向量的线性运算知识点总复习附解析

合集下载

高中数学空间向量的线性运算知识点解析

高中数学空间向量的线性运算知识点解析

向量:
→ (1)AP; → → → 解 AP=AD1+D1P
→ → 1→ =(AA1+AD)+2AB
1 =a+c+2b.
→ (2)A1N;
解 → → → A1N=A1A+AN
→ → 1→ =-AA1+AB+2AD
1 =-a+b+2c.
→ → (3)MP+NC1.
→ → → — → → → → 解 MP+NC1=(MA1+A1D1+D1P)+(NC+CC1)
PART TWO
2
题型探究
题型一 空间向量的概念理解
例1 (1)下列关于空间向量的说法中正确的是
A.空间向量不满足加法结合律
B.若|a|=|b|,则a,b的长度相等而方向相同或相反 → → → → → → C.若向量AB,CD满足|AB|>|CD|,则AB>CD 解析 A中,空间向量满足加法结合律; B中,|a|=|b|只能说明a,b的长度相等而方向不确定; C中,向量作为矢量不能比较大小,故选D.
1 → → 1→ 1 → → =2AA1+AD+2AB+2AD+AA1
3 → 3 → 1→ =2AA1+2AD+2AB
3 1 3 =2a+2b+2c.
引申探究 C1P 1 若把本例中“P 是 C1D1 的中点”改为“P 在线段 C1D1 上,且PD =2”,其他 1 → 条件不变,如何表示AP?
2 → → → → → 2→ 解 AP=AD1+D1P=AA1+AD+3AB=a+c+3b.
— → — → — → — → — → B′B,CC′,C′C,DD′,D′D,共 8 个向量都是单位向量,而其他向量的 模均不为 1,故单位向量共有 8 个.
②试写出模为 5的所有向量.
— → 解 由于长方体的左右两侧面的对角线长均为 5,故模为 5的向量有AD′, — → — → — → — → — → — → — → D′A,A′D,DA′,BC′,C′B,B′C,CB′.

向量的线性运算技巧及练习题附解析

向量的线性运算技巧及练习题附解析

向量的线性运算技巧及练习题附解析一、选择题1.下列说法中,正确的是()A.如果k=0,a是非零向量,那么k a=0 B.如果e是单位向量,那么e=1C.如果|b|=|a|,那么b=a或b=﹣a D.已知非零向量a,如果向量b=﹣5a,那么a∥b【答案】D【解析】【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,a是非零向量,那么k a=0,错误,应该是k a=0.B、如果e是单位向量,那么e=1,错误.应该是e=1.C、如果|b|=|a|,那么b=a或b=﹣a,错误.模相等的向量,不一定平行.D、已知非零向量a,如果向量b=﹣5a,那么a∥b,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.2.如图,已知△ABC中,两条中线AE、CF交于点G,设,,则向量关于、的分解式表示正确的为()A.B.C.D.【答案】B【解析】【分析】由△ABC中,两条中线AE、CF交于点G可知,,求出的值即可解答.【详解】∵∴∵∴故本题答案选B.【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.3.下列判断正确的是( )A .0a a -=B .如果a b =,那么a b =C .若向量a 与b 均为单位向量,那么a b =D .对于非零向量b ,如果()0a k b k =⋅≠,那么//a b【答案】D【解析】【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】 A. -a a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b ,如果()0a k b k =⋅≠,即可得到两个向量是共线向量,可得到//a b ,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量. 4.下列命题:①若a b =,b c =,则c a =;②若a ∥b ,b ∥c ,则a ∥c ;③若|a |=2|b |,则2a b =或a =﹣2b ;④若a 与b 是互为相反向量,则a +b =0.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解.【详解】①若a b =,b c =,则c a =,正确;②若a ∥b ,b ∥c ,则a ∥c ,正确;③若|a |=2|b |,则2a b =或a =﹣2b ,错误,因为两个向量的方向不一定相同或相反;④若a 与b 是互为相反向量,则a +b =0,正确.综上所述,真命题的个数是3个.故选C .5.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D【解析】【分析】 根据3,2a b ==,而且12,x x R ∈和a 的方向相反,可得两者的关系,即可求解. 【详解】 ∵3,2a b ==,而且12,x x R ∈和a 的方向相反 ∴32a b =-故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.6.已知a 、b 和c 都是非零向量,在下列选项中,不能判定//a b 的是( ) A .2a b =B .//a c ,//b cC .||||a b =D .12a c =,2bc = 【答案】C【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】 A 选项:由2a b =,可以推出//a b .本选项不符合题意;B 选项:由//a c ,//b c ,可以推出//a b .本选项不符合题意;C 选项:由||||a b =,不可以推出//a b .本选项符合题意;D 选项:由12a c =,2bc =,可以推出//a b .本选项不符合题意;故选:C .【点睛】考查了平面向量,解题关键是熟记平行向量的定义.7.已知a 、b 为非零向量,下列判断错误的是( )A .如果a =3b ,那么a ∥bB .||a =||b ,那么a =b 或a =-bC .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =2【答案】B【解析】【分析】根据平面向量的性质解答即可.【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意. D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意.故选:B .【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.8.点C 在线段AB 上,且35AC AB =,若AC mBC =,则m 的值等于( ). A .23 B .32 C .23- D .32- 【答案】D 【解析】【分析】根据已知条件即可得:25AC AB CB AB ==-,从而得出:52AB BC =-,再代入35AC AB =中,即可求出m 的值.【详解】解:∵点C 在线段AB 上,且35AC AB = ∴25AC AB CB AB ==- ∴5522CB AB BC ==- ∴55322335BC B C A C A B ⎛⎫=- ⎝==-⎪⎭ 故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ = B .++=0 C .+= D .+= 【答案】C【解析】 【分析】由加法的三角形法则化简求解即可.【详解】由加法的三角形法则可得,+=, ++= , +=, +=故选:B.【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量()12m n +相等的向量是( ).A .OAB .OBC .OCD .OD【答案】C【解析】 【分析】 由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==,然后由三角形法则,求得AC 与BD ,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC AD n ==,∴AC =AB BC m n +=+,=BD AD AB n m -=-,∴()11=-22OA AC m n =-+,()11=22OC AC m n =+ ()11=-22OB BD n m =--,()11=22OD BD n m =- 故选:C .【点睛】 此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.11.已知e →为单位向量,a =-3e →,那么下列结论中错误..的是( ) A .a ∥e →B .3a =C .a 与e →方向相同D .a 与e →方向相反 【答案】C 【解析】【分析】 由向量的方向直接判断即可.【详解】解:e 为单位向量,a =3e -,所以a 与e 方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.12.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =- AE EC =+AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.13.已知a ,b 为非零向量,如果b =﹣5a ,那么向量a 与b 的方向关系是( ) A .a ∥b ,并且a 和b 方向一致B .a ∥b ,并且a 和b 方向相反C .a 和b 方向互相垂直D .a 和b 之间夹角的正切值为5【答案】B【解析】【分析】根据平行向量的性质解决问题即可.【详解】∵已知a ,b 为非零向量,如果b =﹣5a ,∴a ∥b ,a 与b 的方向相反,故选:B .【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.14.如图,向量OA 与OB 均为单位向量,且OA ⊥OB ,令n =OA +OB ,则||n =( )A .1B C D .2【答案】B【解析】根据向量的运算法则可得: n =)22OA OB +=故选B.15.已知a ,b 和c 都是非零向量,下列结论中不能判定a ∥b 的是( )A .a //c ,b //cB .1,22a c b c ==C .2a b =D .a b = 【答案】D【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】 解:A.∵a //c ,b //c ,∴a ∥b ,故本选项错误; B.∵1,22a cbc ==∴a ∥b ,故本选项错误. C.∵2a b =,∴a ∥b ,故本选项错误;D.∵a b =,∴a 与b 的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.16.设e 为单位向量,2a =,则下列各式中正确的是( ) A .2a e = B .a e a = C .2a e = D .112a =± 【答案】C【解析】【分析】 根据e 为单位向量,可知1e =,逐项进行比较即可解题.【详解】解:∵e 为单位向量,∴1e =,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =,1e =,∴2a e =,正确,D 中忽视了向量的方向性,错误故选C.【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.17.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP 可以用点P 的坐标表示为:(,)OP m n =.已知11(,OA x y =),22(,)OB x y =,如果12120x x y y +=,那么OA 与OB 互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-;(3,4)OD =-B .(2,3)OE =-; (3,2)OF =-C .(3,1)OG =;(OH =-D .(24)OM =;(2)ON =-【答案】D【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可.【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意;B. 121266102x x y y =--=-≠+,故不符合题意;C. 12123012x x y y =-+=-≠+,故不符合题意;D. 1212880x x y y =-+=+,故符合题意; 故选D.【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键. 18.已知a 、b 和c 都是非零向量,在下列选项中,不能判定a ∥b 的是( ) A .=a bB .a ∥c ,b ∥cC .a +b =0D .a +b =2c ,a ﹣b =3c【答案】A【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A 、该等式只能表示两a 、b 的模相等,但不一定平行,故本选项符合题意;B 、由a ∥c ,b ∥c 可以判定a ∥b ,故本选项不符合题意;C 、由a +b =0可以判定a 、b 的方向相反,可以判定a ∥b ,故本选项不符合题意;D 、由a +b =2c ,a ﹣b =3c ,得到a =52c ,b =﹣12c ,则a 、b 的方向相反,可以判定a ∥b ,故本选项不符合题意;故选:A .【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.19.若a =2e ,向量b 和向量a 方向相反,且|b |=2|a |,则下列结论中不正确的是( )A .|a |=2B .|b |=4C .b =4eD .a =12b - 【答案】C【解析】【分析】根据已知条件可以得到:b =﹣4e ,由此对选项进行判断.【详解】A 、由a =2e 推知|a |=2,故本选项不符合题意.B 、由b =-4e 推知|b |=4,故本选项不符合题意.C 、依题意得:b =﹣4e ,故本选项符合题意.D 、依题意得:a =-12b ,故本选项不符合题意. 故选C .【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.化简OP QP PS SP -++的结果等于( ).A .QPB .OQC .SPD .SQ 【答案】B【解析】【分析】利用向量的加减法的法则化简即可.【详解】解:原式=+Q OP P PS SP ++=Q O ,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.。

