半导体材料的发展现状及趋势.描述
半导体产业发展现状和趋势

半导体产业发展现状和趋势
1.技术进步:半导体技术不断创新,尤其是在制程工艺、材料科学和集成电
路设计等方面。
例如,先进制程节点的推出(如7nm、5nm)使芯片集成度更高、功耗更低。
此外,新型材料如硅基光电子和宽禁带半导体等也得到广泛应用。
2.5G和物联网:随着5G网络的部署和物联网的普及,对半导体需求呈现
爆发增长。
半导体产品在通信设备、无线模块、传感器、物联网终端等领域扮演着重要角色。
3.人工智能和云计算:人工智能和云计算的迅猛发展对半导体行业带来了巨
大机遇。
大数据处理、深度学习、图像识别等应用对计算和存储能力提出了更高要求,推动了半导体产业的创新与升级。
4.智能手机和消费电子市场:智能手机等消费电子产品的普及也对半导体需
求提供了强劲动力。
新一代智能手机和可穿戴设备对处理器、存储器和传感器等关键组件的需求日益增加。
5.环保和能源效率:环保和能源效率成为半导体产业发展的重要趋势。
新一
代半导体材料和工艺的研发旨在减少能源消耗、提高资源利用效率,并且致力于解决电子废弃物管理等环境问题。
6.供应链调整:全球半导体供应链正面临调整和变动。
一方面,许多国家加
大了对本土半导体产业的支持力度,努力实现自主可控。
另一方面,在全球贸易紧张局势和地缘政治影响下,供应链安全和多样化也成为关注焦点。
半导体材料的发展现状及趋势

半导体材料的发展现状及趋势一、发展现状随着信息技术的飞速发展,对半导体材料的需求不断增加,并且对其性能也提出了更高的要求。
目前半导体材料的主要应用领域是集成电路和光电器件。
在集成电路方面,硅材料是目前主要的基础材料,其优点是成本低廉、生产工艺成熟。
但是随着集成度的提高,硅材料的性能已经无法满足需求,因此研究人员开始寻找更好的材料替代硅。
例如,砷化镓(GaAs)材料具有较高的电子迁移率,可以用于制造高速电子器件;碳化硅(SiC)材料则具有较高的耐高温和耐辐照性能,适用于高功率器件。
此外,研究人员还在探索新型半导体材料,如石墨烯、量子点等,以进一步拓展半导体材料的应用领域。
在光电器件方面,半导体材料在激光器、LED等领域有着广泛应用。
例如,氮化镓(GaN)材料可以制造高亮度、高效率的LED,被广泛应用于照明和显示领域;砷化镓(GaAs)材料则可制造高效率的激光器,广泛应用于通信和雷达领域。
此外,随着可再生能源的发展,太阳能电池也成为半导体材料的重要应用领域之一、砷化镓太阳能电池具有高效率、较低的制造成本等优点,被认为是未来太阳能电池的发展方向。
二、发展趋势1.多功能材料:随着电子器件的不断发展,对材料的要求越来越多样化。
未来的半导体材料将发展为多功能材料,既能满足传统的电子器件需求,又能应用于新兴领域如能源存储、量子计算等。
2.新型材料的探索:目前已经发现的半导体材料种类有限,而且大部分材料的性能有限。
因此,未来的研究重点将放在新型材料的探索上,例如石墨烯、钙钛矿等。
这些新型材料具有独特的结构和性能,可以应用于更多领域。
3.制备工艺的改进:半导体材料的制备工艺对于材料性能的影响至关重要。
未来的发展将着重改进和发展现有的制备工艺,以提高材料的质量和性能。
4.芯片尺寸的进一步缩小:随着电子器件的不断进化,芯片的尺寸也在不断缩小。
未来的趋势是进一步缩小芯片尺寸,提高器件性能和集成度。
5.环保可持续发展:随着人们对环保意识的提高,对于材料的环境友好性和可持续性也提出了更高的要求。
半导体技术的发展现状与趋势

半导体技术的发展现状与趋势随着信息技术的迅猛发展,半导体技术也在不断进步。
