2-3线性方程组有解的判定定理

合集下载

线性代数第三章线性方程组第4节线性方程组解的结构

线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.

k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6

2.6线性方程组解的一般理论

2.6线性方程组解的一般理论

x4
0
,
1
,
0
x5 0 0 1
2 2 6
1
1
5
1
1
,2
0
,3
0
0
1
0
0
0
1
一般解 c11 c22 c33
(c1, c2, c3为任意常数.)
8
三、非齐次线性方程组解的结构
x11 x22 xnn (I) 0 (II)
第二章 线性方程组 §2.6 线性方程组解的一般理论
一、线性方程组有解的判定定理 二、齐次线性方程组解的结构 三、非齐次线性方程组解的结构
1
一、线性方程组有解的判定定理
定理1 线性方程组 x11 x22 xnn (I) 有解
r( A) r( A) 推论1 线性方程组(I)无解 r(A) r( A) 推论2 线性方程组(I)有唯一解 r(A) r(A) n 推论3 线性方程组(I)有无穷多解 r(A) r(A) n
方程组的三个解向量 1,2 ,3满足
1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求 非 齐 次 线 性 方 程 组 一 的 般 解.
19
解 A是m 3矩阵, r(A) 1,
导出组的基础解系中有 含3 1 2个线性无关的解向量.
令1 2 a, 2 3 b, 3 1 c,则
其中k1 , k 2为任意实数.
21
A
2 1
3 0
1 2
1 2
3 6
0 0
0 0
1 0
1 0
1 0
5 0
0
0
4
5
3

线性方程组的解的判定

线性方程组的解的判定

1 2 0
5 7 0
2 5
,
0
得同解方程组:
x1
x2
x3 5x4 2, 2x3 7 x4 5,

:
x1 x2
2
x3 x3
5 7
x4 x4
2, 5,
令 x3=c1, x4=c2, 则方程组的通解为:
x1 c1 5c2 2,
x2 c1 7c2 5,
x3
c1 ,
x4 x4
,
令 x3=c1, x4=c2, 方程组的通解为:
x1
1 3
c1
7 3
c2
x2
5 3
c1
1 3
c2
,
(c1 , c2
R).
x3 c1
x4 c2
求解齐次线性方程组步骤:
将系数矩阵用初等行变换化成行最简形矩阵, 写 出同解方程组(用自由未知量表示) , 即可写出其通解.
对于齐次线性方程组 Amn x 0 有如下推论: 推论1 若 m<n , 方程组 Amn x 0必有非零解. 推论2 若 m=n , 方程组 Amn x 0有非零解的充要 条件是 | A | 0.
三、矩阵方程有解的判定
定理3.3 矩阵方程AX=B有解的充要条件 是 R(A)=R(A|B).
利用此定理可以证明如下的矩阵秩的不等式: 定理3.4 设 AB=C, 则 R(C) min{ R(A), R(B)}.
2个定理的证明均见课本Page90.
x1
b1
记: 系数矩阵为A=(aij),
x
x2
,
b
b2
,
则线性方程组可记为: Ax=b. xn
bm
问题:如何利用系数矩阵 A 和增广矩阵 B=(A|b) 来 讨论线性方程组 Ax=b 的解?

4.1 线性方程组有解的条件

4.1 线性方程组有解的条件

(1) 0, 3, R( A) R(B) 3, 方程组有唯一解; 故: (2) 0, R( A) 1, R(B) 2, 方程组无解;
(3) 3, R( A) R(B) 2, 方程组有无限多个解。
1 1 2 3 1 0 1 1
此时
B
r
0
3
3
6
r
0
1
1
2
,
0 0 0 0 0 0 0 0
x1 1 1 1 2
x2 x3
c1
1
0
c2
0
2
0
1 2
, c1
, c2
R.
x4 0 1 0
例4
对于线性方程组
(1 x1
)
(1
x1
)
x2 x2
x3 x3
0, 3,
书本P112,T6
x1 x2 (1 )x3 ,
问取何值时,有解?有无穷多个解? 并求无穷多解的通解。
c1n d1
c2n
d2
M M
crn
dr
0 0
d
r 1
0
M M
0 0
初等变换不改变矩阵的秩,故有:R( A) R( A) r,
增广矩阵B 通过初等行 变换化为阶
梯型矩阵B
R(B)
R(B)
r, r
1,
当dr1 0, 当dr1 0.
故:
方程组(1)有解的充分必要条件为 dr1 0 ,此时R(A)=R(B)。
令 x3 c1, x4 c2,把它写成通常的参数形式
x1
21
4 3
c2
,
x3 c1,
x4
c2 ,
5