向量的线性运算全集汇编附解析

向量的线性运算全集汇编附解析

向量的线性运算全集汇编附解析一、选择题1.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.2.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④方向相同 A .0 B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.3.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u r u u u r u u u r u u u r r ,故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.4.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键5.下列命题:①若a b r r=,b c =rr,则c a =r r; ②若a r ∥b r ,b r∥c r ,则a r ∥c r;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r; ④若a r与b r是互为相反向量,则a r +b r=0. 其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解. 【详解】①若a b =r r ,b c =r r ,则c a =r r ,正确; ②若a r ∥b r ,b r ∥c r ,则a r ∥c r,正确;③若|a r |=2|b r |,则2a b =r r 或a r =﹣2b r ,错误,因为两个向量的方向不一定相同或相反;④若a r与b r是互为相反向量,则a r +b r=0,正确. 综上所述,真命题的个数是3个. 故选C .6.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.7.已知1,3a b ==r r ,而且b r 和a r 的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r . 【答案】D 【解析】 【分析】根据平面向量的性质即可解决问题. 【详解】∵1,3a b ==v v,而且b v 和a v 的方向相反 ∴3b a v v =-.故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.8.已知3a →=,2b =r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v 的方向相反 ∴32a b =-v v故选D. 【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.9.已知向量,若与共线,则( )A .B .C .D .或【答案】D 【解析】 【分析】 要使与,则有=,即可得知要么为0,要么,即可完成解答. 【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D. 【点睛】本题考查了向量的共线,即=是解答本题的关键.10.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u rr,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r r r ;C .()12BO b a =-+u u u r r r ; D .()12BO b a =-u u u r r r .【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v =,2b c -v v =,故a b v v ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r,则下列选项与1122a b -+rr 相等的向量是( ).A .MA u u u rB .MB u u u rC .MC u u u u rD .MD u u u u r【答案】D【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.13.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB u u u r是单位向量,则BA u u u r 不是单位向量C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA u u u r 、OB uuu r是单位向量D .计算向量的模与单位长度无关 【答案】C 【解析】 【分析】根据单位向量的定义及意义判断即可. 【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB u u u r是单位向量时,1AB =uu u r ,而此时1AB BA ==u u u r u u u r ,即BA u u u r 也是单位向量,故选项B不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA u u u r 、OB u u u r都等于这个单位长度,这时OA u u u r 、OB uuu r都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C. 【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.14.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.15.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r |=|a r |,那么b r =a r 或b r =﹣a r,错误.模相等的向量,不一定平行.D 、已知非零向量a r ,如果向量b r =﹣5a r ,那么a r ∥b r,正确.故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.16.如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r ,那么a b +rr 等于( )A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =u u u r r,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∵AD b =u u u r r ,∴BC b =u u u r r , ∵AB a =u u u r r ,∴a b +r r =AB u u ur +BC uuu r =AC u u u r .故选B .17.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u rB .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u u r u u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.18.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r r C .2a b =r r D .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.19.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.20.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( )A .2a b =rrB .//a c r r,//b c r rC .||||a b =rrD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =r r ,可以推出//a b r r.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b r r.本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b rr .本选项符合题意;D 选项:由12a c =r r ,2bc =r r ,可以推出//a b r r .本选项不符合题意; 故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.。

向量的线性运算

向量的线性运算

向量的线性运算向量是线性代数中的重要概念,线性运算是对向量进行数学操作的方法。

本文将介绍向量的线性运算包括加法、减法、数乘,以及向量的线性组合。

一、向量的加法向量的加法是指将两个向量相加得到一个新的向量,符号为“+”。

设有向量A和向量B,记作A+B=C,其中C是向量A和向量B的和向量。

向量的加法满足以下几个性质:1. 交换律:A+B=B+A2. 结合律:(A+B)+C=A+(B+C)3. 零向量:对于任意向量A,有A+0=A,其中0是零向量,即所有分量都为0的向量。

