抛物线基础训练题(含答案)
抛物线基础练习

抛物线基础练习抛物线基础练习一. 选择题1.抛物线212y x =的准线方程是3x =3x =-3y =3y =-若直线10ax y -+=经过抛物线24y x =的焦点,则实数a=1-2-抛物线22y x =-和22y x =-的焦点坐标分别是A.1,08⎛⎫- ⎪⎝⎭和10,2⎛⎫- ⎪⎝⎭B .10,8⎛⎫- ⎪⎝⎭和1,02⎛⎫- ⎪⎝⎭C.1,02⎛⎫- ⎪⎝⎭和10,8⎛⎫- ⎪⎝⎭D.10,2⎛⎫- ⎪⎝⎭和1,08⎛⎫- ⎪⎝⎭4.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为A .2-B .2C .4-D .45.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 A .2B .3C .4D.6.设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y += 7.若点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为A.2B .3CD .928.已知直线1:4360l x y -+=和2:1l x =-,抛物线24y x =上一动点P 到1l 和2l 的距离之和的最小值是A .115B .3C .2D .37169.已知点P 在24yx =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .114⎛⎫-⎪⎝⎭, B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-, 10.已知22ypx =的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则A.123FP FP FP += B.222123FP FP FP +=C.2132FP FP FP =+D.2213FP FP FP =⋅11.连结抛物线24x y =的焦点F 与点(1,0)M 所得线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为 A.1-B.32C.1D.32+12.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k =A .13B.3C .23D.313.过点(1,0)-作抛物线21y x x =++的切线,则其中一条切线方程是A .220x y ++=B .330x y -+= C .10x y ++=D .10x y -+=14.设P 为曲线2:23C y x x =++上一点,且曲线C 在点P 处切线倾斜角的范围是[0,]4π,则点P 横坐标的取值范围是A .1[1,]2--B .[1,0]-C .[0,1]D .1[,1]215.抛物线2y x =-上的点到直线4380x y +-=距离的最小值为 A .43B .75C .85D .316.设抛物线24xy =的焦点为F ,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则FA +FB +FC =A .9B .6C .4D .317.设O 是坐标原点,F 是22(0)y px p =>的焦点,A 是抛物线上的点,FA 与x 轴正向的夹角为60,则OA =A .214pB.2C.6pD .1336p 18.已知抛物线的准线方程为20x y +-=,焦点是(5,5)F ,则抛物线的顶点坐标是.(3,5)A B .(5,3)C .(2,2)D .(3,3)二. 填空题19.若抛物线顶点是坐标原点,焦点坐标是()2,0F -,则抛物线方程是 20.若抛物线顶点是坐标原点,准线方程是()0y m m =≠,则抛物线方程是 21.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹方程为22.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.则动圆圆心C 的轨迹的方程是 23.与圆0422=-+x y x外切且与y 轴相切的动圆的圆心的轨迹方程是24.抛物线2y ax =的准线方程是2y =,则a =25.在抛物线22y px =上,横坐标为4的点到焦点的距离为5,则p = 26.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 27.已知F 是抛物线24C yx =:的焦点,A B ,是C 上的两个点,线段AB的中点为(22)M ,,则ABF =△S .28.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,若6AB =,则圆C 的方程为三. 解答题31.已知直线b x y +=与以椭圆22134x y +=的上焦点为焦点,顶点在坐标原点O 的抛物线交于A 、B 两点,若△OAB 是以角O 为直角的三角形,求b 的值抛物线基础练习答案一.选择题1.