半导体材料的发展现状及趋势

合集下载

半导体产业发展现状和趋势

半导体产业发展现状和趋势

半导体产业发展现状和趋势
1.技术进步:半导体技术不断创新,尤其是在制程工艺、材料科学和集成电
路设计等方面。

例如,先进制程节点的推出(如7nm、5nm)使芯片集成度更高、功耗更低。

此外,新型材料如硅基光电子和宽禁带半导体等也得到广泛应用。

2.5G和物联网:随着5G网络的部署和物联网的普及,对半导体需求呈现
爆发增长。

半导体产品在通信设备、无线模块、传感器、物联网终端等领域扮演着重要角色。

3.人工智能和云计算:人工智能和云计算的迅猛发展对半导体行业带来了巨
大机遇。

大数据处理、深度学习、图像识别等应用对计算和存储能力提出了更高要求,推动了半导体产业的创新与升级。

4.智能手机和消费电子市场:智能手机等消费电子产品的普及也对半导体需
求提供了强劲动力。

新一代智能手机和可穿戴设备对处理器、存储器和传感器等关键组件的需求日益增加。

5.环保和能源效率:环保和能源效率成为半导体产业发展的重要趋势。

新一
代半导体材料和工艺的研发旨在减少能源消耗、提高资源利用效率,并且致力于解决电子废弃物管理等环境问题。

6.供应链调整:全球半导体供应链正面临调整和变动。

一方面,许多国家加
大了对本土半导体产业的支持力度,努力实现自主可控。

另一方面,在全球贸易紧张局势和地缘政治影响下,供应链安全和多样化也成为关注焦点。

半导体材料的发展前景和趋势

半导体材料的发展前景和趋势

半导体材料的发展前景和趋势半导体材料,在现代科技领域具有举足轻重的地位,是电子产业和信息技术发展的基石。

随着科技的日新月异,半导体材料也展现出无限的发展潜力。

本文将对半导体材料的发展前景和趋势进行深入探讨。

一、新型半导体材料的崛起传统的半导体材料,如硅,虽然在许多领域中仍占据主导地位,但已逐渐不能满足日益增长的技术需求。

因此,新型半导体材料如氮化镓(GaN)、碳化硅(SiC)和氧化锌(ZnO)等正逐渐崭露头角。

这些材料具有更高的电子迁移率、高热导率和大禁带宽度等特点,使得电子设备能够实现更高的频率、更大的功率以及更低的能耗。

二、柔性电子材料的广泛应用随着可穿戴设备和智能家居的普及,柔性电子材料的需求日益增长。

柔性电子材料具有良好的柔韧性和可延展性,能够适应各种复杂形状的表面,为电子产品提供了更大的设计空间。

同时,柔性电子材料在医疗、军事等领域也有着广泛的应用前景。

三、生物相容性半导体材料的研究进展在生物医学领域,半导体材料的应用越来越广泛。

生物相容性半导体材料是指那些对生物体无毒、无害、无刺激,且能与生物体相容的材料。

这类材料在组织工程、药物传递和生物成像等领域具有巨大的应用潜力。

随着研究的深入,未来有望为生物医学领域带来革命性的突破。

四、量子点及二维材料的潜力量子点和二维材料是近年来备受瞩目的新兴领域。

量子点材料具有独特的光电性能,可应用于显示、照明和太阳能电池等领域。

而二维材料如石墨烯和过渡金属二卤化物等则展现出超常的力学、电学和热学性能,为新一代电子器件和光电器件的发展提供了可能。

五、智能化和定制化趋势随着人工智能和物联网技术的发展,半导体材料的智能化和定制化成为未来发展的必然趋势。

通过集成各种传感器和执行器,半导体材料将能够实时感知环境变化并做出相应调整,从而实现智能化。

同时,基于3D打印等技术,可以根据特定需求定制化生产半导体材料,进一步提高生产效率和满足个性化需求。

六、绿色环保和可持续发展在可持续发展的大背景下,半导体材料的绿色环保和可持续发展也成为关注的焦点。

半导体技术的发展现状与趋势

半导体技术的发展现状与趋势

半导体技术的发展现状与趋势半导体技术是当今世界上最具前景和发展潜力的技术之一,其在电子、通信、能源、医疗等领域都有着广泛的应用。

随着移动互联网、人工智能、物联网等新兴技术的兴起,半导体技术的发展也呈现出日新月异的趋势。

本文将对半导体技术的发展现状和趋势进行深入探讨,分析其在各个领域的应用和未来的发展方向。

一、半导体技术的发展现状半导体技术是一种以半导体材料为基础的电子器件制造技术,其最早的应用可以追溯到20世纪50年代,自那时起,半导体技术就开始不断地发展和进步。

