各类探测器性能比较

合集下载

各类探探测器优劣比较

各类探探测器优劣比较

各类探探测器优劣比较三大类探测器比较(闪烁体、半导体、电离室)(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。

因此测量α粒子(或其他重粒子)时,比须进行能量校准。

NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。

另外它的发光效率高,因而能量分辨率也较好。

它的缺点是容易潮解,因此使用必须密封。

碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。

铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。

碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。

与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。

此外,它不易潮解,也不易氧化。

但若暴露在水或高湿度环境中它也会变质。

碘化铯的主要缺点是光输出比较低,原材料价格较贵。

锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。

对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。

BGO主要用于探测低能x射线、高能γ射线以及高能电子。

在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。

BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。

价格高。

硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。

laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。

关于金属探测器种类分类与性能特点

关于金属探测器种类分类与性能特点

关于金属探测器种类分类与性能特点首先,就金属探测器来说,可以分成不同种类,因此我们探究其金属探测器的性能也就分类测验,以下是美创达诚关于金属探测器的按照不同标准来分类1、按功能来划分:1)全金属探测器:可以检测到铁、不锈钢、铜、铝等所有金属。

检测精度和灵敏度都比较高。

这种金属探测器通常用于食品日化等工业探测金属异物,食品等行业对金属异物的限制是很严格的。

因此,对这种金属探测器的灵敏度要求极高。

2)铁金属探测器:是一种磁感应式金属探测器,顾名思义,这种金属探测器只能检测到铁、钴、镍等可上磁性的金属,俗称检针机。

检测铁精度和灵敏度较高,对纯度高的铜铝等非铁金属不检测。

2.按用途来划分:1)手持金属探测器:如:MCD-140手持式金属探测器是美创达诚为满足高端客户而推出的一款手持金属探测器集大成之作。

本仪器的设计是集各种手持式金属探测器的优点于一身:超高灵敏度、声光/振动同步报警、有低电压指示功能、既能配戴耳机也可以配戴专用充电器进行本机直充电、性能稳定、直板式扫描面积大,可以直接快速的找到金属物体所在,结构美观大方。

A.最早应用于机场,车间,码头,传扬,场馆的公共安检,B.工业上主要用于防止企业含量有金属万分的产品流失,C.应用在各种考试当中,防止考生作弊。

比如高考,研究生考试,公务员考试等。

2)地下金属探测器:如:MCD-PL3地下金属探测器外观设计新颖,小巧灵便,它具有探测度广、定位准确、分辨力强、操作简单等特点,探盘防水设计,可在1米深的水里正常工作,仪器探测灵敏,液晶屏显示信号强度与金属类别,显示清晰,智能化的识别模式能区分有色金属同黑色金属A.应用在军事中的扫雷,B.考古中探测文物,探险中的探宝。