4.2线性方程组有无解的判定

4.2线性方程组有无解的判定
1


1
Q r ( A) = r ( A ) = 3, ∴ 原方程组有惟一解:x1 = −
λ
, x2 =
2
λ
, x3 =
λ −1 . λ
当λ
1 1 − 2 − 3 1 0 − 1 − 1 = −3 时, A → 0 − 3 3 6 → 0 1 − 1 − 2(行简化阶梯形矩阵) 0 0 0 0) 0 0 0 0
是否有解线性方程组的线性组合不是且表出方式不惟一的线性组合为何值时且表出方式惟一的线性组合为何值时的线性组合不能表为为何值时的线性组合不能表为方程组有惟一解故惟一线性表出为可由行简化阶梯形矩阵阶梯形矩阵方程组有无穷多解其一般解为且表出方式不惟一
§4.2 线性方程组有无解的判定 线性方程组的一般形式:
同解方程组为
5 5 x1 − x3 + x4 = 0 3 3 x + 7 x − 1 x = 1, 2 3 3 3 4
故一般解为
5 5 x1 = x3 − x4 3 3 ( x3 , x 4为自由未知量 ). x = 1− 7 x + 1 x , 3 4 2 3 3
1 −1 1 3 1 −1 2 −1 M 3 1 −1 2 −1 MM 3 →0 0 −5 2 −6 解(1) A = 4 −4 3 −2 M 6 → 0 0 −5 2 MM −6 = 4 1 −1 −3 1 M 1 0 0 −5 0 MM −2 0 0 0 2 (阶梯形矩阵)
⇔ r ( A) = r ( A ) = n,
有无穷多解 ⇔ r ( A) = r ( A ) < n.
解线性方程组的步骤: (1)利用矩阵的初等行变换将方程组的增广矩阵化 为阶梯形矩阵,判断是否有解. (2)有解时,继续利用矩阵的初等行变换将阶梯形 矩阵化为行简化阶梯形矩阵. (3)根据行简化阶梯形矩阵,写出方程组的解.

3.向量组的线性相关性与线性方程组的解

3.向量组的线性相关性与线性方程组的解

§3.1 线性方程组解的判定1.定理3.1:n 元线性方程组AX=b ,其中A=(a 12a 12•••a 1n a 21a 22•••a 2n••••a m1a m2•••a mn),x=( x 1x 2••x n ) ,b=( b 1b 2••b m )(1)无解的充要条件是R(A)<R(A,b);(2)有惟一解的充要条件是R(A)=R(A,b)=n , (3)有无穷多解的充要条件是R(A)=R(A,b)<n.注:(1)R(A,b)先化为行阶梯形,判别。

有解时再化为行最简形求解。

(2)R(A)=m 时,AX=b 有解。

(3)R(A)=r 时,有n-r 个自由未知量,未必是后面n-r 个。

2.定理3.2:n 元线性方程组AX=0(1)有惟一解(只有零解)的充要条件是R(A)=n ; (2)有无穷多解(有非零解)充要条件是R(A)<n .注:(1)m <n,AX=0必有非零解。

3.定理3.3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B) 求解线性方程组例1. {4x 1+2x 2−x 3=23x 1−x 2+2x 3 =1011x 1+3x 2 =8例2. {2x 1+x 2−x 3+x 4 =14x 1+2x 2−2x 3+x 4=22x 1+x 2 −x 3−x 4 =1例3. 求解齐次线性方程组{3x 1+ 4x 2−5x 3+ 7x 4 =02x 1−3x 2+3x 3− 2x 4 =04x 1+11x 2−13x 3+16x 4=07x 1−2x 2+ x 3+ 3x 4 =0例4.写出一个以X=C 1(2−310)+C 2(−2401)为通解的齐次线性方程组。