今天我们将探讨半导体技术的发展现状和趋势。
1.半导体技术的发展现状半导体技术已经成为现代电子和信息技术的基础。
随着新材料、新工艺和新技术的不断涌现,半导体行业正经历着快速的发展。
以下是半导体技术的几个方面发展的现状:(1)材料:半导体材料是半导体技术的基础。
传统的硅材料已经被广泛应用,但随着技术的发展,新的半导体材料不断出现。
比如,碳化硅材料具有更高的耐高温和高电压性能,被广泛应用于电力电子和汽车电子领域。
此外,氮化镓、氮化铝等宽禁带半导体材料也在光电器件领域得到了广泛应用。
(2)工艺:半导体工艺的发展是推动半导体技术进步的关键。
微影技术是半导体工艺中的重要一环,随着纳米技术的发展,微影技术已经进入到亚纳米甚至纳米级别。
此外,三维集成技术、柔性电子技术、封装技术等都在不断进步。
(3)设备:半导体设备是支撑半导体制造的关键。
随着半导体工艺的不断精密化,半导体设备也在不断更新换代。
光刻机、离子注入机、薄膜沉积设备等在技术上都在不断改进。
(4)市场:半导体市场也在不断扩大。
随着5G、人工智能、物联网等新兴技术的发展,对半导体的需求也在增加。
同时,新兴市场的崛起也为半导体行业带来了新的机遇。
2.半导体技术的发展趋势半导体技术的发展有以下几个趋势:(1)新材料的发展:随着半导体器件尺寸的不断缩小,对新材料的需求也在增加。
新的宽禁带半导体材料、二维材料、纳米材料等都成为了半导体技术的研究热点。
(2)新工艺的研究:微纳米加工技术、三维集成技术、柔性电子技术等新工艺的研究将成为未来的发展方向。
这些新工艺将有助于提高器件的集成度、性能和功能。
(3)智能制造的发展:随着人工智能、大数据等技术的发展,智能制造将成为未来半导体制造的主要趋势。
半导体制造设备将实现智能化,生产过程将更加精密和高效。
(4)生态可持续发展:半导体工艺和设备的研发将更加注重环保和节能。
中国半导体材料行业概述市场规模竞争格局及行业发展趋势

中国半导体材料行业概述市场规模竞争格局及行业发展趋势一、市场规模:中国半导体材料市场规模逐年扩大,成为全球最大的半导体材料市场。
根据中国电子信息产业协会发布的数据,2024年中国半导体材料市场规模达到1500亿元人民币,同比增长15%,预计在未来几年内还将保持较高的增长率。
随着国内半导体产业发展,中国对半导体材料的需求将日益增加,市场潜力巨大。
二、竞争格局:1.国内外企业并存:中国半导体材料市场既有国内企业,也有外资企业。
其中,外资企业在高端市场占有一定份额,但受到政策限制,国内企业也在积极发展,并逐渐提升自身技术水平和市场份额。
2.企业专注度提高:随着行业竞争的加剧,部分企业开始精耕细作,专注于其中一领域的研发和生产,提高技术水平和竞争力。
3.行业整合加剧:近年来,中国半导体材料行业出现了一系列整合、兼并、收购的潮流。
随着行业规模扩大和竞争加剧,企业通过整合资源来提高规模效益和市场竞争力。
三、行业发展趋势:1.全球产业链向中国转移:随着国内外半导体产业的格局调整,中国逐渐成为全球半导体产业链的重要一环。
越来越多的国际半导体材料企业将目光投向中国市场,通过在中国设立生产基地或合作伙伴关系来开拓中国市场。
2.技术升级和创新:中国半导体材料企业将加大研发投入,提高技术水平和创新能力。
在材料的研发和生产过程中,将注重提高产品性能和质量,以满足半导体产业对高品质材料的需求。
3.绿色环保发展:随着环保意识的增强,中国半导体材料行业将更加注重绿色环保发展。
在生产和使用过程中,将加大对有毒、有害物质的控制和减少,同时积极推动可持续发展的材料和技术的研发和应用。