目前,半导体技术已经成为现代电子工业的核心技术,其在微处理器、存储器、传感器、光电子器件、功率器件等领域都有广泛的应用。

1.微处理器微处理器是半导体技术的重要应用领域之一,它是现代电子设备的核心部件,其性能直接关系到整个设备的运行速度和稳定性。

当前,微处理器的制造技术已经进入到纳米级别,其性能和功耗方面都有了显著的提升。

随着人工智能、大数据等新兴技术的兴起,微处理器的需求也在不断增加,为了满足这些需求,半导体技术在微处理器领域的研发也在持续不断地进行着。

2.存储器存储器是另一个重要的半导体技术应用领域,其在电子设备中主要用于存储数据和程序。

当前,随着移动互联网、云计算等新兴技术的迅速发展,对存储器的需求也在不断增加。

为了提高存储器的容量和速度,半导体技术在存储器领域的研发也在进行着,目前,固态硬盘已经代替了传统的机械硬盘成为了主流产品。

3.传感器传感器是半导体技术在物联网、智能制造等领域的重要应用之一,它可以将各种信号转换为电信号,并通过电路进行处理,最终输出所需的信息。

随着物联网和智能制造的兴起,传感器的需求也在不断增加,为了满足这些需求,半导体技术在传感器领域的研发也在持续不断地进行着。

4.光电子器件光电子器件是半导体技术在光通信、光存储等领域的重要应用之一,它可以将电信号转换为光信号,并通过光纤进行传输。

当前,随着5G技术的逐步成熟和光纤网络的不断建设,对光电子器件的需求也在不断增加。

半导体材料的应用现状及发展趋势

半导体材料的应用现状及发展趋势

半导体材料的应用现状及发展趋势一、引言半导体材料是一种具有介于导体和绝缘体之间特性的材料。

它在现代电子学、光电子学和能源领域中有着广泛的应用。

本文旨在探讨半导体材料的应用现状,并展望其发展趋势。

二、半导体材料的应用领域2.1 电子器件半导体材料是电子器件的基础。

它们被广泛应用于集成电路、晶体管和二极管等器件中。

这些器件在计算机、通信和消费电子产品中起到至关重要的作用。

2.2 光电子学半导体材料在光电子学领域也有着重要作用。

例如,光电二极管和激光器等器件采用半导体材料制造,广泛应用于光通信、光储存和光传感等领域。

2.3 太阳能电池半导体材料在太阳能电池中扮演关键角色。

太阳能电池将太阳辐射转化为电能,实现可持续能源利用。

多晶硅、单晶硅和薄膜太阳能电池等技术正在不断发展和改进,以提高太阳能电池的效率和经济性。

2.4 传感器半导体材料还广泛应用于传感器领域。

例如,温度传感器、压力传感器和光传感器等都是基于半导体材料原理设计和制造的。

这些传感器在工业自动化、医疗诊断和环境监测等方面发挥着重要作用。

三、半导体材料的发展趋势3.1 基础材料的改进半导体材料的发展趋势之一是改进基础材料的性能。

例如,通过材料结构调控和材料工艺改进,可以提高材料的电子迁移率、载流子浓度和热稳定性等特性,以提高材料的性能和应用范围。

3.2 新型材料的研发随着科技的进步,新型半导体材料的研发也日趋重要。

例如,二维材料(如石墨烯)、有机半导体材料和无机-有机混合材料等都具有特殊的电子结构和性能,被广泛研究和应用于新型器件设计中。

3.3 纳米材料的应用纳米材料是近年来半导体材料研究的热点之一。

