函数的奇偶性公开课教案

合集下载

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)函数的奇偶性教案(通用8篇)作为一位兢兢业业的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!下面是小编收集整理的函数的奇偶性教案,欢迎阅读,希望大家能够喜欢。

函数的奇偶性教案篇1教学目标:了解奇偶性的含义,会判断函数的奇偶性。

能证明一些简单函数的奇偶性。

弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性难点:函数图象对称性与函数奇偶性的关系。

一、复习引入1、函数的单调性、最值2、函数的奇偶性(1)奇函数(2)偶函数(3)与图象对称性的关系(4)说明(定义域的要求)二、例题分析例1、判断下列函数是否为偶函数或奇函数例2、证明函数在R上是奇函数。

例3、试判断下列函数的奇偶性三、随堂练习1、函数()是奇函数但不是偶函数是偶函数但不是奇函数既是奇函数又是偶函数既不是奇函数又不是偶函数2、下列4个判断中,正确的是_______.(1)既是奇函数又是偶函数;(2)是奇函数;(3)是偶函数;(4)是非奇非偶函数3、函数的图象是否关于某直线对称?它是否为偶函数?函数的奇偶性教案篇2一、教学目标【知识与技能】理解函数的奇偶性及其几何意义.【过程与方法】利用指数函数的图像和性质,及单调性来解决问题.【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式.三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.课本P46 习题1.3(A组) 第9、10题, B组第2题.四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.三、规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数的奇偶性教案篇3学习目标 1.函数奇偶性的概念2.由函数图象研究函数的奇偶性3.函数奇偶性的判断重点:能运用函数奇偶性的定义判断函数的奇偶性难点:理解函数的奇偶性知识梳理:1.轴对称图形:2中心对称图形:【概念探究】1、画出函数,与的图像;并观察两个函数图像的对称性。

函数的奇偶性公开课优秀教案比赛课教案

函数的奇偶性公开课优秀教案比赛课教案

函数的奇偶性公开课优秀教案比赛课教案导语:
函数的奇偶性是数学中的重要概念,对于学生来说,理解和应用函数的奇偶性是提高数学思维能力的关键。

本节课将以公开课及教案比赛形式进行,旨在通过互动式授课和示例分析,引导学生深入了解函数的奇偶性,提高他们的数学思维和解题能力。

本教案将详细介绍课程的教学目标、教学重点、教学过程和教学评价等方面的内容。

一、教学目标:
通过本节课的学习,学生应能够:
1. 理解函数的奇偶性的概念和性质;
2. 掌握判断函数奇偶性和解题的基本方法;
3. 能够运用函数的奇偶性进行数学问题的分析和解决;
4. 培养学生的逻辑思维和数学推理能力。

二、教学重点:
1. 函数的奇偶性的定义和性质;
2. 奇函数和偶函数的判断和性质;
3. 运用奇偶性解决实际问题。

三、教学过程:
1.导入(5分钟)
通过引入一个具体的生活例子,让学生了解函数的奇偶性在实
际生活中的应用。

例如,举一个关于温度变化和时间的例子,引导
学生思考温度随时间的变化是否为奇函数或偶函数。

2.概念解释(10分钟)
给出函数的奇偶性的定义,并解释函数如果满足奇函数的定义,其函数图像是否关于y轴对称;如果满足偶函数的定义,其函数图
像是否关于原点对称。

3.奇函数和偶函数的判定方法(15分钟)。

函数的奇偶性省赛一等奖公开课教学设计x

函数的奇偶性省赛一等奖公开课教学设计x

函数的奇偶性省赛一等奖公开课教学设计x一、教学内容本节课的教学内容选自人教版小学数学五年级下册第97页至99页,第四章第一节“函数的奇偶性”。

这部分内容主要让学生理解函数的奇偶性概念,掌握判断函数奇偶性的方法,并能够运用奇偶性解决实际问题。

二、教学目标1. 学生能够理解函数的奇偶性概念,掌握判断函数奇偶性的方法。

2. 学生能够运用函数的奇偶性解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队合作精神,提高学生的数学素养。

三、教学难点与重点重点:函数的奇偶性概念的理解和判断方法。

难点:如何运用函数的奇偶性解决实际问题。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:笔记本、尺子、圆规、直尺。

五、教学过程1. 实践情景引入:教师展示一个实际问题:某商店举行打折活动,商品原价分别为100元、150元和200元,打折后的价格分别为80元、120元和180元,请问哪种商品打折力度更大?2. 自主学习:学生自主探究,尝试解决上述问题。