C.现在地下金属检测仪主要用于金属材料的探测,挖掘废旧金属的。

3)输送式金属检测仪(也叫输送式检针机):主要用于检测体积比较小的产品,以及小型袋装,箱装工业产品,可以连接生产线,并实现联动。

4)食品金属检测仪:可用于干货、半干货食品类,包括土特产、茶叶、熟食、咖啡、纺织品、玩具、服装、鞋帽等行业产品检测。

各类核物理探测器比较 - 副本

各类核物理探测器比较 - 副本
参考文献 近代物理实验 第二版 黄润生
二.探测器的分类和原理
1.气体探测器
气体探测器根据工作电压的不同,主要有电离室、正比计数器和G-M计数器三类。
基本原理:
气体电离:当带电粒子通过气体时,与气体分子的电离碰撞而逐次损失能量,最后被阻止在探测器中。碰撞的结果使气体分子电离或激发,并在粒子通过的径迹上生成大量的电子-离子对。上述电离过程包括入射粒子直接与气体分子碰撞引起的电离,以及由碰撞打出的高速电子(电子)引起的电离。
电离室:
•主体由两个处于不同电位的电极组成。
•电极大多是平行板和圆柱形的,也有球形或其他形状的。
•平板电离室的两个电极通常是圆形金属板。为了减少电场的边缘效应,应使两电极的间距远小于它们的直径,且两极板精确平行。
•圆柱形电离室中心的收集极一般是一个圆棒或一根金属丝。圆柱形外壳是阴极,用不锈钢、铝、黄铜等材料制成。
正比计数器
~6%(β)
适用于低能β谱的测量,但最大一般限于1Mev以下。
闪烁计数器
1.8%(α)
~6%(β)
分辨时间小,适合于符合测量。能测量射程较大的粒子。灵敏面积较大,但分辨率差。
半导体计数器
~0.2%(α及β)
能量分辨率好,小巧,使用方便,线性响应好,时间分辨小。但灵敏面积小,且温度效应和辐射损伤效应较大。
闪烁体:
闪烁体是一类能吸收能量,并能在大约一微秒或更短的时间吧所吸收iud一部分能量以光的形式再发射出来的物质。闪烁体分为无机和有机两大类。闪烁体必须具备的性能是:对自身发射的光子应是高度透明的。闪烁体吸收它自己发射的一部分光子所占的比例随闪烁材料而变化。无机闪烁体[如Nal(Tl),ZnS(Ag)]几乎是100%透明的,有机闪烁体(如蔥,塑料闪烁体,液体闪烁体)一般来说透明性较差。现在常使用的几种闪烁体是:(1)无机晶体,主要是含杂质或不含杂质的碱金属碘化物;(2)有机晶体,在都是未取代的或取代的芳香碳氢化合物;(3)液态的有机溶液,即液体闪烁体;(4)塑料溶液中的有机溶液,即固溶闪烁体。