4.合作共赢的开放态度:中国半导体材料企业将进一步开放市场,加强与国内外企业的合作,以实现互利共赢的目标。
通过技术交流、合作研发等方式,共同推动行业的发展。
总结起来,中国半导体材料行业市场规模庞大,竞争激烈,但也面临着很大的发展机遇。
随着中国半导体产业的快速发展和技术水平的提高,中国半导体材料行业有着广阔的发展前景。
半导体技术的发展现状与未来趋势分析

半导体技术的发展现状与未来趋势分析近年来,半导体技术得到了迅猛的发展,成为当代科技领域的重要支柱之一。
从早期的硅晶体管到现在的微电子器件,半导体技术不断刷新着人们对科技的认知。
本文将对半导体技术的发展现状与未来趋势进行分析。
1. 发展现状半导体技术的发展在电子器件的微小化和功耗降低方面取得了显著成果。
目前,集成电路已经实现了纳米级别的制造工艺,芯片上的晶体管密度大大增加,使信息处理的速度和效率大幅提升。
同时,半导体材料的研究也在不断深入,新型材料如氮化镓、碳化硅等的应用使得电子器件性能得到了进一步提升。
在应用方面,半导体技术的广泛应用推动了数字化、智能化时代的到来。
从计算机、通信设备、家电到汽车、医疗器械,半导体技术成为了各个领域不可或缺的核心。
尤其是人工智能技术的兴起,对计算能力和数据处理速度提出了更高的要求,半导体技术的进一步发展势在必行。
2. 未来趋势(1)三维芯片目前的芯片制造技术主要是二维平面的,但是随着晶体管密度的提高,芯片上的线路越来越密集,产生了热耗散和信号传输的问题。
为了解决这些问题,未来的发展方向是引入三维芯片技术。
三维芯片能够将晶体管层叠起来,减少线路长度,提高信号传输速度,并且增加散热面积,降低功耗。
(2)新型半导体材料传统的硅材料在发展到一定程度后会出现物理性能上的瓶颈,因此,研发新型半导体材料成为了近年来的热点。
氮化镓、碳化硅等新型材料具有较高的电子迁移率和热导率,能够在高温、高频、高功率环境下工作稳定。
新型材料的应用将进一步提高芯片的运行速度和效率。
(3)光电集成光电集成技术是半导体技术未来的重要方向之一。
相比传统的电子设备,光电器件具有无电磁干扰、高速传输、低损耗等优点。
通过将光电器件与半导体器件集成在一起,可以实现基于光信号的信息处理和传输,使得电子器件的处理速度更快、效率更高。
(4)人工智能应用人工智能技术的兴起对计算能力提出了更高的要求。
为了满足人工智能算法的运行和训练需求,未来半导体技术将朝着更加专业化和定制化的方向发展。
半导体发展现状以及存在问题

的能耗和散热问题需要得到更好的解决,以提高能源利用效率和减少环境影响。 - 可持续发展:半导体行业需要更加注重可持续发展,包括减少资源消耗、改善废弃物
处பைடு நூலகம்和降低环境污染等方面的努力。
镓、碳纳米管等,以提高半导体器件的性能和功能。 - 光电子技术:半导体在光电子技术领域的应用不断扩展,如光通信、光储存和太阳能
电池等,为能源和通信领域带来新的突破。
半导体发展现状以及存在问题
2. 存在问题: - 物理极限:随着半导体器件尺寸不断缩小,面临着物理极限的挑战,如漏电流、热效
应和量子效应等问题,这些问题限制了器件性能的进一步提升。 - 新材料和工艺需求:随着半导体器件的不断发展,对新材料和工艺的需求也日益增加
半导体发展现状以及存在问题
半导体是现代电子技术的基础,其发展对于推动信息技术、通信、能源、医疗和交通等领 域的进步至关重要。以下是半导体发展的现状和存在的问题:
1. 现状: - 小型化和高集成度:半导体技术不断推动芯片的小型化和集成度的提高,使得电子设