例5(每年).(1)λ取何值时,非齐次线性方程组{ λx 1+x 2+x 3=1x 1+λx 2+x 3=λx 1+x 2+λx 3=λ2(1)有惟一解;(2)无解;(3)有无穷多组解?并在有无穷多组解时求出通解.(2)非齐次线性方程组{x 1+x 2+2x 3=02x 1+x 2+ax 3=13x 1+2x 2+4x 3=b当a,b 取何值时,(1)有惟一解;(2)无解;(3)有无穷多组解?并求出通解.例5(12/13学年).设A=(λ110λ−1011λ), b=(a11),已知Ax=b 存在两个不同的解:(1)求λ,a;(2)求Ax=b 的通解。

2-3工程数学非齐次线性方程组

2-3工程数学非齐次线性方程组
14
x1 = x2 + x4 在对应的齐次线性方程 组 中,取 x3 = 2x4 x2 1 0 = 及 x4 0 1
x1 1 1 则 = 及 x 0 2 3 得对应的齐次线性方程 组的基础解系 1 1 1 0 ξ1 = , ξ 2 = 0 2 0 1
9
例1 求解方程组
x1 − 2 x2 + 3 x3 − x4 = 1, 3 x1 − x2 + 5 x3 − 3 x4 = 2, 2 x + x + 2 x − 2 x = 3. 1 2 3 4
解 对增广矩阵 B施行初等行变换
1 − 2 3 − 1 1 B = 3 − 1 5 − 3 2 2 1 2 − 2 3
系,∗是方程组A X = b的一个特解,则 η X = K1ξ1 + K 2 ξ 2 + L + K n − r ξ n − r + η ,

K1 , K 2 , L, K n为任意实数. 的通解.
是方程组 A X = b
6
根据以上定理可知,当方程组( 根据以上定理可知,当方程组(2.3.1)有解时,它 )有解时, 有唯一解的充要条件是其导出组只有零解; 有唯一解的充要条件是其导出组只有零解;它有无 穷多组解的充要条件是其导出组( 穷多组解的充要条件是其导出组(2.2.1)有无穷多 ) 组解。 组解。
第三节
非齐次线性方程组
一、解的判定和解的结构 二、用初等行变换求线性方程组的通解
1
一、非齐次线性方程组有解的判定条件
对非齐次线性方程组

线性方程组的解的判定

线性方程组的解的判定

1 4
1
r1
- 2r2
0
0 1
-2 2
-5 3 4
r2
(-3)
0
0
0
3 0
3
0 0 0 0
即得与原方程组同解的方程组
x1 x2
2 2
x3 x3
5
3 4
3
x4 x4
0, 0,
由此即得
x1 x2
2
x3
5 3
x4
,
-2
x3
-
4 3
x4
,
( x3 , x4 可任意取值).
令 x3 c1, x4 c2,把它写成通常的参数形式
x4 0 - 2x4
0
.
x1 - x2 - 4 x3 - 3 x4 0
解 对系数矩阵 A 施行初等行变换:
1 A 2
1
2 1 -1
2 -2 -4
1 - 2 - 3
r2 r3
-
2r1 r1
1 0 0
2 -3 -3
2 -6 -6
1 - 4 - 4
r3 - r2
1 0
2 1
2 2
即( AX1, AX2 ,L AXn ) (b1,b2 ,L bn ) 所以等价于AXi bi ,i 1,2,L n. () : 若R( A) R( AMB), ( AMB) ( A,b1,b2,L bn ), 又R( A) R( AMbi ) R( AMB), R( A) R( AMbi ) 由定理2知,存在X i ,使得AX i bi 故存在X ,使得AX B
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
1 - 1 0 0 0 a1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组 Ax = 0 只有零解 ( 有非零解 )的充分必要 条件是系数行列式
定理 2 n 元非齐次线性方程组 Am×n x = b 有解 的充分必要条件是系数 矩阵 A 的秩等于增广矩 阵 B = ( A, b ) 的秩 .
证 设 A = (α 1 , α 2 , L , α n ), 这里 α 1 , α 2 , L , α n 是 A 的列向量组, 的列向量组,则 Ax = b 可写成 (4) x 1α 1 + x 2α 2 + L + x nα n = b .
5 1 0 − 2 − 1 2 2 1 3 r3 − r2 4 r1 − 2r2 4 0 1 2 0 1 2 3 r2 ÷ ( −3) 3 0 0 0 0 0 0 0 0 即得与原方程组同解的方程组
5 x1 − 2x3 − 3 x4 = 0, 4 x2 + 2x3 + x4 = 0, 3
L 从而方程组( 从而方程组( 2)有解 ⇔ b 可由 α 1 , α 2, , α n L 线性表示 ⇔ R ( A ) = rank (α 1 , α 2, , α n ) = 证毕 rank (α 1 , α 2, , α n, b ) = R ( B ). L
推论
Ax = b有唯一解 ⇔ R(A) = R(B ) = n Ax = b有无穷多解. ⇔ R(A) = R(B ) < n 有无穷多解.
三、线性方程组的求解
例1 求解齐次线性方程组 x1 + 2 x2 + x3 + x4 = 0 2 x1 + x2 − 2 x3 − 2 x4 = 0 . x − x − 4x − 3x = 0 1 2 3 4 解
施行初等行变换: 对系数矩阵 A 施行初等行变换: 1 2 2 1 1 2 2 1 r2 − 2r1 A = 2 1 − 2 − 2 0 − 3 − 6 − 4 1 − 1 − 4 − 3 r3 − r1 0 − 3 − 6 − 4
第三节 线性方程组的解

