九年级上册数学一元二次方程应用(增长率问题)
北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

想平均每天赢利 180 元,每张贺年卡应降价多少元?
方法指导:找出等量关系式,每张贺年卡赢利的钱×张数=赢
利总钱数.
解:设每张贺年卡应降价x元,则现在的利润是(0.3-x)元,多
售出200x÷0.05=4 000x(张).
根据题意,得(0.3-x)(500+4 000x)=180,
整理,得400x2-70x+3=0.
进价
单个利润
(3)总利润=____________×销量.
典例讲解
例1 某批发市场礼品柜台春节期间购进大量贺年卡,一种贺
年卡平均每天可售出 500 张,每张赢利 0.3 元. 为了尽快减少库
存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡
的售价每降价 0.05 元,那么平均每天可多售出 200 张. 摊主要
赚8000元利润,售价应定为多少,这时应进货为多少个?
方法指导:设商品单价为(50+x)元,则每个商品的利润为
[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个
涨价x元,其销售量会减少10x,故销售量为(500-10x)个,
根据每件商品的利润×件数=8000,则(500-10x)·[(50+x)-
出等量关系列出方程,求出x的值,即可得出答案.
解:设这个增长率是x.根据题意,得
2 000×(1+x)2=2 880.
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:这个增长率是20%.
例3 百佳超市将进货单价为40元的商品按50元出售时,能卖
500个,已知该商品每涨价1元,其销售量就要减少10个,为了
20%
率相同,那么这个增长率是______.
九年级数学上册 第二章 一元二次方程 6 应用一元二次方程 如何用一元二次方程解决增长率问题?素材

如何用一元二次方程解决增长率问题?
答案:求增长率问题时,应正确运用增长率公式:
【举一反三】
典例:市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
思路导引:一般来说,此类问题应先分析数量关系式,正确运用增长率的公式,设出相关未知数,表示关系式。
设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
标准答案:每年人均住房面积增长率应为20%.
1。
人教版初三数学上册一元二次方程的应用—增长率(下降率)问题

【学习过程】 一、自主学习: (一)复习巩固 1、解下列方程:(1)25)5(2=+x (2) 4122=++x x2、解应用题的一般步骤: 审、 设、列、解、检验、答(二)自主探究知识点:增长(降低)率中的数量关系(看视频:“增长率问题”)探究(课本P19-20):两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?思考:你是如何理解下降额与下降率的?它们之间的联系与区别是什么?分析: 甲种药品成本的年平均下降额为乙种药品成本的年平均下降额为乙种药品成本的年平均下降额较大,但是,年平均下降额(元)不等同于年平均下降率。
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为元,两年后甲种药品成本为元,依题意,得解方程,得答:甲种药品成本的年平均下降率约为.算一算:乙种药品成本的年平均下降率是多少?比较:两种药品成本的年平均下降率。
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?(三)归纳总结: 1、原有量原有量—现有量增长率=2、平均增长率公式:nx a )1(±=现有量其中 a 是增长(或降低)的原有量,x 是平均增长率(或降低率),n 是增长(或降低)的次数。
(四)、自我尝试:练习1:青山村种的水稻2001年平均每公顷产7200 kg ,2003年平均每公顷产8450 kg ,求水稻每公顷产量的年平均增长率.练习2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?三、课堂检测:1、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为2、由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.由原来每斤12元连续两次降价a %后售价下调到每斤5元,下列所列方程中正确的是( )A .12(1+a %)2=5B .12(1-a %)2=5C .12(1-2a %)=5D .12(1-a 2%)=53、据调查,2011年5月兰州市的房价均价为7600/m 2,2013年同期将达到8200/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为3某人在银行存了400元钱,一年后连本带息又自动转存一年,两年后到期后连本带息一共取款484元,设年利率为x ,则列方程为:,则年利率是 。
人教版初三上数学一元二次方程实际问题-增长率模型

增长率模型1.某种植基地2018年蔬菜产量为a吨,通过技术改进,该种植基地实现蔬菜产量持续增长。
(1)若种植基地2019年蔬菜产量为b吨,用含a,b的代数式表示2019年该种植基地蔬菜产量的增长率.(2)若2019年该种植基地蔬菜产量的增长率为x,则2019年该种植基地蔬菜产量为多少?(3)预计该种植基地蔬菜产量在三年内持续增长,且蔬菜产量的年平均增长率为t,用含a,t的代数式表示2020年该种植基地蔬菜产量和2021年该种植基地蔬菜产量.2.某口罩生产厂生产的口罩1月份平均日产量为20000,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个。
(1)求口罩日产量的月平均增长率。
(2)按照这个增长率,预计4月份平均日产量为多少?3.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2017年交易额为50万元,2019年交易额为72万元。
(1)求2017年至2019年“双十一”交易额的年平均增长率;(2)如果按(1)中的增长率,到2020年“双十一”交易额是否能达到100万元?请说明理由.4.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎。
(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?5.某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?。
专题(四) 一元二次方程的实际应用——平均变化率与利润问题