备更加轻便、高效和功能强大。 - 新材料和工艺:研究人员不断探索和开发新的半导体材料和工艺,如硅基材料、砷化
半导体发展现状以及存在问题
为了应对这些问题,半导体行业需要持续进行研发和创新,加强合作与合规,同时注重可 持续发展和社会责任,以推动半导体技术的进一步发展和应用。
半导体材料的发展前景和趋势

半导体材料的发展前景和趋势半导体材料,在现代科技领域具有举足轻重的地位,是电子产业和信息技术发展的基石。
随着科技的日新月异,半导体材料也展现出无限的发展潜力。
本文将对半导体材料的发展前景和趋势进行深入探讨。
一、新型半导体材料的崛起传统的半导体材料,如硅,虽然在许多领域中仍占据主导地位,但已逐渐不能满足日益增长的技术需求。
因此,新型半导体材料如氮化镓(GaN)、碳化硅(SiC)和氧化锌(ZnO)等正逐渐崭露头角。
这些材料具有更高的电子迁移率、高热导率和大禁带宽度等特点,使得电子设备能够实现更高的频率、更大的功率以及更低的能耗。
二、柔性电子材料的广泛应用随着可穿戴设备和智能家居的普及,柔性电子材料的需求日益增长。
柔性电子材料具有良好的柔韧性和可延展性,能够适应各种复杂形状的表面,为电子产品提供了更大的设计空间。
同时,柔性电子材料在医疗、军事等领域也有着广泛的应用前景。
三、生物相容性半导体材料的研究进展在生物医学领域,半导体材料的应用越来越广泛。
生物相容性半导体材料是指那些对生物体无毒、无害、无刺激,且能与生物体相容的材料。
这类材料在组织工程、药物传递和生物成像等领域具有巨大的应用潜力。
随着研究的深入,未来有望为生物医学领域带来革命性的突破。
四、量子点及二维材料的潜力量子点和二维材料是近年来备受瞩目的新兴领域。
量子点材料具有独特的光电性能,可应用于显示、照明和太阳能电池等领域。
而二维材料如石墨烯和过渡金属二卤化物等则展现出超常的力学、电学和热学性能,为新一代电子器件和光电器件的发展提供了可能。
五、智能化和定制化趋势随着人工智能和物联网技术的发展,半导体材料的智能化和定制化成为未来发展的必然趋势。
通过集成各种传感器和执行器,半导体材料将能够实时感知环境变化并做出相应调整,从而实现智能化。
同时,基于3D打印等技术,可以根据特定需求定制化生产半导体材料,进一步提高生产效率和满足个性化需求。
六、绿色环保和可持续发展在可持续发展的大背景下,半导体材料的绿色环保和可持续发展也成为关注的焦点。
半导体材料的现状及未来五至十年发展前景

半导体材料的现状及未来五至十年发展前景半导体材料是现代科技领域的重要组成部分,其在电子、光电子、能源、生物医学等领域具有广泛的应用。
本文将探讨半导体材料的现状以及未来五至十年的发展前景。
首先,我们来看半导体材料的现状。
目前,硅仍然是主流的半导体材料,但由于其局限性,人们开始寻找新的替代材料。
其中,砷化镓、氮化镓和碳化硅等宽禁带半导体材料因其优异的电学性能逐渐受到重视。
宽禁带材料具有更高的电子迁移率和更好的热传导性能,使得电子器件的速度更快、效能更高。
另外,有机半导体材料作为一类新兴的半导体材料,也备受瞩目。
有机半导体材料具有高度可调性和可加工性,可制作出柔性电子器件,如可弯曲的显示器、可卷曲的太阳能电池等。
与传统的硅基半导体材料相比,有机半导体材料的制备成本更低,可以大幅度降低电子设备的生产成本。
在未来五至十年的发展前景方面,半导体材料行业仍然面临一些挑战和机遇。
挑战之一是将新材料应用到实际电子器件中。
虽然新材料具有出色的性能,但目前仍面临着制备难度高、成本高昂等问题。