抛物线212y x =的准线方程是3x =3x =-3y =3y =-若直线10ax y -+=经过抛物线24y x =的焦点,则实数a=1-2-抛物线22y x =-和22y x =-的焦点坐标分别是A.1,08⎛⎫- ⎪⎝⎭和10,2⎛⎫- ⎪⎝⎭B .10,8⎛⎫- ⎪⎝⎭和1,02⎛⎫- ⎪⎝⎭C.1,02⎛⎫- ⎪⎝⎭和10,8⎛⎫- ⎪⎝⎭D.10,2⎛⎫-⎪⎝⎭和1,08⎛⎫- ⎪⎝⎭ 4.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为A .2-B .2C .4-D .45.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 A .2B .3C .4D.6.设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为 A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y += 7.若点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为AB .3CD .928.已知直线1:4360l x y -+=和2:1l x =-,抛物线24y x =上一动点P 到1l 和2l 的距离之和的最小值是A .115B .3C .2D .37169.已知点P 在24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .114⎛⎫-⎪⎝⎭, B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,10.已知22ypx =的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则A.123FP FP FP += B.222123FP FP FP +=C.2132FP FP FP =+D.2213FP FP FP =⋅11.连结抛物线24xy =的焦点F 与点(1,0)M 所得线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为 A.1-B.32C.1D.32+12.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k =A .13B.3C .23D13.过点(1,0)-作抛物线21y x x =++的切线,则其中一条切线方程是A .220x y ++=B .330x y -+=C .10x y ++=D .10x y -+=14.设P 为曲线2:23C y x x =++上一点,且曲线C 在点P 处切线倾斜角的范围是[0,]4π,则点P 横坐标的取值范围是A .1[1,]2--B .[1,0]-C .[0,1]D .1[,1]215.抛物线2y x =-上的点到直线4380x y +-=距离的最小值为A .43B .75C .85D .316.设抛物线24x y =的焦点为F ,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则FA +FB +FC =A .9B .6C .4D .317.设O 是坐标原点,F 是22(0)y px p =>的焦点,A 是抛物线上的点,FA 与x 轴正向的夹角为60,则OA =A .214pBCpD .1336p 18.已知抛物线的准线方程为20x y +-=,焦点是(5,5)F ,则抛物线的顶点坐标是.(3,5)A B .(5,3)C .(2,2)D .(3,3)二. 填空题19.若抛物线顶点是坐标原点,焦点坐标是()2,0F -,则抛物线方程是28y x =- 20.若抛物线顶点是坐标原点,准线方程是()0y m m =≠,则抛物线方程是24x my =-21.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹方程为28y x =22.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.则动圆圆心C 的轨迹的方程是22y px =23.与圆0422=-+x y x外切且与y 轴相切的动圆的圆心的轨迹方程是()082>=x x y 和()00<=x y24.抛物线2y ax =的准线方程是2y =,则a =18-25.在抛物线22y px =上,横坐标为4的点到焦点的距离为5,则p =2 26.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为227.已知F 是抛物线24C yx =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF =△S 2.28.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为22(1)10xy +-=三. 解答题31.已知直线b x y +=与以椭圆22134x y +=的上焦点为焦点,顶点在坐标原点O 的抛物线交于A 、B 两点,若△OAB 是以角O 为直角的三角形,求b 的值解:由已知得:抛物线焦点()0,1F ,所以,抛物线方程是24x y = 由24y x bx y=+⎧⎨=⎩,得2440x x b --= 设()()1122,,,A x y B x y则()()()()()2121244140142,43b x x x x b ⎧∆=--⨯⨯->⎪+=⎨⎪⋅=-⎩ 由(1)得1b >- 由已知得0,OA OB ⋅=4b ∴=或0b =(舍)。