(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至
多少元?
解:设这种水果每斤的售价降价 x 元,则(2-x)(100+200x) 1 =300,即 2x2-3x+1=0,解得 x1=1,x2= .当 x=1 时,每天的 2 1 销量为 300 斤;当 x= 时,每天的销量为 200 斤.为保证每天至 2 1 少售出 260 斤,∴x2= 不合题意,舍去.此时每斤的售价为 4-1 2 =3(元).答:销售这种水果要想每天盈利 300 元,张阿姨需将每 斤的售价降至 3 元
4.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每
斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤
的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260 斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售量是 ___________________ 斤(用含x的代数式表示); (100+200x)
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予
以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物
业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优
惠?
解:(1)设平均每次下调的百分率为 x,依题意得 5000(1-x)2 19 =4050,解得 x1=10%,x2= (不合题意,舍去),则平均每次下 10 调 的 百 分 率 为 10% (2) 方 案 ① 的 房 款 是 4050×100×0.98 = 396900( 元 ) , 另外需在两年内付物业管理费 1.5 × 100 × 12 × 2 = 3600(元);方案②的房款是 4050×100=405000(元),故在同等条 件 下 方 案 ① 需 付 款 396900 + 3600 = 400500( 元 ) . ∵400500 < 405000,∴选方案①更优惠
九年级上册数学用一元二次方程解决增长率问题

巩
固
训
练
1.(《名校课堂》21.3第2课时习题)共享单车为市民出行带来了方便,某单车公司第 一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多 440辆.设该公司 第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( A ) A.1000(1+x)2=1000+440 B.1000(1+x)2=440 C.440(1+x)2=1000 D.1000(1+2x)=1000+440 2.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过 严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后, 现在仅卖 98 元 / 瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分 率. 解:设该种药品平均每场降价的百分率是x. 由题意,得200(1-x)2=98. 解得x1=1.7(不合题意舍去),x2=0.3=30%. 答:该种药品平均每场降价的百分率是30%.
名
校
讲
坛
【方法归纳】销售利润问题中常见的公式: ①利润=售价-成本; ②利润率= ×100%.
名
校
讲
坛
跟踪训练2:一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司 规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过 60棵,每 增加1棵,所出售的这批树苗每棵售价均降低 0.5元,但每棵树苗最低售价不得少 于100元,该校最终向园林公司支付树苗款 8800元,请问该校共购买了多少棵树 苗? 解:因为60棵树苗售价为120元×60=7200元<8800元, 所以该校购买树苗超过60棵. 设该校共购买了x棵树苗. 由题意,得x[120-0.5(x-60)]=8800. 解得x1=220,x2=80. 当x=220时,120-0.5×(220-60)=40<100,∴x=220(不合题意,舍去); 当x=80时,120-0.5×(80-60)=110>100,∴x=80. 答:该校共购买了80棵树苗.
22.3.2 一元二次方程的应用增长(降低)率问题-2020-2021学年九年级数学上学期同步精品课件(华东师大版)

原价
第一次调价
第二次调价
40
401 x
(2)可列方程: 401 x2 32.4
401 x2
(3)若基数为a,每次的降低率为x,则n次降低后的结果为b,则
降低率问题:a1 xn b
(1)若基数为a,每次的增长率为x,则n次增长后的结 果为b,则
数
学
小结
这节课我学到了什么? 我的收获是…… 我还有……的疑惑
P 42
习题 22.3
第2、6题
选做题
1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙, 另外三边用长为30米的篱笆围成。已知墙长为18米(如图所示),设这 个苗圃园垂直于墙的一边的长为x米。 (1)若苗圃园的面积为72平方米,求x; (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最
经 瓜的总产量为60000kg,求西瓜亩产量的增长率。 典
数
学
学以致用
例 3 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染
中平均一个人传染了几个人?
开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用
代数式表示,第一轮后共有_1___x_人患了流感;第二轮传染中,这些人中
2016年
2017年
2018年
300
3001 x
(2)可列方程: 3001 x2 363
3001 x2
(3)若基数为a,每次的增长率为x,则n次增长后的结果为b,则
增长率问题:a1 xn b
探究发现
某商场有一种线衣从原来的每件40元,经两次调价后,调至每件 32.4元。
人教版九年级上册第21章 《一元二次方程》实际应用:平均增长率问题