因此,未来需要进一步研发新的制备工艺和技术,将新材料应用于实际生产中。
另一个挑战是实现更高的集成度和更快的速度。
随着科技的发展,人们对电子器件的要求也越来越高。
未来的半导体材料需要具备更高的电子迁移率、更低的能耗和更好的散热性能。
目前,二维材料如石墨烯、硫化钼等被认为是能够满足这些要求的候选材料。
除了这些挑战,半导体材料的未来发展还有许多机遇。
例如,人工智能、物联网、5G等新兴技术的快速发展将带动对高性能半导体材料的需求。
此外,新能源技术的推进也将为半导体材料行业带来新的机遇,例如太阳能电池、光电转换器等。
综上所述,半导体材料作为现代科技的基石,其现状和未来发展前景都备受关注。
新材料的发展将为电子器件的性能提升提供新的可能性,同时也将面临着制备和集成等技术挑战。
未来五至十年,半导体材料行业将进一步推动科技的发展,为社会的进步和经济的繁荣做出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50
0.10 ≤4.9 100 ±9.0/15. 5 <1 ≥325
35
0.10 ≤4.2 70 ±9.0/15. 5 <1 ≥350
25
0.10 ≤3.6 60 ±9.0/15. 5 <1 ≥350
25
0.10 ≤3.0 35 ±9.0/15. 5 <1 ≥400
(1)多晶硅
多晶硅是制备单晶法的主要技术是: (1)在大型反应炉内同时加热许多根金属丝, 减小炉壁辐射所造成的热损失; (2)炉的内壁加工成镜面,使辐射热反射,减 少散热; (3)提高炉内压力,提高反应速度等措施; (4)在大型不锈钢金属反应炉内使用100根以 上的金属丝。
表3 现代微电子工业对硅片关键参数的要求
首批产品预计生产年份 工艺代(特征尺寸/nm) 晶片尺寸/mm 去边/mm 2005 100 300 1 2008 70 300 1 2011 50 300 1 2014 30 450 1
正表面颗粒和COP尺寸 /mm
颗粒和COP密度/mm-2 表面临界金属元素密度 /109at.mm-2 局部平整度/nm 中心氧含量/×1017cm-3 Fe浓度/1010cm-3 复合寿命/μs
二、半导体材料发展现状
1、半导体硅材料
从目前电子工业的发展来看,尽管有各 种新型的半导体材料不断出现,半导体硅 材料以丰富的资源、优质的特性、日臻完 善的工艺以及广泛的用途等综合优势而成 为了当代电子工业中应用最多的半导体材 料。
硅
硅是集成电路产业的基础,半导体材料中 98%是硅。半导体器件的95%以上是用硅 材料制作的,90%以上的大规模集成电路 (LSI)、超大规模集成电路(VLSI)、甚大规 模集成电路(ULSI)都是制作在高纯优质的 硅抛光片和外延片上的。硅片被称作集成 电路的核心材料,硅材料产业的发展和集 成电路的发展紧密相关。
硅
在集成电路用硅片中,8英寸的硅片占主 流,约40~50%,6英寸的硅片占30%。 当硅片的直径从8英寸到12英寸时,每片 硅片的芯片数增加2.5倍,成本约降低30 %,因此,国际大公司都在发展12英寸硅 片,2006年产量将达到13.4亿平方英寸, 将占总产量的20%左右。现代微电子工业 对硅片关键参数的要求如表3所示。
宽带隙半导体材料的高介电强度最适合用 于高功率放大器、开关和二极管。宽带隙 材料的相对介电常数比常规材料的要小, 由于对寄生参数影响小,这对毫米波放大 器而言是有利用价值的。电荷载流子输运 特性是许多器件尤其是工作频率为微波、 毫米波放大器的一个重要特性。