教师巡回指导,帮助学生理解函数的奇偶性概念。

3. 课堂讲解:教师讲解函数的奇偶性概念,通过示例讲解如何判断函数的奇偶性。

4. 例题讲解:教师出示例题,讲解如何运用函数的奇偶性解决实际问题。

例题1:判断函数f(x)=x^3的奇偶性。

例题2:已知函数f(x)=2x1,求函数的奇偶性。

5. 随堂练习:学生独立完成随堂练习,教师巡回指导。

练习1:判断函数f(x)=x^2的奇偶性。

练习2:已知函数f(x)=3x^2+2,求函数的奇偶性。

6. 课堂小结:7. 作业布置:布置作业1:判断函数f(x)=x^32的奇偶性。

布置作业2:已知函数f(x)=2x1,求函数的奇偶性。

六、板书设计板书内容:函数的奇偶性奇偶性的定义:若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为奇函数。

若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为偶函数。

函数的奇偶性教案2篇

函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。

2. 判断函数的奇偶性。

3. 通过练习题加深对函数的奇偶性的理解。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。

步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。

奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。

步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。

一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。

方法1:使用函数的定义式。

对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。

方法2:使用函数的图象。

对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。

步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。

例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。

2. 判断函数g(x)=2x^2-4是否为偶函数。

3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。

步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。

第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。

2. 进一步加深对函数的奇偶性的理解。

3. 练习函数的奇偶性的判断和应用。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。

函数的奇偶性公开课优秀教案(比赛课教案)

函数的奇偶性公开课优秀教案(比赛课教案)

函数的奇偶性公开课优秀教案(⽐赛课教案)《函数的奇偶性》教案⼀、教材分析“奇偶性”是⼈教版必修1中第⼀章“集合与函数概念”的第3节“函数的基本性质”的第2⼩节。

函数的奇偶性是函数的⼀条重要性质,教材从学⽣熟悉的初中学过的的⼀些轴对称图形⼊⼿,体会到数形结合思想,初步学会⽤数学的眼光看待事物,感受数学的对称美。

尝试画出和的图像,从特殊到⼀般,从具体到抽象,⽐较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深⼊,⼜是为以后学习基本初等函数奠定了基础。

因此,本节课起着承上启下的重要作⽤。

⼆、学情分析从学⽣的认知基础看,学⽣在初中已经学习了轴对称图形和中⼼对称图形,并且有了⼀定数量的简单函数的储备。

同时,上节课学习了函数单调性,积累了研究函数的基本⽅法与初步经验。

三、教学⽬标【知识与技能】1.理解奇函数、偶函数的概念及其⼏何意义;2.能从定义、图像特征、性质等多种⾓度判断函数的奇偶性,学会函数的应⽤。

【过程与⽅法】通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学⽣经历函数奇偶性概念建⽴的全过程,体验数学概念学习的⽅法,积累数学学习的经验。