《一元二次方程》实际应用:平均增长率问题1.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?2.随着全球疫情的爆发,医疗物资的极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天,现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?3.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?4.为了创建全国文明城市,提升城市品质,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2017年的绿色建筑面积为950万平方米,2019年达到了1862万平方米.若2018年,2019年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求2018年,2019年绿色建筑面积的年平均增长率;(2)若该市2020年计划推行绿色建筑面积达到2600万平方米,如果2020年仍保持相同年平均增长率,请你预测2020年该市能否完成目标.5.某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.6.某磷肥厂去年4月份生产磷肥500t,因管理不善,5月份的磷肥产量减少了10%;从6月份起强化了管理,产量逐月上升,7月份产量达到648t.求该厂6月份、7月份产量的月平均增长率.7.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?8.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?9.某村种植水稻,2017年平均每公顷产2400千克,2019年平均每公顷产5400千克,每年的年平均增长率相同并且年平均增长率在三年内保持不变.(1)求每年的年平均增长率;(2)按照这个年平均增长率,预计2020年每公顷的产量为多少千克?10.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?11.小明家在2016年种的果总产量为12吨,到2018年总产量要达到17.28吨.(1)求每年的平均增长率;(2)由于市场价格的不稳定,小明家2018年的果园预备采取两种销售方案进行销售:方案一:按标价每千克5.8元,然后打8折进行销售;方案二:按标价每千克5.8元,然后每吨优惠400元现金销售.请问哪种方案得钱多?12.幸福村种的水稻2006年平均每公顷产7200千克,2018年平均每公顷产8450千克,求水稻每公顷产量的年平均增长率.13.某商场将某种商品的售价从原来的每件40元两次调价后调至每件32.4元.①若该商场两次调价的降低率相同,求这个降低率.②经调查,该商品原来每月可销售500件,商品每降价0.2元,即可多销售10件,那么两次调价后,每月可销售商品多少件?14.近年来,在市委市政府的宏观调控下,我市的商品房成交均价涨幅控制在合理范围内,由2017年的均价5000元/m2上涨到2019年的均价6050元/m2.(1)试求这两年我市商品房成交均价的年平均增长率;(2)如果房价继续上涨,按(1)中上涨的百分率,请预测2020年我市的商品房成交均价.15.江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率;(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.16.2016年,某市某楼盘以每平方米8000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米6480元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款40万元,张强的愿望能否实现?为什么?(房价每平方米按照均价计算)17.倡导全民阅读,建设书香社会.【调査】目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.【百度百科】某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.【问题解决】(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.18.在国家政策的宏观调控下,某市的商品房成交价由今年9月份的14000元/m2下降到11月份的12600元/m2.(1)问10、11两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破12000元/m2?请说明理由.19.某种商品标价500元/件,经过两次降价后为405元/件,并且两次降价百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为380元件,两次降价共售出100件,若两次降价销售的总利润不低于3850元,则第一次降价后至少要售出该商品多少件?20.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年3月,国内某企业口罩出口订单额为1000万元,2020年5月该企业口罩出口订单额为1440万元.求该企业2020年3月到5月口罩出口订单额的月平均增长率.参考答案1.解:(1)设每月盈利的平均增长率为x,依题意,得:6000(1+x)2=7260,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25.又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线.3.(1)解:设一个人平均感染x人,可列方程:1+x+(1+x)x=64,解得:x1=7,x2=﹣9(舍去).故这种病毒每轮传播中一个人平均感染7人;(2)(7+1)3=512(人)答:经过三轮传播后一共有512人被感染.4.解:(1)设2018年,2019年绿色建筑面积的年平均增长率为x,根据题意得,950(1+x)2=1862,解得x1=40%,x2=﹣2.4(舍去).故2018年,2019年绿色建筑面积的年平均增长率为40%;(2)1862×(1+40%)=2606.8(万平方米),∵2606.8>2600,∴2020年该市能完成目标.5.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(应舍去).答:5月、6月游客人数的平均增长率是32%.6.解:设该厂6月份、7月份产量的月平均增长率为x.500×(1﹣10%)×(1+x)2=648,解得x1=0.2,x2=﹣0.2(不符合题意,舍去).答:该厂6月份、7月份产量的月平均增长率为20%.7.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.8.解:(1)设每年盈利的年增长率为x,根据题意得:1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:每年盈利的年增长率为20%;(2)2160(1+0.2)=2592,2592>2500答:2019年该公司盈利能达到2500万元.9.解:(1)设每年的年平均增长率为x,依题意得:2400(1+x)2=5400,解得x1=0.5=50%,x2=﹣2.5(舍去).