二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量,符号为“-”。

设有向量A和向量B,记作A-B=C,其中C是向量A和向量B的差向量。

向量的减法可以转化为向量的加法,即A-B=A+(-B),其中-表示取反操作。

三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量。

设有向量A和实数k,记作kA=B,其中B是向量A的数乘结果。

向量的数乘满足以下性质:1. 分配律:k(A+B)=kA+kB2. 结合律:(kl)A=k(lA),其中k和l为实数四、向量的线性组合向量的线性组合是指将若干个向量按照一定的权重进行相加得到一个新的向量。

设有向量A1、A2、...、An和实数k1、k2、...、kn,向量的线性组合记作k1A1+k2A2+...+knAn。

向量的线性组合可以看作是向量的加法和数乘运算的组合。

向量的线性运算在向量空间中有着重要的应用。

通过向量的线性组合,我们可以表示出向量空间中的各种线性关系,诸如线性相关性、线性无关性、生成子空间等概念。

在实际问题中,向量的线性运算也有广泛的应用。

例如,物理学中常用向量的线性组合来表示力、速度、加速度等物理量;经济学中则常用向量的线性组合来表示商品的组合、市场的供求关系等。

综上所述,向量的线性运算包括加法、减法、数乘和线性组合。

通过这些运算,我们可以对向量进行各种数学操作,方便地进行向量的运算和分析,也为解决实际问题提供了有力的工具。

高数 向量及其线性运算 知识点与例题精讲

高数 向量及其线性运算 知识点与例题精讲
平行四边形法则: b ab
c (a b) c
bc a (b c)
三角形法则:
a
ab
b
ab
b
a
a 运算规律 : 交换律 a b b a
结合律 ( a b ) c a ( b c ) a b c
三角形法则可推广到多个向量相加 .
机动 目录 上页 下页 返回 结束
(2) 0,
a

0
(3) 0, a与a 反向,| a || | | a |
a 2a 1 a 2
数与向量的乘积符合下列运算规律:
(1)结合律:(a) ( a) ()a
(2)分配律:( )a a a

• 坐标面
• 卦限(八个) Ⅶ
x
x轴(横轴)

yoz 面 o xoy面


y
y轴(纵轴)

机动 目录 上页 下页 返回 结束
三个坐标轴的正方向
符合右手系.
即以右手握住z 轴,
z 竖轴
当右手的四个手指
从正向x 轴以 角
2
度转向正向y 轴
定点 o
y 纵轴
时,大拇指的指向
就是z 轴的正向.
横轴 x 空间直角坐标系
s a1 a2 a3 a4 a5
a4
a5
a3 s
a2 a1
机动 目录 上页 下页 返回 结束
2. 向量的减法 b
a
三角不等式
机动 目录 上页 下页 返回 结束
3.数与向量的乘积
设 是一个数,向量a与 的乘积a规定为
(1) 0, a与a 同向,| a | | a |

向量的线性运算要点精析

向量的线性运算要点精析

向量的线性运算要点精析向量既有大小又有方向,既能像实数一样进行运算,又有直观的几何意义,是数与形的完美结合。

向量的加减法是向量运算的基本内容,它们反映了图形的基本结构和图形的基本性质。

运算的代数表示形式使得向量成为沟通几何与代数的重要工具,向量的运算也就成为考查中的重点内容。

一、重点难点1.重点:向量的概念,相等向量的概念及向量的几何表示,向量加法和减法的三角形法则、四边形法则,并掌握加法交换律和结合律,能熟练运用加、减法及四则运算律进行向量的计算。

2.难点:向量的概念,对向量加法和减法定义的理解。

二、要点精析1.向量不同于我们以前学过的数量,它是既有大小又有方向的一种量,既能像实数一样进行某些运算,又有直观的几何意义,因此,用向量方法可以把几何中的证明问题转化为代数计算问题。

在我们所接触的量中,如位移、力、加速度等都是向量,而长度、距离、质量都不是向量,向量可以用向线段表示,也可以用字母表示(注意书写体和印刷体不一样),在建立坐标系后,还可以用坐标表示向量。

2.因为一切向量都有大小和方向,所以教材仅研究与起点无关的向量,也称为自由向量,当遇到与起点有关的向量时,可作平移,有向线段是向量的一种表示方法,并不是说向量是有向线段。

有向线段有起点、终点、箭头,而向量没有。

3.长度为零的向量叫零向量,其方向不确定(零向量只有一个且方向是任意的),它与任一向量平行,但注意零向量0与实数0是两个不同类型的量,在处理问题中应当充分考虑它们的不同之处,零向量在共线向量的问题中比较特别,应按照平行向量的补充规定来判断。

长度等于1个单位长度的向量叫做单位向量。

单位向量有无数多个且每个都有确定的方向。

4.方向相同或相反的非零向量叫做平行向量。

规定零向量与任何向量平行。

平行向量也叫做共线向量,共线向量可能有下列情况:(1)有一个为零向量;(2)两个都为零向量;(3)方向相同,长度相等(相等向量);(4)方向相同,长度不等;(5)方向相反,长度相等;(6)方向相反,长度不等。

向量的线性运算知识点总复习有解析

向量的线性运算知识点总复习有解析

A. a / /b
【答案】C
B. a b
C. BD 7 2
D. a 与 b 方向相反
【解析】
【分析】
利用相等向量与相反向量的定义逐项判断即可完成解答.
【详解】
解:已知 a=2c , b= 2c ,故 a,b 是长度相同,方向相反的相反向量,
故 A,B,D 正确, 向量之和是向量,C 错误, 故选 C. 【点睛】 本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正 确运用相等向量与相反向量的定义判断 A、B、D 三项结论正确.
AB AC CB ,故 A 选项错误;
AB AC BC ,故 B、C 选项错误;
AB BC CA 0 ,故 D 选正确.
故选:D. 【点睛】
本题考查向量的线性运算,熟练掌握运算法则是关键.
15.已知 a , b 和 c 都是非零向量,下列结论中不能判定 a ∥ b 的是( )
A. a // c , b // c
意.
B、由| a | 3 | b | 只能判定向量 a 、 b 的模之间的关系,不能判定向量 a 、 b 的方向是否相
同,故本选项符合题意.
C、由 a 5b 可以判定向量 a 、 b 的方向相反,则 a//b ,故本选项不符合题意.
D、由 a 2b 可以判定向量 a 、 b 的方向相同,则 a//b ,故本选项不符合题意.
2 3
a

故选 B.
【点睛】
本题考查了平面向量的知识,即长度不为 0 的向量叫做非零向量,向量包括长度及方向, 而长度等于 1 个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.
11.已知 a 、 b 、 c 都是非零向量,如果 a 2c , b 2c ,那么下列说法中,错误的是

第1讲 平面向量的概念及线性运算4种题型(解析版)