各类探测器的特点

各类探测器的特点

各类探测器特点双鉴探测器各种探测器有其优点,但也各有其不足之处,单技术的微波探测器对物体的振动(如门、窗的抖动等)往往会发生误报警。

而被动红外探测器对防范区域内任何快速的温度变化,或温度较高的热对流等也会发生误报警。

为了减少探测器误报问题,人们提出互补型双技术方法。

即把两种不同探测原理的探测器结合起来,组成双技术的组合型探测器,又称为双鉴探测器。

双鉴探测器集两者的优点于一体,取长补短,对环境干扰因素有较强的抑制作用。

目前双鉴探测器主要是微波+被动红外探测器。

微波—被动红外双技术探测器实际上是将这两种探测技术的探测器封装在一个壳体内。

并将两个探测器的输出信号共同送到“与门”电路,只有当两种探测技术的传感器都探测到移动的人体时,才触发报警。

双鉴探测器把微波和被动红外两种探测技术结合在一起,它们同时对人体的移动和体温进行探测并相互鉴证之后才发出报警。

由于两种探测器的误报基本上互相抑制了,而两者同时发生误报的概率又极小,所以误报率能大大下降。

安装双鉴探测器时,要求在警戒范围内两种探测器的灵敏度尽可能保持均衡。

微波探测器一般对物体纵向移动最敏感,而被动红外探测器则对横向切割视区的人体移动最敏感。

因此为使这两种探测传感器都处于较敏感状态。

在安装微波—被动红外双鉴探测器时,宜使探测器轴线与警戒区可能的入侵方向成45°夹角为最好。

振动光纤探测器探测器是以探测入侵者的走动或进行各种破坏活动时所产生的振动信号来作为报警依据。

例如,入侵者在进行凿墙、钻洞、破坏门、窗、撬保险柜等破坏活动时,都会引起这些物体的振动。

以这些振动信号来触发报警的探测器就称为振动探测器。

各类探探测器优劣比较

各类探探测器优劣比较

三大类探测器比较(闪烁体、半导体、电离室)(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。

因此测量α粒子(或其他重粒子)时,比须进行能量校准。

NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。

另外它的发光效率高,因而能量分辨率也较好。

它的缺点是容易潮解,因此使用必须密封。

碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。

铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。

碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。

与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。

此外,它不易潮解,也不易氧化。

但若暴露在水或高湿度环境中它也会变质。

碘化铯的主要缺点是光输出比较低,原材料价格较贵。

锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。

对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。

BGO主要用于探测低能x射线、高能γ射线以及高能电子。

在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。

BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。

价格高。

硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。

laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。

探测器性能比较

探测器性能比较

三、
探测器响应频率比较
各种探测器响应频率特性都是由探测器的工作机制所 决定的,各类探测器的响应时间见上表。 一般规律: 热电探测器(除热释电探测器外)响应频率最低,一般 只能达几KHz, 其中热电偶响应频率在100Hz范围内; PC探测器响应频率次之,一般在几MHz范围内; PV探测器响应频率比PC探测器高,可达几百MHz, PIN管响应频率最高,可达GHz。
五、入射光功率范围比较
入射光功率范围是指探测器所能探测到的最低光功 率和最高光功率, 一般探测器的入射光功率范围在 10-7W到0.1W量级。 在探测极微弱的可见光信号时多采用光电倍增管, 其入射光功率范围在10-18—10-3W内, APD在10-7—10-5W范围内; 探测高能量激光功率时多采用热电偶(堆)。
2.5~50
20~50 104 105~106 105~107 106~107 103~105 105~107 ~108
~10-8
10-8~10-7 4×10-4 10-2 5×10-5~5×10-4 ~2×10-6 <10-6 <10-6 3×10-9~4×10-5
二、光电探测器的光谱响应范围比较
四、光电特性比较
光电特性直线性是指当加在光电探测器的偏置电压、负 载电阻等参量不变时,探测器输出电压(电流)值与入 射在探测器上的光照度的线性关系。 对于光度测量和辐射度测量来说是一个非常重要的性 能指标。 一般地: 光电导探测器的光电特性直线性最差, 光伏探测器较好, 光电倍增管的光电特性直线性最好。

1 单元光电探测器性能及应用比较
一、典型探测器内阻值比较
设计光电系统时,首先要考虑前置放大器的设计, 为了获得低噪声前置放大器,必须了解探测器内 阻值,以便根据最佳源电阻匹配原则选择低噪声 放大器,以得到最大的输出信噪比。 一般按探测器内阻高低可分为三类: (1)低阻探测器:内阻低于100。 (2)中阻探测器:内阻在100Ω 一lMΩ 之间。 (3)高阻探测器:内阻高于1MΩ

火灾探测器选型及比较

火灾探测器选型及比较

火灾探测器比较探测器性能好坏涉及到材料、工艺、科学技术、经验积累等。

我手头有几家消防设备公司的产品说明书,现对其标称的技术参数进行分析和对比。

申明:以下文字全是个人观点,由于水平有限,手头的产品说明书也基本不是各个厂家的最新版本,我挑选最常用的点型光电感烟火灾探测器进行比较,别的产品也可以用这个方法进行对比,希望抛砖引玉。

如有不对的地方,盼指正,我尽快更改。

QQ:394159963说明:○1、监视电流越小越好。

○2、报警电流越小越好。

○3、工作电压允许偏差值越大越好。

○4、环境温度范围越宽越好。

○5、相对湿度范围越宽越好。

○6、单回路地址总数理论值是越多越好○7、抗风能力越大越好。

有些数据在资料上找不到,就空着了。

选择探测器的时候不要只看某一项数据,虽然某项数据非常重要,还要综合考虑。

这些数据是厂家的产品说明书上的,我没有相关测试设备,无法测试准确性。

个人觉得火灾探测器技术水平各厂家已经相差很小,应多考虑火灾报警控制器,其稳定性、兼容性、可扩展性、操作性、工艺水平等也非常重要,当然价格和售后更是决定因素哟(好多厂家的价格我没有,售后服务我也不会专业的细化到分,不便评论,也避免误导)。