一、线性方程组的基本概念 二、线性方程组解的判定定理 三、线性方程组的求解
• •

一、线性方程组的基本概念
设线性方程组 a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x + L+ a x = b 21 1 22 2 2n n 2 (1) LLLLLLLLLLLL an1 x1 + an 2 x2 + L + ann xn = bn 令 b1 x1 a11 a12 L a1n b a21 a22 L a2 n x = x2 , b = 2 A= M M , L L L L b x a n n m 1 am 2 L amn
显然, 显然, R( A) = 2, R( B ) = 3,
故方程组无解. 故方程组无解.
例3 求解非齐次方程组的通解
x1 − x2 − x3 + x4 = 0 . x1 − x2 + x3 − 3 x4 = 1 x − x − 2x + 3x = −1 2 1 2 3 4
解 对增广矩阵 进行初等变换 对增广矩阵B进行初等变换
λ
1− λ (1 − λ )(2 + λ )
λ (1 − λ ) 2 (1 − λ )(1 + λ )
λ2
(1) 当λ = 1时,
1 1 1 1 B ~ 0 0 0 0 0 0 0 0
R ( A ) = R ( B ) < 3, 方程组有无穷多解 .
所以方程组的通解为
x1 1 0 1 2 x2 1 0 0 x = x 2 0 + x4 2 + 1 2 . 3 0 1 0 x 4
其中 x 2 , x 4 任意 .
x1 − x 2 x − x 3 2 例4 证明方程组 x 3 − x4 x − x 5 4 x5 − x1 求出它的一切解. 求出它的一切解.
= a1 = a2 = a3 = a4 = a5
有解的充要条件
在有解的情况下, 是 a1 + a 2 + a 3 + a4 + a5 = 0.在有解的情况下,
例2 求解非齐次线性方程组 x1 − 2 x2 + 3 x3 − x4 = 1, 3 x1 − x2 + 5 x3 − 3 x4 = 2, 2 x + x + 2 x − 2 x = 3. 1 2 3 4 对增广矩阵B进行初等变换, 对增广矩阵 进行初等变换, 进行初等变换 1 − 2 3 − 1 1 r2 − 2r1 1 − 2 3 − 1 1 r −r B = 3 − 1 5 − 3 2 3 1 0 5 − 4 0 − 1 2 1 2 − 2 3 r3 − r2 0 0 − 4 0 1 2 5 0 解
定义: 的任一解, 定义:含有 n − r 个参数的方程组 (1 )的任一解, 称为线性方程组的通解 , 这里 r = R ( A ).
齐次线性方程组:系数矩阵化成行最简形矩阵, 齐次线性方程组:系数矩阵化成行最简形矩阵, 便可写出其通解. 便可写出其通解 非齐次线性方程组:增广矩阵化成行阶梯形矩 非齐次线性方程组: 便可判断其是否有解.若有解, 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解. 简形矩阵,便可写出其通解
λ
1
λ
1 1 λ ~1 λ2 λ
λ λ2 λ 1 λ
1 1 1 1
1 1 λ ~ 0 λ −1 1− λ 0 1 − λ 1 − λ2
λ2 2 λ −λ 1 − λ2