第1讲 平面向量的概念及线性运算4种题型(解析版)

第1讲 平面向量的概念及线性运算4种题型【考点分析】考点一:向量的基本概念①定义:既有大小又有方向的量叫做向量.②向量的模:向量AB 的大小,也就是向量AB 的长度,叫做向量的模,记作||AB . ③零向量:长度为0的向量,其方向是任意的. ④单位向量:长度等于1个单位的向量.⑤平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ⑥相等向量:长度相等且方向相同的向量. ⑦相反向量:长度相等且方向相反的向量. 考点二:向量的线性运算和向量共线定理 ①向量的线性运算考点三:向量共线定理①如果λ=a b 且0≠b ,则a b ∥;反之a b ∥且0≠b ,则一定存在唯一一个实数λ,使λ=a b . 推论:①三点A ,B ,C 共线⇔AB ,AC 共线(功能:证明三点共线);①向量PA ,PB ,PC 中三个向量的终点A ,B ,C 共线⇔存在实数λ,μ使得PA PB PC λμ=+,且1.λμ+=①BD DC λ=,111AD AC AC λλλ=+++. 【题型目录】题型一: 平面向量的概念 题型二: 平面向量的加法、减法 题型三: 平面向量的线性运算与共线定理 题型四: 由平面向量的性质判断图形的形状 【典型例题】题型一: 平面向量的概念【例1】给出下列说法:①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等.其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C【分析】根据零向量及单位向量的概念即可求解. 【详解】解:对①:零向量的方向是任意的,故①错误; 对①:零向量的长度为0,故①正确; 对①:零向量的方向是任意的,故①正确; 对①:单位向量的模都等于1,故①正确. 故选:C.【例2】下列命题中正确的是( )A .两个有共同起点且相等的向量,其终点必相同B .两个有公共终点的向量,一定是共线向量C .两个有共同起点且共线的向量,其终点必相同D .若AB 与CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上 【答案】A【分析】根据向量相等与共线的概念即可解决.【详解】两个相等的向量方向相同且长度相等,因此起点相同时终点必相同,故A 正确; 两个有公共终点的向量,可能方向不同,也可能模长不同,故B 错误;两个有共同起点且共线的向量可能方向不同,也可能模长不同,终点未必相同,故C 错误;AB 与CD 是共线向量,也可能是AB 平行于CD ,故D 错误.故选:A【例3】有下列结论:①表示两个相等向量的有向线段,若它们的起点相同,则终点也相同; ①若a b ≠,则a ,b 不是共线向量;①若AB DC =,则四边形ABCD 是平行四边形; ①若m n =,n k =,则m k =;①有向线段就是向量,向量就是有向线段. 其中,错误的个数是( ) A .2 B .3C .4D .5,若a b ≠也有可能a ,b 长度不等,但方向相同或相反,即共线,AB DC =,则AB ,DC 不一定相等,所以四边形,若m n =,n k =,则m k =,①正确;,有向线段不是向量,向量可以用有向线段表示,综上,错误的是①①①,共3个. 【例4】设0a 为单位向量,①若a 为平面内的某个向量,则a =|a |0a ;②若a 与0a 平行,则a =|a |0a ;③若a 与0a 平行且|a |=1,则a =0a .上述命题中,假命题的个数是A .0B .1C .2D .3 【答案】D【详解】单位向量的模为1,方向可以是不同方向,所以①错 ;若a 与0a 平行,则两个向量可以同向,也可以反向,方向不一定相同,所以①错;①错因此选D 【例5】下列命题中,正确的个数是( )①单位向量都相等;①模相等的两个平行向量是相等向量; ①若,a b 满足||||a b >,且a 与b 同向,则a b >①若两个向量相等,则它们的起点和终点分别重合; ①若,a b b c ∥∥,则a c ∥ A .0个 B .1个C .2个D .3个【答案】A【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可. 【详解】单位向量的大小相等,但方向不一定相同,故①错误; 模相等的两个平行向量是相等向量或相反向量,故①错误; 向量有方向,不能比较大小,故①错误;向量是可以自由平移的矢量,当两个向量相等时,它们的起点与终点不一定相同,故①错误; 当0b =时,可满足,a b b c ∥∥,但a 与c 不一定平行,故①错误; 综上,正确的个数是0, 故选:A .【例6】下面关于向量的说法正确的是( ) A .单位向量:模为1的向量B .零向量:模为0的向量,零向量没有方向C .平行(共线)向量:方向相同或相反的向量D .相等向量:模相等,方向相同的向量 【答案】ACD【分析】根据平面向量的基本定义逐个辨析即可.【详解】根据向量的定义可得,模为1的向量为单位向量,模为0的向量为零向量,零向量的方向是任意的,方向相同或相反的向量为共线向量,模相等,方向相同的向量为相等向量,ABCD 均正确, 故选:ACD .【例7】下列叙述中错误的是( ) A .若a b =,则32a b > B .若a b ∥,则a 与b 的方向相同或相反 C .若a b ∥,b c ∥,则a c ∥ D .对任一非零向量a ,||aa 是一个单位向量 【答案】ABC【分析】对于A ,根据向量的概念判断,对于BCD ,举例判断.【详解】因为是既有大小又有方向的量,所以向量不能比较大小,故A 错误;由于零向量与任意向量共线,且零向量的方向是任意的,故,若b 为零向量,则a 与c 可能不是共线向量,故,对任一非零向量a ,||aa 表示与a ABC 【题型专练】1.下列命题正确的是( )A .向量AB 与BA 是相等向量 B .共线的单位向量是相等向量C .零向量与任一向量共线D .两平行向量所在直线平行 【答案】C【详解】A 选项方向不同,所以错 ;B 选项共线向量是方向相同或者相反,所以错;C 选项,规定零向量的方向是任意的,所以C 对;D 选项向量共线可以在一条直线上,直线平行不能共线,所以D 错 2.下列命题中正确的个数是( )①若向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ①若向量a 与向量b 平行,则a ,b 方向相同或相反;①若非零向量AB 与CD 是共线向量,则它们的夹角是0°或180°; ①若a b =,则a ,b 是相等向量或相反向量. A .0 B .1C .2D .3,根据模长的定义,可知方向不确定,可得答案.【详解】①错误,平行向量又叫共线向量,向量AB 与CD 是共线向量,则AB 与CD 平行或共线;错误,a 与b 至少有一个为零向量时,结论不成立;由向量的夹角可知正确; 错误,由a b =,只能说明a ,b 的长度相等,确定不了方向.3.给出下列命题:①共线向量一定在同一条直线上;①若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;①a b =的充要条件是||a b |=|且//a b .其中正确命题的序号是_______.【答案】①【详解】①不正确,共线向量不一定在同一条直线上,也可能在两条平行直线上; ①正确 ①AB DC =,①||||AB DC =且//AB DC , 又A ,B ,C ,D 是不共线的四点, ①四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,①AB DC =;①不正确,当//a b 且方向相反时,||||a b =,但不能得到a b =,故||||a b =且//a b 不是a b =的充要条件,而是必要不充分条件. 故答案为:①4.把所有单位向量的起点平移到一点O ,则其终点构成的图形是_____________. 【答案】以O 为圆心的单位圆设终点为A ,则1AO =,则终点构成的图形是以O 为圆心的单位圆. 故答案为:以O 为圆心的单位圆. 5.下列说法中正确的是( ) A .若12,e e 为单位向量,则12e e = B .若a 与b 共线,则a b =或a b =-C .若0a =,则0a =D .a a是与非零向量a 共线的单位向量中,向量12,e e 的方向不一定相同,所以中,向量a 与b 的长度不一定相等,所以0a =,根据零向量的定义,可得0a =,所以C 1a a a a =⋅,可得a a与向量a 同向,a a的模等于a a是与非零向量a 共线的单位向量,所以故选:CD.6.下列说法中正确的是( )A .力是既有大小,又有方向的量,所以是向量B .若向量//AB CD ,则//AB CDC .在四边形ABCD 中,若向量//AB CD ,则该四边形为平行四边形 D .速度、加速度与位移的合成与分解,实质上就是向量的加减法运算 【答案】AD【分析】根据向量的定义,共线向量的定义,逐项判定,即可求解.【详解】对于A 中,根据向量的定义,力是既有大小,又有方向的量,所以是向量,所以A 正确; 对于B 中,向量//AB CD ,则//AB CD 或AB 与CD 共线,所以B 错误;对于C 中,在四边形ABCD 中,若向量//AB CD 、则只有一组对边平行,不一定是平行四边形,所以C 错误;对于D 中,根据向量的运算法则,可得速度、加速度与位移的合成与分解,实质上就是向量的加减法运算,所以D 正确. 故选:AD.7.下列结论中正确的是( ) A .若a b =,则a b = B .若,a b b c ==,则a c =C .若A ,B ,C ,D 是不共线的四点,则“AB DC =”是“四边形ABCD 为平行四边形”的充要条件 D .“a b =”的充要条件是“a b =且a b ∥” 是不共线的四点,则当AB DC =时,,故且,AB DC 同向,故AB DC =,故C ,当a b 且方向相反时,即使a b =,也不能得到a b =,故D 错误;8.下列结论中正确的是( ) A .a 与b 是否相等与a ,b 的方向无关 B .零向量相等,零向量的相反向量是零向量 C .若a ,b 都是单位向量,则a b = D .向量AB 与BA 相等【答案】AB【分析】由向量的模、零向量、单位向量、相等向量的定义判断各选项.【详解】对于C ,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等;对于D ,向量AB 与BA 互为相反向量,由向量模的定义,零向量的定义AB 正确. 故选:AB .题型二: 平面向量的加法、减法【例1】AO OB OC CA BO ++++等于( )A .AB B .0C .BCD .AC【答案】B【分析】根据平面向量加法的运算律计算可得; 【详解】解:AO OB OC CA BO ++++ ()()AO OC CA BO OB =++++000=+=故选:B【例2】化简下列各式: (1)AO OB CA CB ++-; (2)MN MD NQ DQ -+-.【答案】(1)0;(2)0【分析】(1)由向量的加法法则与减法法则求解即可; (2)由向量的加法法则与减法法则求解即可;(1)()()AO OB CA CB AO OB CA CB ++-=++-0AB BA =+=;(2)()()MN MD NQ DQ MN MD NQ QD -+-=-++0DN ND =+= 【例3】正方形ABCD 的边长为1,则AB AD +为( ) A.1 BC .3D .根据向量加法的平行四边形法则,AB AD AC +=, 212AB A AD C +==,故选:B.