如有这方便需要,可私下交流(QQ:394159963)探测器性能说明:一、探测器的可靠性:在规定的条件下和规定的期限,完成规定功能的能力。

1、规定的条件使用时的环境条件:如温度、湿度、粉尘、腐蚀性气体、振动、高频电磁干扰,使用维护方法,运输条件,贮存条件,以及使用时对操作人员的技术要求等。

2、规定的期限:火灾自动报警系统应保持连续正常运行,不得随意中断。

火灾自动报警系统使用或工作时间应与建筑物正常使用寿命相当。

火灾自动报警系统应进行年检的规定。

电子、电气、光学等元器件寿命是有限的,在建筑物正常寿命期内,这些元器件甚至整个系统可能已经若干次的更新换代,所以进行年检是必须的。

3、规定的功能:就是产品应具备的技术指标,“规定的功能”是指完成全部的规定功能的能力。

闪烁体、半导体、电离室探测器比较

闪烁体、半导体、电离室探测器比较

闪烁体、半导体、电离室三大类探测器比较(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。

因此测量α粒子(或其他重粒子)时,比须进行能量校准。

NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。

另外它的发光效率高,因而能量分辨率也较好。

它的缺点是容易潮解,因此使用必须密封。

碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。

铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。

碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。

与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。

此外,它不易潮解,也不易氧化。

但若暴露在水或高湿度环境中它也会变质。

碘化铯的主要缺点是光输出比较低,原材料价格较贵。

锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。

对0.511MeVγ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。

BGO主要用于探测低能x射线、高能γ射线以及高能电子。

在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。

BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。

价格高。

硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。

laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六、外加偏置电压比较
除热电偶、光电池、光子牵引探测器以外,大部 分光电探测器都需要外加偏置电压才能形成光电 流(电压);一般偏置电压都在几伏到几十伏范围, 可以由整个光电系统的供电电路统一供电,比较 方便。 光电倍增管的外加直流电压在600~3000v范围; 供电电路必须另外单独提供,给使用这类探测器 带来不便; APD外加直流偏置电压在100~200V,供电电路 也须单独提供。
PV探测器响应频率比PC探测器高,可达到几百MHz,
PIN管响应频率最高,可达GHz。
四、光电特性比较
光电特性直线性是指当加在光电探测器的偏置电
压、负载电阻等参量不变时,探测器输出电压 (电流 )
值与入射在探测器上的光照度的线性关系。对于光度 测量和辐射度测量来说是一个非常重要的性能指标。 一般地: 光电导探测器的光电特性直线性最差;
3.6.1 单元光电探测器性能 及应用比较
(a)
(PE-Photo Emission) (Dynode ) (MCP-Microchannel Plates ) (PC-Photoconductive) (PV-Photo Voltaic ) (PMT-PhotoMultiplier Tube ) (image intensifiers )
3.6 探测器性能比较
3.6.1 单元光电探测器的性能及应用比较 3.6.2 光电成像器件性能及应用比较