抛物线基础题(含答案)

抛物线(A)一.选择题:1. 准线为x =2的抛物线的标准方程是A .24y x =- B.28y x =- C.24y x = D.28y x = (答:B) 2. 焦点是(-5,0)的抛物线的标准方程是A.25y x =B.210y x =-C.220y x =-D.220x y =- (答:C)3. 抛物线F 是焦点,则p 表示A. F到准线的距离B.F 到准线距离的14 B. C. F 到准线距离的18D. F 到y轴距离的 (答:B) 4. 动点M (x,y)到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M 的轨迹方程是A.40x += B.40x -= C.28y x = D.216y x = (答:D ) 5. 若抛物线2(1)y a x =+的准线方程是x=-3,那么抛物线的焦点坐标是A.(3,0) B.(2,0) C.1,0) D.(-1,0) (答:C)6. 24x y =点于直线0x y -=对称的抛物线的焦点坐标为 A 10,16⎛⎫ ⎪⎝⎭ B 10,16⎛⎫- ⎪⎝⎭ C 1,016⎛⎫ ⎪⎝⎭D1,016⎛⎫- ⎪⎝⎭ (答:A) 7. 动点P 到直线40x +=的距离减去它到()2,0M 的距离之差等于2,则点P的轨迹是A 直线B 椭圆 C双曲线 D抛物线 (答:D)8. 抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(),3P m -到焦点的距离为5,则抛物线的准线方程是A 4y = B4y =- C 2y = D 2y =- (答:C )9. 抛物线()20y ax a =<的焦点坐标和准线方程分别为 A 11,044x a a ⎛⎫= ⎪⎝⎭B 11,044x a a ⎛⎫-=- ⎪⎝⎭C 110,44y a a ⎛⎫=- ⎪⎝⎭D 110,44y a a⎛⎫-=- ⎪⎝⎭ (答:C) 10. 在28y x =上有一点P,它到焦点的距离是20,则P 点的坐标是A ()8,12 B()18,12- C ()18,12或()18,12- D ()12,18或()12,18-(答:C)11. 物线210y x =的焦点到准线的距离是 A.10 B.5 C.20 D.52 (答:B) 12. 抛物线28x y =-的焦点坐标是A.()4,0- B .()0,4- C.()2,0- D.()0,2- (答:D)二.填空题:1. 2(0)y ax a =≠的焦点坐标是 答:(,0)4a2. 24y x =的焦点坐标是准线方程是 (答:(0,116),116y =- 3. 顶点在原点,焦点为(0,-2)的抛物线的方程为 (答:28x y =-)4. 抛物线22(0)y px p =>上一点M到焦点的距离是()2p a a >,则点M 到准线的距离是点M的横坐标是 (答:,2p a a -) 5. 一条隧道的顶部是抛物拱形,拱高1.1米,跨度是2.2米,则拱形的抛物线方程是(答:21.1x y =-)6. 抛物线22(0)y px p =>点()23-,到其焦点的距离是5,则p =_______(答:4) 7. 抛物线()()12,1812,18-24x y =上一点A 的纵坐标为4,则点A与抛物线的焦点为_______(答:5)三.解答题:1. 根据下列条件写出抛物线的标准方程(1) 焦点是F(3,0) (答:212y x =)(2) 准线方程是14x =- (答:2y x =) (3) 焦点到准线距离是2 (答:2x y =±24y x =±)2. 求顶点在原点,对称轴为坐标轴,过点(2,-8)的抛物线方程,并指出焦点和准线。
抛物线基础训练题经典(含答案)

抛物线基础训练题1.动点P 到点A (0,2)的距离比到直线l :y =-4的距离小2,则动点P 的轨迹方程为 D A. x y 42= B. x y 82= C.y x 42= D.y x 82=2.已知直线l 与抛物线x y 82=交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 A A.425 B.225 C.825D.253.已知抛物线的焦点在直线y x 2--4=0上,则此抛物线的标准方程是C A.x y 162= B.y x 82-= C. x y 162=或y x 82-= D. x y 162=或y x 82=4.直线y =kx -2与抛物线x y 82=交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 BA.-1B.2C.-1或2D.以上都不是5.动圆M 经过点A (3,0)且与直线l :x =-3相切,则动圆圆心M 的轨迹方程是 A A. x y 122= B. xy 62= C. xy 32= D.x y 242=6.θ是任意实数,则方程x2+y2sinθ=4的曲线不可能是(C ) A.椭圆 B.双曲线 C.抛物线 D.圆7.双曲线ky x 224+=1的离心率e∈(1,2),则k 的取值范围是(B ) A.(-∞,0) B.(-12,0) C.(-3,0) D.(-60,-12)8.