【例4】在ABC 中,M 是BC 的中点,则AB AC +等于( ) A .12AM B .AM C .2AM D .MA【答案】C【分析】根据向量的加法法则计算.【详解】如图,作平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,则2AB AC AE AM +==. 故选:C.【例5】如图为正八边形ABCDEFGH ,其中O 为正八边形的中心,则OC HG FH ++=( )A .OB B .ODC .OFD .OH【答案】A【分析】根据平面向量的概念及加法的运算法则,准确运算,即可求解.【详解】由平面向量的运算法则,可得OC HG FH OC FG OC CB OB ++=+=+=. 故选:A.【例6】设M 是平行四边形ABCD 的对角线的交点,O 为平面上任意一点,则OA OB OC OD +++=( ) A .4OM B .3OM C .2OM D .OM【分析】分别在OAC 和OBD 【详解】解:在OAC 所以1()2OM OA OC =+,即2OA OC OM +=.在OBD 中,因为M 是平行四边形ABCD 的对角线的交点,所以1()2OM OB OD =+,即2OB OD OM +=. 所以4OA OB OC OD OM +++=. 故选:A .【例7】若74AB AC ==,,则BC 的取值范围是( )A .[3,7]B .()37,C .[]311, D .(311), 【分析】根据向量的减法的几何意义,确定向量,AC AB 共线时取得最值,即可求得答案74AB AC ==,,且||BC AC AB -=,当,AC AB 同向时,BC 取得最小值,|||||||4||BC AC AB AC AB ===---当,AC AB 反向时,BC 取得最大值,|||||||||4BC AC AB AC AB -+===+当,AC AB 不共线时,BC 取得最小值,3||||||||||1||||1AC AB BC AC AB =<-<+=,BC 的取值范围是[]311,, 故选:C【例8】已知ABC 为正三角形,则下列各式中成立的是___________.(填序号)AC AB =-①AB CA BC AB -=-;①AB CA CA BC -=-;①CA BC AB AC -=-. AB AC CB BC -==,故①分别为,,AB BC AC 的中点,32AB , 23AB CA AB AC AE AB -=+==, 23BC AB BC BA BF BA -=+==,所以AB CA BC AB -=-,故①成立;对于①,23CA BC CA CB CD AB -=+==, 所以AB CA CA BC -=-,故①正确;①,AB AC CB AB CA BC -==≠-,故①不成立故答案为:①①①.【题型专练】1.32AB BC AC +-=( ) A .AB AC + B .AB AC - C .AB D .BA【答案】A【分析】根据向量的运算法则,准确化简,即可求解.【详解】由向量的运算法则,可得3222AB BC AC AB BC AB AC +-=++- 2AC CB AB AC =+=+.故选:A.2.下列能化简为PQ 的是( ) A .QC QP CQ -+ B .()AB PA BQ ++C .()()AB PC BA QC ++- D .PA AB BQ +-【答案】ABC【分析】根据向量运算对选项进行分析,从而确定正确答案. 【详解】A 选项,QC QP CQ PC CQ PQ -+=+=,A 选项正确. B 选项,()AB PA BQ AB AQ BQ PA PA PQ ++=+=+=+,B 选项正确.C 选项,()()AB PC BA QC AB BA PC QC CQ CP PQ ++-=++-=-=,C 选项正确. D 选项,()PA AB BQ PB BQ BP BQ BP BQ PQ +-=-=--=-+≠,D 选项错误. 故选:ABC3. 在四边形ABCD 中,若CA CB CD =+,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形【答案】D【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形.故选:D .4. 在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,则下列向量与AB DC +不相等的是( ) A .2EF B .AC DB + C .EB EC + D .FA FD +所以11,22AE ED AD BF FC BC ====, 因为EF EA AB BF =++,EF ED DC CF =++ 2EF ED DC CF EA AB BF AB DC =+++++=+, A 正确,因为,DC DA AC AB AD DB =+=+,所以DC AB DA AC AD DB AC DB +=+++=+,所以B 正确,因为,DC DE EC AB AE EB =+=+,所以DC AB DE EC AE EB EC EB +=+++=+,所以因为()FA FD FB BA FC CD BA CD AB DC +=+++=+=-+, D 错误, 故选:D5.在四边形ABCD 中,给出下列四个结论,其中一定正确的是( ) A .AB BC CA +=B .AB AD BD -=C.AB AD AC+=D.BC CD BD+=【答案】D【分析】由向量加法的三角形法则可判断AD,由向量减法的运算法则可判断B,由向量加法的平行四边形法则可判断C.【详解】根据三角形法则可得AB BC AC+=,所以A错误;根据向量减法的运算法则可得AB AD DB-=,所以B错误;四边形ABCD不一定是平行四边形,所以不一定有AB AD AC+=,C错误;根据三角形法则可得BC CD BD+=正确,所以D正确.故选:D.6.在四边形ABCD中,AB DC=,若AD AB BC BA-=-,则四边形ABCD是()A.菱形B.矩形C.正方形D.不确定【分析】由AB DC=,可得四边形为平行四边形,又BD AC=,从而即可求解【详解】解:在四边形ABCD因为AB DC=,所以四边形AD AB BC BA-=-,即BD AC=,所以平行四边形ABCD为矩形,故选:B.7.在ABC中,D,E,F分别是边BC,CA,AB的中点,点G为ABC的重心,则下列结论中正确的是()A.AB BC CA-=B.1()3AG AB AC=+C.0AF BD CE++=D.0GA GB GC++=【答案】BCD【分析】由向量的线性运算结合三角形的重心的性质求解即可.【详解】解:如图:,2AB BC AB CB EB AC-=+=≠,即选项为ABC的重心,则2211()()3323AG AD AB AC AB AC==⨯+=+,即选项,1()02AF BD CE AB BC CA++=++=,即选项C正确;,122()2GA GD GB GC=-=-⨯+,即0GA GB GC++=,即选项D正确,8.如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)DG EA CB++;(2)EG CG DA EB+++.【答案】(1)GE;(2)0.【分析】(1)(2)根据图形中相关线段的位置关系,结合向量加法的几何意义化简目标式.(1)DG EA CB GC BE CB GB BE GE+++++===;(2)EG CG DA EB EG GD DA AE ED DE==+=++++++.题型三:平面向量的线性运算与共线定理【例1】[多选题]下列命题是真命题的是().A.若A,B,C,D在一条直线上,则AB与CD是共线向量B.若A,B,C,D不在一条直线上,则AB与CD不是共线向量C.若向量AB与CD是共线向量,则A,B,C,D四点必在一条直线上D.若向量AB与AC是共线向量,则A,B,C三点必在一条直线上【答案】AD【分析】向量平行与共线是同一个概念,对四个命题依次判断即可.【详解】A 项为真命题,A,B,C,D在一条直线上,则向量AB,CD的方向相同或相反,因此AB与CD是共线向量;B 项为假命题,A ,B ,C ,D 不在一条直线上,则AB ,CD 的方向不确定,不能判断AB 与CD 是否共线;C 项为假命题,因为AB ,CD 两个向量所在的直线可能没有公共点, 所以A ,B ,C ,D 四点不一定在一条直线上;D 项为真命题,因为AB ,AC 两个向量所在的直线有公共点A , 且AB 与AC 是共线向量,所以A ,B ,C 三点共线. 故选:AD .【例2】已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,CC .B ,C ,DD .A ,C ,D【分析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B 则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确; 选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,不存在,故该选项错误;,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,48(72)a b a b λ+=-,解得λ不存在,故该选项错误; 故选:A.【例3】下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线 【答案】ABC选项:根据向量共线的性质,可知A 、选项:a 与b 同向,则a 与b -反向,显然正确; 选项:如果0λμ==,则无法得知a 与b 共线.【详解】a 与b 同向,但a 不一定与b 相等,∴a b ≠,若a b =,则a 与b 同向, a =b ,∴a 与b 同向是a b =的必要不充分条件,A 正确.AB 与BC 共线,则有AB =BC λ,故一定有,,A B C 三点在同一条直线上,B 正确.a 与b 同向,则a 与b -反向,C 正确.0λμ==时,a 与b 不一定共线,D 错误.故选:ABC【例4】“AB CD ∥”是“A ,B ,C ,D 四点共线”的________条件. 【答案】必要不充分【分析】根据向量平行的定义结合充分性、必要性的定义判断即可. 【详解】当AB CD ∥时,直线AB 与CD 的位置关系有可能是平行或共线, 当二者平行时A ,B ,C ,D 四个点分别位于两条平行线上而不是四点共线, 则“AB CD ∥”无法推出“A ,B ,C ,D 四点共线”;当A ,B ,C ,D 四点共线时,直线AB 与CD 的位置关系为重合,此时,AB CD ∥, 则“A ,B ,C ,D 四点共线”可以推出“AB CD ∥”,因此“AB CD ∥”是“A ,B ,C ,D 四点共线”的必要不充分条件. 故答案为:必要不充分.【例5】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___. 【答案】21 【解析】因向量λ+a b 与2+a b 平行,所以()b a b a b a μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ 【例6】已知P 是①ABC 所在平面内的一点,若CB PB PA λ-=,其中λ①R ,则点P 一定在( ) A .AC 边所在的直线上 B .BC 边所在的直线上 C .AB 边所在的直线上D .①ABC 的内部【答案】A【分析】根据向量的线性运算整理可得,再结合向量共线分析即可. 