通过纳米尺度的结构调控,可以改变材料的电子、光学和磁学等性质,提高材料的效率和功能。

纳米材料在热电器件、传感器和光电器件等领域有着广阔的应用前景。

3.4 可再生能源的开发半导体材料在可再生能源开发中也发挥着重要作用。

例如,光电池技术的发展和改进可以提高太阳能电池的效率和稳定性,进一步推动太阳能产业的发展。

半导体行业的市场现状与发展趋势

半导体行业的市场现状与发展趋势

半导体行业的市场现状与发展趋势一、行业概况半导体原指半导体材料,在研究半导体材料中所取得的技术成果的基础上,人们成功地制造出了半导体器件。

半导体器件不像电子管那样需要高压电源,而是只需几伏的小电压就能够工作。

因此被广泛应用于电子计算、通信、信息储存等等领域。

半导体产业经过多年的发展,已然成为现代社会最重要的基础产业之一。

二、市场现状半导体行业的市场现状主要表现在以下三个方面:(一)龙头企业占据市场主导地位全球半导体市场规模约为4600亿美元,其中,美国、韩国、中国、日本等国的企业是半导体行业的龙头企业,近年来也是占据市场份额的主要力量。

(二)技术更新换代加速半导体是最具创新力的产业之一,在过去一段时间里,因为人工智能、互联网、物联网、5G等技术的崛起,导致半导体行业在技术更新换代方面加速。

技术的不断更新对半导体行业发展趋势有着极大的影响。

(三)产业整合层次不断提高在半导体行业的竞争中,中小型半导体企业都在积极寻求和合作,企业之间的合作得到了日益加深。

产业整合层次也逐步提升并形成了竞争格局。

三、发展趋势半导体行业在市场的发展过程中也面临着一系列的机遇和挑战,以下是半导体行业的发展趋势:(一)技术趋势在半导体行业中,进一步微小化是未来每家半导体公司都会追求的目标。

另外,为了应对人工智能、物联网等新技术的崛起,人们需要一些特定的芯片技术来支持这些情况,因此产业链结构可能会进一步优化。

(二)应用趋势随着5G技术的崛起,应用能够带来更多的移动数据和高速数据连接,同时移动端设备将拥有更多的计算任务,都将使得个人计算机行业出现一定程度的规模增长。

另外,随着智能家居、无人驾驶等领域的快速发展,Now,消费电子、汽车、智能家居等领域也将会持续保持增长。

(三)政策引领随着各国政府对高科技产业的重视,包括国内的半导体产业投入、补贴和政策红利落地的加速,预计有助于行业的投资,增加行业的信心和潜在盈利度。

四、结论半导体行业的未来发展前景不仅仅是市场空间无限,而且在技术和应用的领域也具有广阔的发展空间。

半导体行业的战略规划和未来发展趋势

半导体行业的战略规划和未来发展趋势

半导体行业的战略规划和未来发展趋势随着科技的不断进步和社会的快速发展,半导体行业作为现代工业的基础和支撑,扮演着至关重要的角色。

本文将探讨半导体行业的战略规划和未来发展趋势,以期为该行业的相关企业和从业人员提供一定的参考和启示。

一、行业现状与发展趋势半导体作为新兴产业,目前全球市场规模已达数千亿美元,并且呈现出持续增长的趋势。

在技术方面,半导体行业的发展主要集中在以下几个方向:1.新一代半导体材料的研发为了满足高性能计算、人工智能、物联网等领域的需求,半导体材料的研发和应用成为行业关注的热点。