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为(D ) A.1121622=+y x B.1161222=+y x C. 141622=+y x D.116422=+y x9.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( B )A.(45,23) B.(1,1) C.( 49,23) D.(2,4)10.1122222222=-=-ay b x b y a x 与(a>b>0)的渐近线(D )A.重合 B.不重合,但关于x 轴对应对称 C.不重合,但关于y 轴对应对称 D.不重合,但关于直线y =x 对应对称 11.抛物线22x y =的焦点坐标是 ( C )A .)0,1(B .)0,41(C .)81,0(D . )41,0(12 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( D ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=13.抛物线x y 122=截直线12+=x y 所得弦长等于 ( A )A .15B .152C .215 D .1514.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( B ) A .y x 292-=或x y 342=B .x y 292-=或y x 342= C .y x 342=D .x y 292-=15.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 )42,81(±______________.16.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p _2__________.17抛物线22y x =的准线方程为( B ) A .14y =-B .18y =-C .1y =D .12y =18抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( B )A .1617B .1615C .87D .019抛物线28x y =-的准线方程是 ( B )A . 321=x B . 2=y C . 321=y D . 2-=y20抛物线2x y =在点M (21,41)处的切线的倾斜角是( B )A .30°B .45°C .60°D .90°21若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( D )。
初三抛物线练习题和答案

初三抛物线练习题和答案一、选择题1. 下列哪个点不在抛物线y = 2x² - 4x + 1上?A. (-1, 7)B. (0, 1)C. (1, -1)D. (2, 1)答案:C2. 抛物线y = -3x² + 6x - 9的开口方向是:A. 向上B. 向下答案:B3. 抛物线y = x² + 2x - 3的顶点坐标是:A. (-1, 0)B. (-1, -4)C. (-1, -2)D. (1, 4)答案:C二、填空题1. 抛物线y = 2x² - 4x + 1的对称轴方程是______。
答案:x = 12. 抛物线y = -x² + 4x + 5的焦点坐标为(2, 4),则抛物线的方程为______。
答案:y = -(x - 2)² + 4三、解答题1. 求抛物线y = -2x² + 8x - 5的顶点坐标和对称轴方程。
解答:首先,我们知道抛物线的顶点坐标可以通过公式计算。
对于一般式的二次函数y = ax² + bx + c,顶点的横坐标为x = -b/2a,带入公式即可得到纵坐标。
在这个例子中,a = -2,b = 8,c = -5。
将这些值代入公式,我们可以计算出顶点的横坐标为x = -8/(-4) = 2。
将x = 2带入原方程,可以计算出顶点的纵坐标为y = -2(2)² + 8(2) - 5 = 7。
因此,抛物线y = -2x² + 8x - 5的顶点坐标为(2, 7)。
对称轴方程为x = 2。
2. 求抛物线y = x² - 4x + 3的焦点坐标。
解答:为了求解焦点坐标,我们需要先将方程转化为顶点形式。
通过配方可以将标准形式转化为顶点形式。
首先,我们可以将方程y = x²- 4x + 3写成完全平方式,即y = (x - 2)² - 1。
通过完全平方式转化后,我们可以得到抛物线的顶点坐标为(2, -1)。
初中抛物线试题及答案

初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。
A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。
A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。
答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。
答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。
答案:抛物线与x轴的交点坐标为(3, 0)。