【详解】①CB PB PA λ-=,PB PC CB =+①()CB PC CB PA λ-+=,则PC -=λPA ,则CP PA λ= ①CP PA ∥①P 点在AC 边所在直线上. 故选:A .【例7】在①ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+① 所以3144EB AB AC =-①故选A.【例8】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=-,即34λ=,14μ=-. 故答案为:34;14-.【例9】在ABC 中,4AC AD =,P 为BD 上一点,若13AP AB AC λ=+,则实数λ的值( ) A .18B .316C .16D .38【答案】C 【解析】4AC AD =,14AD AC ∴=,则14BD AD AB AC AB =-=-, 1233BP AP AB AB AC AB AC AB λλ⎛⎫=-=+-=- ⎪⎝⎭,由于P 为BD 上一点,则//BP BD ,设BP k BD =,则21344kAC AB k AC AB AC k AB λ⎛⎫-=-=- ⎪⎝⎭, 所以423k k λ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.【例10】在ABC ∆中,点P 满足3BP PC =,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ=,()0,0AN AC μλμ=>>,则λμ+的最小值为( )A.12+ B1 C .32D .52【答案】B【解析】如下图所示:3BP PC =,即()3AP AB AC AP -=-,1344AP AB AC∴=+, AM AB λ=,()0,0AN AC μλμ=>>,1AB AM λ∴=,1AC ANμ=, 1344AP AM ANλμ∴=+,M 、P 、N 三点共线,则13144λμ+=. ()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+1+,故选:B. 【例11】已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+,则AMN BCNS S =△△( ) A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC =, 所以MN ①BC ,又因为 M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离, 所以13AMN BCN MN S S BC==△△,【题型专练】1.已知()1221123,,2AB e e CB e e CD e e =+=-=+,则下列结论中成立的是( )A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,D ,C 三点共线D .D ,B ,C 三点共线 【答案】C【分析】根据平面向量的线性运算可得2AC CD =,从而可求解.【详解】解:()()1221123422AC AB CB e e e e e e CD -=-=+-=+=,所以A ,D ,C 三点共线.故选:C.2.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =( )A .1B .1-C .2D .2- 【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ 法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =. 3.设12e e ,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则 A .0k =B .1k =C .2k =D .12k = 【答案】D【解析】因为向量12=-+m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n , 所以有2211(2)λ-+=-e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =. 4.在ABC △中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=225.在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC =,则DP =( )A .1144AB AC + B .1144AB AC -- C .1144AB AC - D .1144AB AC-+ 【答案】B【解析】①点P 为AC 中点,①12AP AC =,①3BD DC =,()3AD AB AC AD ∴-=-, ①1344AD AB AC =+,①113244DP AP AD AC AB AC =-=--=1144AB AC --,故选:B. 6.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=( ) A .ADB .12ADC .12BCD .BC 【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A7.设D 为①ABC 所在平面内的一点,若3,AD BD CD CA CB λμ==+,则μλ=_____. 【答案】3-【解析】如图所示:3CD CA AD CA BD =+=+,CA =+3(CD CB -),即有CD =﹣1322CA CB +, 因为CD CA CB λμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3. 8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +=( )A .1B .32C .2D .3【答案】C 【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+, M 、O 、N 三点共线,122m n ∴+=,2m n ∴+=.故选:C.9.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=( )A .13B .23C .38 D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =,4BC =,∴14BD BC =, ∴14AD AB BD AB BC =+=+,O 为AD 中点, ∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭,AO AB BC λμ=+, ∴1128AB BC AB BC λμ+=+,∴12λ=,18μ=, ∴115288λμ+=+=. 10.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( ) A .AO OD = B .2AO OD = C .3AO OD = D .4?AO OD【答案】A【解析】D 为BC 边中点,①2OB OC OD +=,①20OA OB OC ++=,①0OA OD =+,即AO OD =.11.设,,D E F 分别是ABC 的三边BC,CA,AB 上的点,且2,2,2DC BD CE EA AF FB ===,则AD BE CF ++与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 首先根据平面向量基本定理表示2133AD AB BD AB AC =+=+,2133BE BA BC =+,2133CF CB CA =+,【详解】()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ 同理:2133BE BA BC =+,2133CF CB CA =+, 所以212121333333AD BE CF AB AC BA BC CB CA ⎛⎫⎛⎫⎛⎫++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13CB , 所以AD BE CF ++与BC 反向平行.故选:A【点睛】本题主要考查向量共线定理和平面向量基本定理,重点考查向量的表示,属于基础题型题型四:由平面向量的性质判断图形的形状【例1】若O 是ABC ∆所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC ∆的形状为____【答案】直角三角形=OC OA OC +=+=-+,+= 所以ABC ∆的形状为直角三角形【例2】若113e ,5e AB CD ===,则四边形ABCD 是( )A .平行四边形B .菱形C .等腰梯形D .不等腰的梯形 ,结合AD BC =,即可判断四边形【详解】解:因为113e ,5e AB CD ==,所以35AB CD =-,所以//AB CD AB CD ≠,AD BC =,所以四边形ABCD 为等腰梯形.故选:C.【题型专练】1.在四边形ABCD 中,对角线AC 与BD 交于点O ,若2323OA OC OD OB +=+,则四边形ABCD 一定是( )A .矩形B .梯形C .平行四边形D .菱形 【答案】B【分析】由2323OA OC OD OB +=+化简可得23DA CB =,结合向量共线定理判断四边形ABCD 的形状.【详解】① 2323OA OC OD OB +=+,① 2()3()OA OD OB OC -=-,① 23DA CB =,① 四边形ABCD 一定是梯形. 故选:B.2.四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,若a 、b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形 【分析】由向量知识可知//AD BC ,AD BC ≠可得答案【详解】由已知得,2453822AD AB BC CD a b a b a b a b BC =++=+----=--= , 故//AD BC ,由AD BC ≠,所以四边形ABCD 是梯形.故选:C.3.在四边形ABCD 中,若CA CB CD =+,则( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形 【答案】D 【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+ ∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形. 故选:D .4.下列有关四边形ABCD 的形状判断正确的是( )A .若AD BC =,则四边形ABCD 为平行四边形B .若13AD BC =,则四边形ABCD 为梯形 C .若AB DC =,且AB AD =,则四边形ABCD 为菱形D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【分析】由向量平行与相等的关系确定四边形的边的关系得结论.【详解】AD BC =,则AD 13AD BC =,则//AD BC 若AB DC =,四边形ABCD AB AD =,即AB 若AB DC =,四边形ABCD 是平行四边形,AC BD ⊥,即AC 故选:ABC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