宽带隙半导体材料的电子迁移率一般没有 多数通用半导体的高,其空穴迁移率一般 较高,金刚石则很高。宽带隙材料的高电 场电子速度(饱和速度)一般较常规半导体 高得多,这就使得宽带隙材料成为毫米波 放大器的首选者。
多晶硅
峨嵋半导体材料厂和洛阳单晶硅厂1999 年多晶硅生产能力分别为60t/a和20t/a。 峨嵋半导体材料厂1998年建成的100t/a规 模的多晶硅工业性生产示范线,提高了各 项经济技术指标,同时该厂正在积极进行 1000t/a多晶硅项目建设的前期工作。洛 阳单晶硅厂将多晶硅产量扩建至300t/a。
max 50pptw/25pp ta max 100pptw/50p pta max 100pptw/55p pta
Cu
max 1000pptw
Ni
max 1000pptw
Cr
max 1000pptw
多晶硅
1998年,多晶硅生产厂商预计半导体行 业将快速增长,因此大量扩张产能。然而, 半导体行业并未出现预期高速增长,多晶 硅需求急剧下降,结果导致多晶硅产能严 重过剩。2003年以前,多晶硅供大于求, 2004年多晶硅供需达到平衡,2005年, 多晶硅生产厂家有必要增加投资扩大产能 增加太阳能多晶硅的产量。
材料的物理性质是产品应用的基础,表1 列出了主要半导体材料的物理性质及应用 情况。表中禁带宽度决定发射光的波长, 禁带宽度越大发射光波长越短(蓝光发射); 禁带宽度越小发射光波长越长。其它参数 数值越高,半导体性能越好。电子迁移速 率决定半导体低压条件下的高频工作性能, 饱和速率决定半导体高压条件下的高频工 作性能。
在半导体产业的发展中, 硅、锗称为第一代半导体材料; 将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝 及其合金等称为第二代半导体材料; 将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化 锌和金刚石等称为第三代半导体材料。 上述材料是目前主要应用的半导体材料,三代 半导体材料代表品种分别为硅、砷化镓和氮化 镓。
砷化镓材料的电子迁移率是硅的6倍多, 其器件具有硅器件所不具有的高频、高速 和光电性能,并可在同一芯片同时处理光 电信号,被公认是新一代的通信用材料。 随着高速信息产业的蓬勃发展,砷化镓成 为继硅之后发展最快、应用最广、产量最 大的半导体材料。同时,其在军事电子系 统中的应用日益广泛,并占据不可取代的 重要地位。
纯度 及电 阻率
施 主 (P、As、Sb) 受 主 (B、Al) 碳 体金属总量(Fe、Cu、Ni、Cr、Zn)
min 500Ωcm
max 100ppba max 500pptw
min 500Ωcm
max 100ppba max 500pptw
表面 金属
Fe
max 5000pptw
max 500pptw/250 ppta
从表1看出,选择宽带隙半导体材料的主要理由 是显而易见的。氮化镓的热导率明显高于常规 半导体。这一属性在高功率放大器和激光器中 是很起作用的。带隙大小本身是热生率的主要 贡献者。在任意给定的温度下,宽带隙材料的 热生率比常规半导体的小10~14个数量级。这 一特性在电荷耦合器件、新型非易失性高速存 储器中起很大的作用,并能实质性地减小光探 测器的暗电流。
多晶硅
目前全世界每年消耗约22000吨半导体级多晶硅, 世界多晶硅的年生产能力约为28000吨,生产高 度集中于美、日、德3国,海姆洛克(美国)、 瓦克ASIM(德国),德山曹达(日本)、 MEMC(美国)占据了多晶硅市场的80%以上。 其中,美国哈姆洛克公司产能达6500t/a,德国 瓦克化学公司和日本德山曹达公司产能超过 4500t/a,美国MEMC公司产能超过2500t/a。