为了在设计光电系统选择探测器时综合参考,将 各类光电探测器的性能和应用范围作一简要的比 较; 注意:由于实际工程测量和科学研究所需解决的 问题干差万别,以致对光电系统所需的性能参量 各有侧重。 本节将以光电探测器的一些基本参量对各类探测 器作一比较。
八、工作环境及稳定性比较
探测可见光波段的硅光电探测器、CdS,CdSe光敏电阻 以及热电偶对工作环境没有特殊要求,而且体积小,稳 定性比较好,使用方便。 光谱响应在红外波段的光电探测器一般都在低温下工作, 需要致冷装置。 如果对所探测的红外波段信号的灵敏度的要求不是很高 时,一般可采用常温工作的热探测器。
光电倍增管属于真空类器件,由于对杂散光、电磁干扰 都十分敏感,同对,器件尺寸大,需要防震、防潮,对 工作环境的要求比较苛刻。
九、价格比较
硅、CdS、CdSe和制作热敏电阻的金属氧化物类 的材料均是比较成熟的材料,应用范围宽,制作 工艺简单,因此价格便宜; 应用于红外波段的各类光子探测器,材料制备困 难,同时需要加红外透镜,价格贵一些: 光电倍增管制作工艺复杂,价格最贵。
(b)
(Bolometer ) Negative Temperature Coefficient Positive Temperature Coefficient (seebeck effect ) thermocouples & thermopile Pyroelectric sensor
一、典型探测器内阻值比较
photoconductor
Solar cell(photocell) Photo Diode (APD-Avalanche Photo Diode)
(4)
(SBD-Schottky Barrier Photo Diode) (PEM-photo electromagnetic) (photon drag effective )
目前面市的许多探测器都配置有前置放大器,作 成一体化,这给用户使用带来方便,但价格要贵 一些。
3.6.2 光电成像器件性能及 应用比较
(自学课本p255~256)
光伏探测器较好;
光电倍增管的光电特性直线性最好。
五、入射光功率范围比较
入射光功率范围是指探测器所能探测到的最低 光功率和最高光功率。一般探测器的入射光功率范 围在10-7W到0.1W量级。
作为特殊情况,在探测极微弱的可见光信号时多采 用光电倍增管,其入射光功率范围在 10-9 ~10-3W内; APD在10-7~10-5W范围内; 探测高能量激光功率时多采用光子牵引探测器和热 电偶。
设计光电系统时,首先要考虑前置放大器的设 计,为了获得低噪声前置放大器,必须了解探 测器内阻值,以便根据最佳源电阻匹配原则选 择低噪声放大器,以得到最大的输出信噪比。 一般按探测器内阻高低可分为三类: (1)低阻探测器:内阻低于1000。 (2)中阻探测器:内阻在100Ω 一lMΩ 之间。 (3)高阻探测器:内阻高于1MΩ
KRS—5(碘化铊—溴化铊)(0.5~50µ m)。
2.光子探测器是对波长响应有选择性的探测器。
它们的响应范围由材料自身特性决定。光谱响 应范围在可见光及近红外波段,最重要的材料 有: 硒(350一700nm,λp为570nm)、
硅(400—1100nm,λp为850nm),
光谱响应范围在红外波段的材料很多,但它们

二、光电探测器的光谱响应范围比较
光电探测器的光谱响应范围主要由制作 器件的材料决定,在前几节对各种器件 的光谱响应范围已作详细介绍,这里可 综合归纳其基本要点:
1.热电探测器的光谱响应范围最宽,从可见光到远 红外波段(0.4~100µ m)都有平坦的光谱响应,它们 的光谱响应范围主要取决于器件的窗口材料,常 用的光学窗口材料有: 一般光学玻璃(300~800nm); 石英玻璃(0.26~3.5µ m); 锗(1.7~23µ m);
七、探测率D*大小的比较
探测率 D* 包含了探测器噪声特性,因此它是 衡量一个探测器性能的综合性指标。从总体上看: 热电探测器的D*值最低, PC探测器的D*值次之, PV探测器的Dห้องสมุดไป่ตู้值最高。 由于光电倍增管具有很高的内增益,在紫外和可 见光波段探测微弱光信号方面仍是其它固体探测 器所不能替代的。
的共同特点是一般要在低温下工作(多数在液氮
温度77K下工作)。
三、探测器响应频率比较
各种探测器响应频率特性都是由探测器的工作机
制所决定的,各类探测器的响应时间见表 3.3 ,一般
规律:
热电探测器 (除热释电探测器外 )响应频率最低,一般只能 达几千Hz,其中热电偶响应频率在100Hz范围内; PC探测器响应频率次之,一般在几MHz范围内;
相关文档
最新文档