例如,石墨烯、硅光子、氮化镓等新材料的出现,为半导体行业带来了更多的发展机遇。

2.集成电路技术的创新集成电路是半导体行业的核心产品之一,其技术的创新一直是行业发展的关键。

随着技术的不断进步,集成电路的制程工艺越来越先进,芯片的规模越来越小,功耗和成本也大幅降低,这将为半导体行业带来更广阔的市场前景。

3.半导体设备制造的进步半导体设备制造业作为半导体行业的重要组成部分,其技术的进步直接关系到整个行业的发展水平。

目前,半导体设备制造业正朝着高性能、高可靠性和低能耗的方向发展,并且在智能制造、自动化生产等方面取得了重要的突破。

二、战略规划针对半导体行业的特点和发展趋势,企业在制定战略规划时应注重以下几个方面:1.技术研发与创新作为高科技产业,技术研发和创新是半导体行业的核心竞争力。

企业应加强研发投入,提高科研水平,不断开展创新性工作,推动新技术、新产品的研发和产业化。

2.市场拓展和业务发展市场拓展是企业战略规划的重要环节。

企业应根据自身特点和竞争优势,在全球范围内积极寻找市场机会,拓展业务版图,加强与客户的合作,并加大对新兴市场的布局。

3.人才培养和团队建设半导体行业需要大量高素质、高技能的人才。

企业应注重人才培养和创新团队的建设,建立良好的激励机制,吸引和留住优秀的人才,从而提升企业的核心竞争力。

三、未来发展趋势根据对半导体行业的发展趋势的分析,我们可以预见未来几年该行业将呈现以下几个发展趋势:1.人工智能与半导体的深度融合人工智能技术的快速发展对半导体行业提出了更高的要求。

半导体技术的发展现状与趋势

半导体技术的发展现状与趋势

半导体技术的发展现状与趋势一、发展现状1.1半导体技术的历史半导体技术是20世纪最重要的技术之一,它改变了人类社会的方方面面。

20世纪50年代晶体管技术的发明让半导体技术获得了飞速发展的契机,之后的半个世纪里,半导体技术经历了晶体管、集成电路、微处理器等多个阶段的发展,不断推动着信息产业的发展。

1.2主要应用领域半导体技术已经深入到各个领域,如电子通信、计算机、电子消费品、汽车、医疗设备等。

在电子通信领域,半导体芯片是移动通信网络的核心部件;在计算机领域,半导体技术推动了计算机的不断升级和发展;在电子消费品领域,半导体技术使得电子产品变得更加小巧、功能更加强大;在汽车领域,半导体技术实现了智能化驾驶和无人驾驶技术;在医疗设备领域,半导体技术改进了医疗设备的性能,提高了医疗水平。

1.3技术发展水平半导体技术的当前发展水平已经非常成熟,主要表现在以下几个方面:(1)集成度不断提高。

半导体技术的集成度从最初的几个晶体管到现在的数十亿甚至上百亿个晶体管,集成度的提高使得芯片的功能越来越强大。

(2)工艺精度持续提高。

半导体制造工艺的微观化、精细化和复杂化是半导体技术不断发展壮大的基础,如工艺已经进入纳米尺度,工艺的精度已经达到了几十个纳米。

(3)新材料不断涌现。

半导体技术的发展离不开各种新型材料的推动,如氮化镓、碳化硅等材料的应用正在推动半导体技术的发展。

1.4产业现状半导体产业已经成为国民经济的支柱产业,在全球范围内有着巨大的影响力。

当前,全球半导体产业呈现以下几个特点:(1)全球产业集中度逐步提高。

全球主要的半导体企业集中在美国、韩国、日本等国家,这些国家的半导体企业占据了全球市场的绝大部分份额。

(2)产业链日趋完善。

半导体产业链已经形成完整的生产体系,从设备制造到芯片设计、生产、封装测试等环节,各个环节的企业都在不断努力提高产品水平和降低成本。

1.5发展机遇与挑战半导体技术的发展面临着一系列的机遇和挑战:(1)人工智能、物联网等新兴领域的兴起为半导体技术带来了新的发展机遇,这些新的领域对于半导体芯片的要求更高,也为半导体技术提供了更广阔的应用场景。