与任一向量共线.故答案为 D. 【点睛】
本题考查了向量的共线,即 = 是解答本题的关键.
3.已知 a 、 b 为非零向量,下列判断错误的是( ) A.如果 a =3 b ,那么 a ∥ b B.| a | =| b | ,那么 a = b 或 a = -b C. 0 的方向不确定,大小为 0 D.如果 e 为单位向量且 a =﹣2 e ,那么| a | =2
等于
()
A. + +
B. - +
C. + -
D. - -
【答案】B
【解析】
【分析】
利用向量的线性运算,结合平行四边形的性质,即可求得结论.
【详解】
如图,
,则 -+
故选 B. 【点睛】 此题考查平面向量的基本定理及其意义,解题关键在于画出图形.
10.规定:在平面直角坐标系中,如果点 P 的坐标为 m, n ,向量 OP 可以用点 P 的坐标
故选:D. 【点睛】 本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.
2.已知向量
,若 与 共线,则( )
A.
B.
C.
D.

【答案】D
【解析】
【分析】
要使 与 ,则有 = ,即可得知要么 为 0,要么
,即可完成解答.
【详解】
解:非零向量 与 共线的充要条件是当且仅当有唯一一个非零实数 ,使 = ,即
C.∵ a 2b ,∴ a ∥ b ,故本选项错误;
D.∵ a b ,∴ a 与 b 的模相等,但不一定平行,故本选项正确;
故选:D. 【点睛】 本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.
16.已知非零向量 a 、 b 和 c ,下列条件中,不能判定 a b 的是( )
A. a 2b
故选 D. 【点睛】 此题考查的是共线向量,掌握共线向量定理是解决此题的关键.
7.已知在 ABC 中, AB AC , AD 是角平分线,点 D 在边 BC 上,设 BC a ,
AD b ,那么向量 AC 用向量 a 、 b 表示为( )
A. 1 a b 2
B. 1 a b 2
C. 1 a b 2
故选 B.
【点睛】 此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向 量加法的平行四边形法则是解决此题的关键.
6.已知 m 、 n 是实数,则在下列命题中正确命题的个数是( ).
① m 0 , a 0 时, ma 与 a 的方向一定相反;
② m 0 , a 0 时, ma 与 a 是平行向量;
14.已知 a , b 为非零向量,如果 b =﹣5 a ,那么向量 a 与 b 的方向关系是( )
A. a ∥ b ,并且 a 和 b 方向一致
B. a ∥ b ,并且 a 和 b 方向相反
C. a 和 b 方向互相垂直
D. a 和 b 之间夹角的正切值为 5
【答案】B 【解析】
【分析】
根据平行向量的性质解决问题即可.
表示为: OP m, n .已知 OA x1, y1 , OB x2 , y2 ,如果 x1 x2 y1 y2 0 ,那么
OA 与 OB 互相垂直.在下列四组向量中,互相垂直的是( )
A. OC 3,20190 ,OD 31,1
B. OE 2 1,1 ,OF 2 1,1
2
D. 5 2 5 2 2 2 2 ,错误; 2
故答案为:A. 【点睛】 本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.
11.如图,在 ABC 中,点 D 是在边 BC 上,且 BD 2CD , AB a , BC b ,那么 AD 等于( )
A. a b
【答案】D 【解析】 【分析】 根据向量的性质,逐一判定即可得解. 【详解】
A 选项, AB BA,成立;
B 选项, AB BA ,成立;
D. AB BC AB BC
C 选项, AB BC AC ,成立; D 选项, AB BC AB BC 不一定成立;
故答案为 D. 【点睛】 此题主要考查向量的运算,熟练掌握,即可解题.
则,即可求得答案.
【详解】
解:∵四边形 ABCD 是平行四边形, ∴AD=BC,AD∥BC,
∵ AD b ,
∴ BC b ,
∵ AB a ,
∴ a b = AB + BC = AC .
故选 B.
13.下列有关向量的等式中,不一定成立的是( )
A. AB BA
B. AB BA
C. AB BC AC
此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.
12.如图,在平行四边形 ABCD 中,如果 AB a , AD b ,那么 a b 等于( )
A. BD 【答案】B 【解析】
B. AC
C. DB
D. CA
【分析】
由四边形 ABCD 是平行四边形,可得 AD=BC,AD∥BC,则可得 BC b ,然后由三角形法
【答案】D 【解析】
B. a 1 c,b 2c 2
C. a 2b
D. a b
【分析】
根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.
【详解】
解:A.∵ a // c , b // c ,∴ a ∥ b ,故本选项错误;
B.∵
a
1 2
c, b
2c