答:每年的年平均增长率为50%;(2)由题意,得5400×(1+0.5)=8100(千克).答:预计2020年每公顷的产量为8100千克.10.解:设这两个月的产值平均月增长的百分率为x,依题意,得:50000(1+x)2=72000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:这两个月的产值平均月增长的百分率是20%.11.解:(1)设每年的平均增长率为x,根据题意,得12(1+x)2=17.28解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每年的平均增长率为20%;(2)方案一销售得到的钱=17.28×1000×5.8×0.8=80179.2(元)方案一销售得到的钱=17.28×1000×5.8﹣17.28×400=93312(元).由于93312>80179.2.所以,按方案二销售得钱多.12.解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450,解得:x1=≈0.0833,x2=﹣=﹣2.0833(应舍去).答:水稻每公顷产量的年平均增长率约为8.33%.13.解:①设降低率为x,由题意得:40(1﹣x)2=32.4,解得:x1=10%,x2=1.9(不合题意舍去),答:降低率为10%;②降价后多销售的件数:[(40﹣32.4)÷0.2]×10=380(件),两次调价后,每月可销售该商品数量为:380+500=880(件).故两次调价后,每月可销售该商品880件.14.解:(1)设这两年我市商品房成交均价的年平均增长率是x,根据题意得:5000(1+x)2=6050,(1+x)2=1.21,解得:x1=10%,x2=﹣2.1(不合题意,舍去).答:这两年我市商品房成交均价的年平均增长率是10%;(2)2020年我市的商品房成交均价为:6050(1+10%)=6655(元).答:2020年我市的商品房成交均价是6655元.15.解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得:500(1+x)2=720.解得=20% (舍去).答:这两年香草源旅游收入的年平均增长率为20%;(2)依题意得:.答:n年后的收入表达式是:.16.解:(1)设平均每年下调的百分率为x,则8000(1﹣x)2=6480.解得:x1=0.1=10%,x2=1.9(不合题意舍去)答:平均每年下调的百分率为10%.(2)6480(1﹣10%)×100=583200=58.32(万元)由于20+40=60>58.32,所以张强的愿望能实现.17.解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.18.解:(1)设10、11两月平均每月降价的百分率是x,则10月份的成交价是14000﹣14000x=14000(1﹣x),11月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:10、11两月平均每月降价的百分率是5%;(2)会跌破12000元/m2.如果按此降价的百分率继续回落,估计12月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5<12000.由此可知12月份该市的商品房成交均价会跌破12000元/m2.19.解:(1)设该种商品每次降价的百分率为x,依题意,得:500(1﹣x)2=405,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%;(2)设第一次降价后售出该商品y件,则第二次降价后售出该商品(100﹣y)件,依题意,得:[500×(1﹣10%)﹣380]y+(405﹣380)(100﹣y)≥3850,解得:y≥30.答:第一次降价后至少要售出该商品30件.20.解:设该企业2020年3月到5月口罩出口订单额的月平均增长率为x,依题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该企业2020年3月到5月口罩出口订单额的月平均增长率为20%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程应用(增长率问题)
教学目标: 1、使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.
2、让学生在经历运用一元二次方程解决一些有关增长率问题的过程
中体会一元二次方程的应用价值。
3、在应用一元二次方程的过程中,提高学生的分析问题、解决问题
的能力。
教学重点: 弄清有关增长率的数量关系.
教学难点: 利用有关增长率数量关系列方程的方法.
教学过程:复习提问
1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?
(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?
(3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?
新课
例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?
分析:用译式法讨论列式
一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.
二月份产量为(5000+5000x)=5000(1+x)吨;
三月份比二月份增产5000(1+x)x吨,
三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.
解:设平均每月增长的百分率为x,根据题意,
得5000(1+x)2=7200,即(1+x)2=1.44,
∴1+x=±1.2,x
1=0.2,x
2
=-2.2(不合题意,舍去).
答:平均每月增长率为20%.
例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?
解:设每月增长率为x,依题意得
50+50(1+x)+50(1+x)2=182,
答:二、三月份平均月增长率为20%.
3、为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,求平均每次降价的百分率。
归纳总结
布置作业:练习 1题习题2.5 1题
课外作业:
(1)某城市现有人口100万,2年后为102.01万,求这个城市的人口的平均年增长率.
(2)某商店1月份的利润是2000元,3月份的利润达到2645元,
这两个月的利润平均增长的百分数是多少?
(3)某城市按该市的“十五“经济发展规划要求,2017年的社会总产值要比2017年增长21%,求平均每年增长的百分率。
4)某商店二月份营业额为50万元,春节过后三月份下降了30%,四月份有回升,五月份又比四月份增加了5个百分点(即增加了5%),营业额达到48.3万元.求四、五两个月增长的百分率.
5、某工厂元月份生产机床1000台,计划在二、三月份共生产2500台,求二、三月份平均每月增长率。
(三)巩固练习选做课本复习题一B组第4、5题。
(四)课堂小结
运用一元二次方程解实问题的关键是:找出问题中的等量关系,以便引出方程,要注意检查求出的方程的解是否符合实际情况。