单位电耗由过去每公斤300度降低到80度。 多晶硅产量由改良前每炉次100~200公 斤提高到5~6吨。其显著特点是:能耗低、 产量高、质量稳定。表4给出了德国瓦克 公司的多晶硅质量指标数据。
表4 多晶硅质量指标
项目 免洗料 max 150ppta min 500Ωcm max 50ppta 酸腐蚀料 max 150ppta min 500Ωcm max 50ppta
硅
经过多年的发展和竞争,国际硅材料行业 出现了垄断性企业,日本、德国和美国的 六大硅片公司的销量占硅片总销量的90% 以上,其中信越、瓦克、SUMCO和 MEMC四家的销售额占世界硅片销售额的 70%以上,决定着国际硅材料的价格和高 端技术产品市场,其中以日本的硅材料产 业最大,占据了国际硅材料行业的半壁江 山。
硅
半导体硅材料分为多晶硅、单晶硅、硅外延片 以及非晶硅、浇注多晶硅、淀积和溅射非晶硅 等。现行多晶硅生产工艺主要有改良西门子法 和硅烷热分解法。主要产品有棒状和粒状两种, 主要是用作制备单晶硅以及太阳能电池等。生 长单晶硅的工艺可分为区熔(FZ)和直拉(CZ)两 种。其中,直拉硅单晶(CZ-Si)广泛应用于集成 电路和中小功率器件。区域熔单晶(FZ-Si)目前 主要用于大功率半导体器件,比如整流二极管, 硅可控整流器,大功率晶体管等。单晶硅和多 晶硅应用最广。
光学应用
高频性能 高温性能 发展阶段 相对制造成本
无
差 中 成熟 低
红外
好 差 发展中 高
蓝光/紫外
好 好 初期 高
硅材料具有储量丰富、价格低廉、热性能 与机械性能优良、易于生长大尺寸高纯度 晶体等优点,处在成熟的发展阶段。目前, 硅材料仍是电子信息产业最主要的基础材 料,95%以上的半导体器件和99%以上的 集成电路(IC)是用硅材料制作的。在21世 纪,它的主导和核心地位仍不会动摇。但 是硅材料的物理性质限制了其在光电子和 高频高功率器件上的应用。
主要半导体材料的用途如表2所示。可以 预见:以硅材料为主体、GaAs半导体材 料及新一代宽禁带半导体材料共同发展将 成为集成电路及半导体器件产业发展的主 流。
表2 半导体材料的主要用途 材料名称 硅 制作器件 二极管、晶体管 集成电路 整流器 晶闸管 射线探测器 太阳能电池 砷化镓 各种微波管 激光管 红外发光管 霍尔元件 激光调制器 高速集成电路 太阳能电池 氮化镓 激光器件 发光二极管 紫外探测器 集成电路 主要用途 通讯、雷达、广播、电视、自动控制 各种计算机、通讯、广播、自动控制、电子钟表、仪表 整流 整流、直流输配电、电气机车、设备自控、高频振荡器 原子能分析、光量子检测 太阳能发电 雷达、微波通讯、电视、移动通讯 光纤通讯 小功率红外光源 磁场控制 激光通讯 高速计算机、移动通讯 太阳能发电 光学存储、激光打印机、医疗、军事应用 信号灯、视频显示、微型灯泡、移动电话 分析仪器、火焰检测、臭氧监测 通讯基站(功放器件)、永远性内存、电子开关、导弹
氮化镓材料的禁带宽度为硅材料的3倍多, 其器件在大功率、高温、高频、高速和光 电子应用方面具有远比硅器件和砷化镓器 件更为优良的特性,可制成蓝绿光、紫外 光的发光器件和探测器件。
近年来取得了很大进展,并开始进入市场。 与制造技术非常成熟和制造成本相对较低 的硅半导体材料相比,第三代半导体材料 目前面临的最主要挑战是发展适合氮化镓 薄膜生长的低成本衬底材料和大尺寸的氮 化镓体单晶生长工艺。