a
∥b
,故本选项错误.
【答案】B 【解析】 【分析】 根据平面向量的性质解答即可. 【详解】
解:A、如果 a =3 b ,那么两向量是共线向量,则 a ∥ b ,故 A 选项不符合题意. B、如果| a | = | b | ,只能判定两个向量的模相等,无法判定方向,故 B 选项符合题意.
C、 0 的方向不确定,大小为 0,故 C 选项不符合题意. D、根据向量模的定义知,| a | =2| e |=2,故 D 选项不符合题意.
③ mn 0, a 0 时, ma 与 na 的方向一定相同;
④ mn 0 , a 0 时, ma 与 na 的方向一定相反.
A.1 个
B.2 个
C.3 个
D.4 个
【答案】D
【解析】
【分析】
根据向量关系的条件逐一判断即可.
【详解】
解:①因为 m 0 ,1>0, a 0 ,所以 ma 与 a 的方向一定相反,故①正确; ②因为 m 0 ,1≠0, a 0 ,所以 ma 与 a 是平行向量,故②正确; ③因为 mn 0, a 0 ,所以 m 和 n 同号,所以 ma 与 na 的方向一定相同,故③正确; ④因为 mn 0 , a 0 ,所以 m 和 n 异号,所以 ma 与 na 的方向一定相反,故④正确.
D、 a 2 b 只知道两向量模的数量关系,但是方向不一定相同或相反, a 与 b 不一定平
行,故本选项正确. 故选:D. 【点睛】 本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.
17.如果 a 2b ( a , b 均为非零向量),那么下列结论错误的是( )
D.两个向量相等必须满足两个条件:长度相等且方向相同,如果 a b ,但 a 与 b 方向不
同,则 a b ,所以 D 选项错误.
故选 D. 【点睛】 本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解 题的关键.
9.已知一点 O 到平行四边形 ABCD 的 3 个顶点 A、B、C 的向量分别为 、 、 ,则向量
【答案】D 【解析】 【分析】 根据平面向量的性质一一判断即可. 【详解】
解:A、如果 k=0, a 是非零向量,那么 k a =0,错误,应该是 k a = 0 .
B、如果 e 是单位向量,那么 e =1,错误.应该是 e =1.
C、如果| b |=| a |,那么 b = a 或 b =﹣ a ,错误.模相等的向量,不一定平行. D、已知非零向量 a ,如果向量 b =﹣5 a ,那么 a ∥ b ,正确.
5
2
AC 3 AB 中,即可求出 m 的值. 5
【详解】
解:∵点 C 在线段 AB 上,且 AC 3 AB 5
∴ CB AB AC 2 AB 5
∴ AB 5 CB 5 BC
2
2

AC
3 5
AB
3 5
5 2
BC
3 2
BC
故选 D.
【点睛】 此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键.
C.
OG
3
8,
1 2
, OH
2
2 ,8
D. OM
5 2,
2 ,
5 2,
2 2
【答案】A 【解析】 【分析】 根据题意中向量垂直的性质对各项进行求解即可. 【详解】
A. 3 31 20190 1 0 ,正确;
B. 2 1 2 1 11 2 ,错误; C. 3 8 2 2 1 8 12 2 4 ,错误;
【答案】D 【解析】
B. 2 a 2 b 33
C. a 2 b 3
D. a 2 b 3
【分析】
根据 BD 2CD ,即可求出 BD ,然后根据平面向量的三角形法则即可求出结论.
【详解】
解:∵ BD 2CD
∴ BD 2 BC 2 b
3
3
∴ AD AB BD a 2 b 3
故选 D. 【点睛】
向量的线性运算知识点总复习附解析
一、选择题
1.下列说法中,正确的是( )
A.如果 k=0, a 是非零向量,那么 k a =0 B.如果 e 是单位向量,那么 e =1 C.如果| b |=| a |,那么 b = a 或 b =﹣ a D.已知非零向量 a ,如果向量 b =﹣5 a , 那么 a ∥ b
相关文档
最新文档