛cefuroxime
-
96
33
0.94
0.19
1.7
苯丁酸氮芥chlorambucil
diltiazem
44
<4
78
12
3.1
3.7
苯海拉明diphenhydramine
72
1.9
78
6.2
4.5
8.5
丙吡胺disopyramide
83
55
-
1.2
0.59
6.0
多巴酚丁胺dobutamine
-
-
-
59
0.2
2.4
阿霉素doxorublicin
5
<15
79~85
17
25
30
多西环素doxycycline
某些药物代谢动力学数据
药物
生物利用度(%)
尿排泄(%)
血浆蛋白结合(%)
清除率(ml·min-1·kg-1)
分布容积(L/kg)
半衰期(h)
醋丁洛尔acebutolol
37
40
26
6.8
1.2
2.7
阿昔洛韦aciclovir
15~30
75
15
3.37
0.69
2.4
别嘌醇allopurinol
80~90
5
锂盐lithium
100
95
0
0.35
0.79
22
洛伐他汀lovastatin
5
<10
95
5~21
-
1.1~1.7
巯嘌呤mercaptopurine
12
22
19
11
0.56
0.9
美沙酮methadone
92
24
89
1.4
3.8
35
甲氨蝶呤methotrexate
70
48
34
2.1
0.55
7.2
甲氧氯普胺metoclopramide
46
0
100
1.9
66
25d
阿米替林amitriptyline
48
<2
94.8
11.5
15
21.5
氨苄西林ampicillin
62
82
18
1.7
0.28
1.3
阿斯匹林aspirin
68
1.4
49
9.3
0.15
0.25
阿替洛尔atenolol
56
94
<5
2.4
0.95
6.1
阿曲库铵atracurium
-
<5
99.3
0.036
0.15
48
哌唑嗪prazosin
68
<1
95
3.0
0.6
2.9
泼尼松龙prednisolone
82
26
90~95
8.7
1.5
2.2
泼尼松prednisone
80
3
75
3.6
0.97
3.6
普鲁卡因胺procainamide
83
67
16
2.7
1.9
3.0
异丙嗪promethazine
50
0.68
0.18
1.0
头孢克洛cefaclor
-
52
25
6.1
0.36
0.67
头孢氨苄cefalexin
90
91
14
4.3
0.26
0.9
头孢孟多cefamandole
-
96
74
2.8
0.16
0.78
头孢唑林cefazolin
-
80
89
0.95
0.12
1.8
头孢哌酮cefoperazone
-
29
89~93
87
<1
99
2.6
0.29
1.3
氯霉素chloramphenicol
75~90
25
53
2.4
0.94
4.0
氯喹chloroquine
89
61
61
1.8
115
41
氯噻嗪chlorothiazide
9~56
92
94.6
4.5
0.20
1.5
氯丙嗪chlorpromazine
32
〈1
95~98
8.6
21
30
76
20
40
6.2
3.4
5.0
美托洛尔metoprolol
38
10
11
15
4.2
3.2
甲硝唑metronidazole
99
10
10
1.3
0.74
8.5
美西律mexiletine
87
4~15
63
6.3
4.9
9.2
米诺环素minocycline
95~100
11
76