半导体材料的发展和应用前景

半导体材料的发展和应用前景

半导体材料的发展和应用前景近年来,半导体技术迅猛发展,成为推动世界科技进步的重要力量。

半导体材料是制造各种电子产品所必需的关键元素,其应用范围广泛,包括电子计算机、通讯设备、显示器和发光二极管等。

本文将从半导体材料的发展历程、现状和未来前景三个方面探讨半导体材料的发展和应用前景。

一、半导体材料发展历程半导体材料的历史可以追溯到早期的矿物晶体和硫化铜。

19世纪末,人们开始系统地研究半导体物理现象,例如光电效应和电导率的依赖关系。

20世纪20年代和30年代,半导体物理学得到了快速发展。

1950年代,贝尔实验室、德州仪器公司、杜邦公司等公司相继研制出硅晶体管。

60年代,半导体技术以惊人的速度发展,第一代大型集成电路IC横空出世。

70年代,发明了第一种光电转换器件:太阳电池。

80年代,半导体材料应用领域进一步拓宽,例如成像器件、CCD摄像器件、LED发光器件等。

二、半导体材料现状如今,半导体材料应用范围广泛,并且不断创新。

由于其运动电荷易受光、电子、声波作用影响等特点,半导体材料制成器件则具有适合电子级操作、高速调制、轻薄短小等优点。

半导体材料可以制成半导体晶体、半导体光电转换器件、半导体二极管和场效应晶体管等各种电子器件,广泛应用于计算机、电子通讯、磁盘存储、交通运输、医疗、能源等众多领域。

例如,计算机芯片中的金属氧化物半导体场效应晶体管(MOSFET)和电容器领域中使用的储能单元都采用半导体材料制造。

在电子产品中,半导体材料应用场景更多。

例如,LED发光二极管作为一种可靠、高效、环保、长寿命的照明产业替代品已经展现出巨大的应用前景;高清电子屏采用液晶阵列制成,可以使用半导体材料进行背光;智能手机使用的触控屏幕是由半导体压敏电阻制成的等等。

三、半导体材料未来前景未来,半导体材料在能源领域、新物质领域、信息处理领域和制造业领域等都有广阔的应用前景。

在能源领域中,半导体材料可以用作储能体、储氢体、太阳电池等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料代表品种分别为硅、砷化镓和氮化 镓。
半导体材料的发展现状及趋势
l 材料的物理性质是产品应用的基础,表1 列出了主要半导体材料的物理性质及应用 情况。表中禁带宽度决定发射光的波长, 禁带宽度越大发射光波长越短(蓝光发射); 禁带宽度越小发射光波长越长。其它参数 数值越高,半导体性能越好。电子迁移速 率决定半导体低压条件下的高频工作性能, 饱和速率决定半导体高压条件下的高频工 作性能。
半导体材料的发展现状及趋势
l 砷化镓材料的电子迁移率是硅的6倍多, 其器件具有硅器件所不具有的高频、高速 和光电性能,并可在同一芯片同时处理光 电信号,被公认是新一代的通信用材料。 随着高速信息产业的蓬勃发展,砷化镓成 为继硅之后发展最快、应用最广、产量最 大的半导体材料。同时,其在军事电子系 统中的应用日益广泛,并占据不可取代的 重要地位。
半导体材料的发展现状及趋势
l 近年来取得了很大进展,并开始进入市场。 与制造技术非常成熟和制造成本相对较低 的硅半导体材料相比,第三代半导体材料 目前面临的最主要挑战是发展适合氮化镓 薄膜生长的低成本衬底材料和大尺寸的氮 化镓体单晶生长工艺。
半导体材料的发展现状及趋势
l 主要半导体材料的用途如表2所示。可以 预见:以硅材料为主体、GaAs半导体材 料及新一代宽禁带半导体材料共同发展将 成为集成电路及半导体器件产业发展的主 流。
半导体材料的发展现状及趋势
•表3 现代微电子工业对硅片关键参数的要求
首批产品预计生 2005 2008 2011 2014 产年份
工艺代(特征尺 100 70 50 30 寸/nm)
晶片尺寸/mm 300 300 300 450
去边/mm11源自11正表面颗粒和 50 35 25 25 COP尺寸 /mm
颗粒和COP密 0.10 0.10 0.10 0.10 度/mm-2
表面临界金属元 素密度
/109at.m m-2
≤4.9
≤4.2
≤3.6
≤3.0
局部平整度 100 70 60 35 /nm
中心氧含量 ±9.0 ±9.0 ±9.0 ±9.0
半导体材料的发展现状及趋势
(1)多晶硅
l 多晶硅是制备单晶硅和太阳能电池的原料。 半导体级多晶硅的生产技术现多采用改良西门 子法,这种方法的主要技术是:

光学应用
用 情
高频性能

高温性能
发展阶段
相对制造成本
无 差 中 成熟 低
红外
蓝光/紫外




发展中
初期
高 高 半导体材料的发展现状及趋势
l 硅材料具有储量丰富、价格低廉、热性能 与机械性能优良、易于生长大尺寸高纯度 晶体等优点,处在成熟的发展阶段。目前, 硅材料仍是电子信息产业最主要的基础材 料,95%以上的半导体器件和99%以上的 集成电路(IC)是用硅材料制作的。在21世 纪,它的主导和核心地位仍不会动摇。但 是硅材料的物理性质限制了其在光电子和 高频高功率器件上的应用。
半导体材料的发展现状及趋势
•表4 多晶硅质量指标
项目
免洗料
纯度 及电 阻率
施主 (P、As、Sb)
受主 (B、Al)
碳 体金属总量(Fe、Cu、Ni、Cr、Zn)
max 150ppta min 500Ωcm max 50ppta min 500Ωcm max 100ppba max 500pptw
半导体材料的发展现状及趋势

l 在集成电路用硅片中,8英寸的硅片占主 流,约40~50%,6英寸的硅片占30%。 当硅片的直径从8英寸到12英寸时,每片 硅片的芯片数增加2.5倍,成本约降低30 %,因此,国际大公司都在发展12英寸硅 片,2006年产量将达到13.4亿平方英寸, 将占总产量的20%左右。现代微电子工业 对硅片关键参数的要求如表3所示。
l (1)在大型反应炉内同时加热许多根金属丝, 减小炉壁辐射所造成的热损失;
l (2)炉的内壁加工成镜面,使辐射热反射,减 少散热;
l (3)提高炉内压力,提高反应速度等措施; l (4)在大型不锈钢金属反应炉内使用100根以
上的金属丝。
半导体材料的发展现状及趋势
l 单位电耗由过去每公斤300度降低到80度。 多晶硅产量由改良前每炉次100~200公 斤提高到5~6吨。其显著特点是:能耗低、 产量高、质量稳定。表4给出了德国瓦克 公司的多晶硅质量指标数据。
半导体材料的发展现状及趋势
材料名称 硅
砷化镓
氮化镓
•表2 半导体材料的主要用途
制作器件 二极管、晶体管
集成电路 整流器 晶闸管
射线探测器 太阳能电池 各种微波管
激光管 红外发光管
霍尔元件 激光调制器 高速集成电路 太阳能电池
激光器件 发光二极管 紫外探测器
集成电路
主要用途 通讯、雷达、广播、电视、自动控制 各种计算机、通讯、广播、自动控制、电子钟表、仪表
半导体材料的发展现状及趋势
多晶硅
l 目前全世界每年消耗约22000吨半导体级多晶硅, 世界多晶硅的年生产能力约为28000吨,生产高 度集中于美、日、德3国,海姆洛克(美国)、 瓦克ASIM(德国),德山曹达(日本)、 MEMC(美国)占据了多晶硅市场的80%以上。 其中,美国哈姆洛克公司产能达6500t/a,德国 瓦克化学公司和日本德山曹达公司产能超过 4500t/a,美国MEMC公司产能超过2500t/a。
半导体材料的发展现状及趋势
l 从表1看出,选择宽带隙半导体材料的主要理由 是显而易见的。氮化镓的热导率明显高于常规 半导体。这一属性在高功率放大器和激光器中 是很起作用的。带隙大小本身是热生率的主要 贡献者。在任意给定的温度下,宽带隙材料的 热生率比常规半导体的小10~14个数量级。这 一特性在电荷耦合器件、新型非易失性高速存 储器中起很大的作用,并能实质性地减小光探 测器的暗电流。
整流 整流、直流输配电、电气机车、设备自控、高频振荡器
原子能分析、光量子检测 太阳能发电
雷达、微波通讯、电视、移动通讯 光纤通讯
小功率红外光源 磁场控制 激光通讯
高速计算机、移动通讯 太阳能发电
光学存储、激光打印机、医疗、军事应用 信号灯、视频显示、微型灯泡、移动电话
分析仪器、火焰检测、臭氧监测 通讯基站(功放器件)、永半远导体性材内料存的发、展电现子状及开趋关势、导弹
半导体材料的发展现状及趋势
•表1 主要半导体材料的比较
材料