2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。
答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。
四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。
求桥拱的跨度。
答案:桥拱的跨度为8米。
2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。
求物体达到最高点时的时间。
答案:物体达到最高点时的时间是2秒。
抛物线运动练习题(含答案)

抛物线运动练习题(含答案)抛物线运动练题 (含答案)问题一一颗子弹以水平速度100 m/s 射向离地面20m的点,以重力加速度10 m/s²作用下,子弹射出后多久击中地面?答案:使用抛物线运动的公式,可以计算出子弹击中地面所需的时间。
抛物线运动公式为:h = v₀t + 1/2gt²其中,v₀表示初始速度,g表示重力加速度,h表示高度,t表示时间。
代入已知数据:h = 20mv₀ = 100 m/sg = 10 m/s²将公式稍作变形,得到:t² + 20t - 40 = 0解这个二次方程,可求得:t ≈ -23.3 秒或t ≈ 1.7 秒因为时间不能为负数,所以子弹射出约1.7秒后击中地面。
问题二一个人从离地面15m的点以速度20 m/s斜抛一个物体,物体飞行的距离是多少?答案:根据抛物线运动的公式,可以计算出物体的飞行距离。
抛物线运动公式为:d = v₀x t其中,v₀x表示初始水平速度,t表示时间,d表示距离。
我们需要找到物体运动的总时间,然后将其代入公式中计算距离。
首先,我们可以使用重力加速度的公式计算物体运动所需的时间 t₀:h = v₀yt₀ + 1/2gt₀²将公式代入已知数据:h = 15 mv₀y = 20 m/sg = 10 m/s²可得到:15 = 20t₀ + 1/2 * 10 * t₀²将这个方程稍作整理,得到二次方程:5t₀² + 20t₀ - 30 = 0解这个二次方程,可求得:t₀ ≈ -1.85 秒或 t₀ ≈ 0.85 秒因为时间不能为负数,所以物体运动约0.85秒后落地。
然后,我们将求得的 t₀代入公式:d = v₀x * t₀代入已知数据:v₀x = 20 m/st₀ ≈ 0.85 s计算得到物体的飞行距离d ≈ 17 m。
问题三一颗炮弹以45°角发射,速度为400 m/s。
抛物线基础题(含答案)之欧阳数创编

抛物线(A )一.选择题:1. 准线为x=2的抛物线的标准方程是A.24y x =-B.28y x =-C.24y x =D.28y x = (答:B)2. 焦点是(-5,0)的抛物线的标准方程是A.25y x =B.210y x =-C.220y x =-D.220x y =- (答:C)3. 抛物线F 是焦点,则p 表示A. F 到准线的距离B.F到准线距离的14 B. C. F 到准线距离的18 D. F 到y 轴距离的(答:B ) 4. 动点M (x,y )到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M 的轨迹方程是A.40x +=B.40x -=C.28y x =D.216y x = (答:D)5. 若抛物线2(1)y a x =+的准线方程是x=-3,那么抛物线的焦点坐标是A.(3,0)B.(2,0)C.1,0)D.(-1,0) (答:C )6. 24x y =点于直线0x y -=对称的抛物线的焦点坐标为 A 10,16⎛⎫ ⎪⎝⎭ B 10,16⎛⎫- ⎪⎝⎭ C 1,016⎛⎫ ⎪⎝⎭ D 1,016⎛⎫- ⎪⎝⎭ (答:A ) 7. 动点P 到直线40x +=的距离减去它到()2,0M 的距离之差等于2,则点P 的轨迹是A 直线B 椭圆C 双曲线D 抛物线 (答:D )8. 抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(),3P m -到焦点的距离为5,则抛物线的准线方程是A 4y =B 4y =-C 2y =D 2y =- (答:C )9. 抛物线()20y ax a =<的焦点坐标和准线方程分别为 A 11,044x a a ⎛⎫= ⎪⎝⎭ B 11,044x a a ⎛⎫-=- ⎪⎝⎭ C 110,44y a a ⎛⎫=- ⎪⎝⎭D110,44y a a ⎛⎫-=- ⎪⎝⎭ (答:C ) 10. 在28y x =上有一点P ,它到焦点的距离是20,则P 点的坐标是A ()8,12B ()18,12-C ()18,12或()18,12-D ()12,18或()12,18-(答:C )11. 物线210y x =的焦点到准线的距离是 A.10 B.5 C.20 D.52 (答:B )12. 抛物线28x y =-的焦点坐标是A.()4,0-B.()0,4-C.()2,0-D.()0,2- (答:D)二.填空题:1. 2(0)y ax a =≠的焦点坐标是 答:(,0)4a2. 24y x =的焦点坐标是准线方程是 (答:(0,116),116y =- 3. 顶点在原点,焦点为(0,-2)的抛物线的方程为(答:28x y =-)4. 抛物线22(0)y px p =>上一点M 到焦点的距离是()2p a a >,则点M 到准线的距离是点M 的横坐标是 (答:,2pa a -)5. 一条隧道的顶部是抛物拱形,拱高1.1米,跨度是2.2米,则拱形的抛物线方程是(答:2 1.1x y =-)6. 抛物线22(0)y px p =>点()23-,到其焦点的距离是5,则p=_______(答:4)7. 抛物线()()12,1812,18-24x y =上一点A 的纵坐标为4,则点A 与抛物线的焦点为_______ (答:5)三.解答题:1. 根据下列条件写出抛物线的标准方程(1) 焦点是F (3,0)(答:212y x =)(2) 准线方程是14x =-(答:2y x =)(3) 焦点到准线距离是 2 (答:2x y =±24y x =±)2. 求顶点在原点,对称轴为坐标轴,过点(2,-8)的抛物线方程,并指出焦点和准线。