1 1 λ λ2 2 ~ 0 λ −1 1− λ λ −λ 0 0 2 − λ − λ2 1 + λ − λ 2 − λ3 1 1 = 0 λ −1 0 0
5 x1 = 2x3 + 3 x4 , 由此即得 4 x2 = −2x3 − x4 , ( x3 , x4 可任意取值 ). 3
令 x 3 = c1 , x4 = c2,把它写成通常的参数 形式 5 5 x1 = 2c2 + c2 , x1 2 3 3 x = −2c − 4 c , x2 − 2 c − 4 . 2 2 2 ∴ = c1 + 2 3 3 x3 1 x = c , 0 3 1 0 x 4 x4 = c2 , 1
x1 = 1 − x2 − x3 其通解为 x2 = x2 x = x 3 3
( x 2 , x 3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ B ~ 0 1 −1 0 0 2 + λ
这时又分两种情形: 这时又分两种情形:
λ2 −λ 2 (1 + λ )
解证 对增广矩阵 进行初等变换, 对增广矩阵B进行初等变换, 进行初等变换 方程组的增广矩阵为
0 0 1 −1 0 1 −1 0 0 0 0 1 −1 0 B= 0 0 0 1 −1 0 −1 0 0 0 1
1 0 0 ~ 0 0 0 0 −1 0 1 −1 0 0 0 1 −1 0 0 0 1 −1 0 0 0 0
则上述方程组( ) 则上述方程组(1)可写成向量方程 Ax = b
(2)
为方程组(1)的系数矩阵, 称A为方程组 的系数矩阵 B=(A,b)为(1)的增广 为方程组 为 的 有解 则称它是相容 如果 矩阵. 如果 有解,则称它是相容的 如果(1)没有 矩阵 如果(1)有解 则称它是相容的;如果 没有 则称它不相容 解,则称它不相容 则称它不相容. 则称(1)为 若常数项 b1 , b2 ,L , bn不全为零 , 则称 为非 齐次线性方程组; 齐次线性方程组 若常数项 b1 , b2 ,L, bn 全为零 , 此时称(1)为齐次线性方程组 此时称 为齐次线性方程组.
0 0 1 −1 −1 1 1 − 1 − 1 1 B = 1 − 1 1 − 3 1 ~ 0 0 2 − 4 1 1 − 1 − 2 3 − 1 2 0 0 − 1 2 − 1 2
1 − 1 0 − 1 1 2 ~ 0 0 1 − 2 1 2 . 0 0 0 0 0
1) λ ≠ −2时, R( A) = R( B ) = 3, 方程组有唯一解 :
由于R( A) = R( B ) = 2, 故方程组有解,且有 故方程组有解,
x1 = x2 + x4 + 1 2 x = x + 0x x1 = x2 + x4 + 1 2 2 2 4 ⇔ x 3 = 2 x4 + 1 2 x 3 = 0 x 2 + 2 x4 + 1 2 x 4 = 0 x 2 + x4
例5 设有线性方程组
λx1 + x2 + x3 = 1 x1 + λx2 + x3 = λ x + x + λ x = λ2 1 2 3
问λ取何值时 , 有解 ? 有无穷多个解 ?
作初等行变换, 解 对增广矩阵 B = ( A, b ) 作初等行变换,
B =1 1 λ 1 1 1
R ( A ) = rank (α 1 , α 2, , α n ) < n . L
解的充分必要条件是系 数矩阵的秩 R( A) = n. 推论1 n 元齐次线性方程组 Am×n x = 0 只有零
相关文档
最新文档