禁带宽度(ev)
理 性
饱和速率(×10-7cm/s)

热导(W/c·K)
击穿电压(M/cm)
电子迁移速率(cm2/V·s)
Si 1.1 1.0
1.3 0.3 1350
GaAs 1.4 2.1
0.6 0.4 8500
GaN 3.4 2.7
2.0 5.0 900
半导体材料的发展现状及趋势

l 经过多年的发展和竞争,国际硅材料行业 出现了垄断性企业,日本、德国和美国的 六大硅片公司的销量占硅片总销量的90% 以上,其中信越、瓦克、SUMCO和 MEMC四家的销售额占世界硅片销售额的 70%以上,决定着国际硅材料的价格和高 端技术产品市场,其中以日本的硅材料产 业最大,占据了国际硅材料行业的半壁江 山。
半导体材料的发展现状及趋势

l 半导体硅材料分为多晶硅、单晶硅、硅外延片 以及非晶硅、浇注多晶硅、淀积和溅射非晶硅 等。现行多晶硅生产工艺主要有改良西门子法 和硅烷热分解法。主要产品有棒状和粒状两种, 主要是用作制备单晶硅以及太阳能电池等。生 长单晶硅的工艺可分为区熔(FZ)和直拉(CZ)两 种。其中,直拉硅单晶(CZ-Si)广泛应用于集成 电路和中小功率器件。区域熔单晶(FZ-Si)目前 主要用于大功率半导体器件,比如整流二极管, 硅可控整流器,大功率晶体管等。单晶硅和多 晶硅应用最广。
l 电子信息产业规模最大的是美国。近几年 来,中国电子信息产品以举世瞩目的速度 发展,2003年中国电子信息产业销售收 入1.88万亿元,折合2200~2300亿美元, 产业规模已超过日本位居世界第二(同期 日本信息产业销售收入只有1900亿美 元),成为中国第一大支柱产业。半导体 材料及应用已成为衡量一个国家经济发展、 科技进步和国防实力的重要标志。
半导体材料的发展现状及趋势
多晶硅
l 中国多晶硅严重短缺,远不能满足国内市场需 求。多晶硅工业起步于50年代,60年代实现工 业化生产。由于技术水平低、生产规模太小、 环境污染严重、生产成本高,目前只剩下峨嵋 半导体材料厂和洛阳单晶硅厂2个厂家生产多晶 硅。中国多晶硅的产能为100吨/年,实际产量 是70~80吨,仅占世界产量的0.4%,与当今信 息产业的高速发展和多晶硅的市场需求急剧增 加极不协调。我国这种多晶硅供不应求的局面 还将持续下去。据专家预测,2005年中国多晶 硅年需求量约为756吨,2010年为1302吨,市 场前景十分巨大。
半导体材料的发展现状及趋势
l 在半导体产业的发展中, l 硅、锗称为第一代半导体材料; l 将砷化镓、磷化锢、磷化镓、砷化锢、砷化铝
及其合金等称为第二代半导体材料; l 将宽禁带(Eg>2.3eV)的氮化镓、碳化硅、硒化
锌和金刚石等称为第三代半导体材料。 l 上述材料是目前主要应用的半导体材料,三代
半导体材料的发展现状及趋势

l 半导体硅材料自从60年代被广泛应用于各类电 子元器件以来,其用量平均大约以每年12~ 16%的速度增长。目前全世界每年消耗约 18000~25000吨半导体级多晶硅,消耗 6000~7000吨单晶硅,硅片销售金额约60~80 亿美元。可以说在未来30~50年内,硅材料仍 将是LSI工业最基础和最重要的功能材料。电子 工业的发展历史表明,没有半导体硅材料的发 展,就不可能有集成电路、电子工业和信息技 术的发展。
相关文档
最新文档