抛物线习题精选(带答案)

抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线基础训练题
1.动点P 到点A (0,2)的距离比到直线l :y =-4的距离小2,则动点P 的轨迹方程为 D A. x y 42= B. x y 82= C.y x 42= D.y x 82=
2.已知直线l 与抛物线x y 82=交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 A A.4
25 B.
2
25 C.
8
25
D.25
3.已知抛物线的焦点在直线y x 2--4=0上,则此抛物线的标准方程是C A.x y 162= B.y x 82-= C. x y 162=或y x 82-= D. x y 162=或y x 82=
4.直线y =kx -2与抛物线x y 82=交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 B
A.-1
B.2
C.-1或2
D.以上都不是
5.动圆M 经过点A (3,0)且与直线l :x =-3相切,则动圆圆心M 的轨迹方程是 A A. x y 122= B. x y 62= C. x y 32= D.x y 242=
6.θ是任意实数,则方程x2+y2sinθ=4的曲线不可能是(C ) A.椭圆 B.双曲线 C.抛物线 D.圆
7.双曲线k
y x 2
24+=1的离心率e∈(1,2),则k 的取值范围是(B ) A.(-∞,0) B.(-12,0) C.(-3,0) D.(-60,-12)
8.以12
42
2y x -=1的焦点为顶点,顶点为焦点的椭圆方程为(D ) A.
112162
2=+y x B.
116122
2=+y x C. 14
162
2=+y x D.
116
42
2=+y x
9.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( B )
A.(45,23) B.(1,1) C.( 49
,23) D.(2,4)
10.1122
222222=-=-a
y b x b y a x 与(a>b>0)的渐近线(D )
A.重合 B.不重合,但关于x 轴对应对称 C.不重合,但关于y 轴对应对称 D.不重合,但关于直线y =x 对应对称 11.抛物线2
2x y =的焦点坐标是 ( C )
A .)0,1(
B .)0,4
1(
C .)8
1,0(
D . )4
1,0(
12 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ( D ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=
13.抛物线x y 122=截直线12+=x y 所得弦长等于 ( A )
A .15
B .15
2
C .
2
15 D .15
14.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( B ) A .y x 2
92-
=或x y 3
42=
B .x y 292-=或y x 3
42= C .y x 3
4
2=
D .x y 2
92
-
=
15.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 )4
2
,8
1(±
______________.
16.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p
_2__________.
17
抛
物
线
2
2y x =的准线方程为
( B ) A .14y =-
B .18y =-
C .1y =
D .1
2y =
18抛物线2
4x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( B )
A .1617
B .1615
C .87
D .0
19抛物线28x y =-的准线方程是 ( B )
A . 321=
x B . 2=y C . 321
=
y D . 2-=y
20抛物线2
x y =在点M (21,41
)处的切线的倾斜角是( B )
A .30°
B .45°
C .60°
D .90°
21若抛物线2
2y px =的焦点与椭圆22
162x y +=的右焦点重合,则p 的值为
( D )。
A .2-
B .2
C .4-
D .4。