【情感、态度与价值观】1.在经历概念形成的过程中,培养学⽣内容、归纳、抽象、概括的能⼒;2.通过⾃主探索,体会数形结合的思想,感受数学的对称美。

四、教学重点和难点重点:函数奇偶性的概念和函数图像的特征。

难点:利⽤函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。

五、教学⽅法引导发现法为主,直观演⽰法、类⽐法为辅。

六、教学⼿段PPT课件。

七、教学过程(⼀)情境导⼊、观察图像出⽰⼀组轴对称和中⼼对称的图⽚。

设计意图:通过图⽚引起学⽣的兴趣,培养学⽣的审美观,激发学习兴趣。

师:“同学们,这是我们⽣活中常见的⼀些具有对称性的物体,你能说出它们有什么特点吗?”⽣:“它们的共同点都是关于某⼀地⽅是对称的。

”师:“是的,⽽我们今天要学习的函数图像也有类似的对称图像,⾸先我们来尝试画⼀下和的图像,并⼀起探究⼏个问题。

函数的奇偶性省赛一等奖公开课教学设计

函数的奇偶性省赛一等奖公开课教学设计

小组合作,分享探究成果
06
CHAPTER
课堂小结与作业布置
奇函数
$f(-x) = -f(x)$
偶函数
$f(-x) = f(x)$
课堂小结
奇偶性的图像特征
奇函数图像关于原点对称
偶函数图像关于y轴对称
课堂小结
判断函数奇偶性的方法
定义法
图像法
课堂小结
典型例题的解析与讨论
通过具体例子加深对奇偶性的理解
对于所有$x$,都有$f(-x) = -f(x)$,则称$f(x)$为奇函数。
对于所有$x$,都有$f(-x) = f(x)$,则称$f(x)$为偶函数。
奇函数和偶函数的定义
偶函数定义
奇函数定义
01
奇函数的性质
02
奇函数的图像关于原点对称。
03
如果$f(x)$在$x=0$处有定义,则$f(0)=0$。
判定方法2
利用特殊值判断。选取一些特殊点,如$x=0$,$x=1$,$-1$等,计算$f(-x)$和$f(x)$的值,看是否满足奇偶函数的定义。
判定方法3
奇偶性的判定方法
03
CHAPTER
函数奇偶性的应用
图形绘制
根据函数的奇偶性,可以简化图形绘制的复杂度,例如只绘制一半图形然后通过对称性得到完整图形。
2. 引导学生观察、分析、归纳、总结判断函数奇偶性的方法。
3. 设计有针对性的练习题,让学生在实践中掌握判断函数奇偶性的方法。Βιβλιοθήκη 教学重点与难点01
02
教学重点与难点
5. 通过小组合作和讨论,培养学生的合作精神和探究能力。
4. 鼓励学生提出问题和疑惑,及时给予解答和指导。
02

函数奇偶性的应用市公开课获奖教案省名师优质课赛课一等奖教案

函数奇偶性的应用市公开课获奖教案省名师优质课赛课一等奖教案

函数奇偶性的应用教案一、教学目标:1. 理解函数奇偶性的概念和特征;2. 能够判断给定函数的奇偶性;3. 能够利用函数奇偶性解决实际问题。

二、教学内容:1. 函数奇偶性的定义和判断方法;2. 函数奇偶性的性质和特点;3. 函数奇偶性在实际问题中的应用。

三、教学重点:1. 函数奇偶性的定义和判断方法;2. 函数奇偶性在实际问题中的应用。

四、教学难点:1. 函数奇偶性的性质和特点的掌握;2. 函数奇偶性在实际问题中的应用。

五、教学方法:1. 讲授结合示例分析法;2. 问题引导法;3. 归纳总结法。

六、教学过程:1. 引入:通过一个问题导入函数奇偶性的概念。

例如:小明花费3元买了一副筷子,他想知道如果买n副筷子一共需要多少钱。

请同学们思考这个问题,然后讨论。

2. 知识讲解:a. 函数奇偶性的定义和判断方法:(1) 定义:对于任意实数x,若有f(-x)=f(x),则函数f(x)是偶函数;若有f(-x)=-f(x),则函数f(x)是奇函数。

(2) 判断方法:若函数表达式中只含有偶次幂的项,则为偶函数;若函数表达式中只含有奇次幂的项,则为奇函数;若同时含有偶次幂和奇次幂的项,则既不是偶函数也不是奇函数。

b. 函数奇偶性的性质和特点:(1) 偶函数的图象关于y轴对称;(2) 奇函数的图象关于原点对称;(3) 任意两个奇函数的和是偶函数;(4) 任意两个偶函数的和是偶函数,任意两个奇函数的差是奇函数。

3. 案例分析:a. 案例一:已知函数f(x)为偶函数,且f(2)=4,求f(-2)的值。

解析:由偶函数的定义可知,f(2)=f(-2)。

所以,f(-2)=4。

b. 案例二:已知函数g(x)为奇函数,且g(3)=5,求g(-3)的值。

解析:由奇函数的定义可知,g(-3)=-g(3)。

所以,g(-3)=-5。

4. 实际问题应用:a. 问题一:小明以每小时60公里的速度从A地出发,经过3小时到达B地。

小红以每小时80公里的速度从B地出发,经过多长时间能追上小明?解析:设小红追上小明的时间为t,小明行驶的距离为60×3=180公里,小红行驶的距离为80×t公里。

函数奇偶性的教案

函数奇偶性的教案

函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。

教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。

教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。

教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。

第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。

教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。

教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。

教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。

第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。

教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。

教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案
教者李德双科目数学班级3班课题函数的奇偶性课型启发式教学
时间2019年12 月19 日地点多媒体教室
教学目标1.知识与技能目标:理解奇(偶)函数概念;会利用定义判断简单函数是否为奇(偶)函数;掌握奇(偶)函数图象性质;
2.过程与方法目标:在学习过程掌握从特殊到一般的研究方法;学会用对称的方法来方便问题的解决;
3.情感态度与价值观目标:锻炼学生思维的严谨性;体验探究的乐趣;
教学重点函数的奇偶性定义及其图像性质;
教学难点函数的奇偶性判断;
学情分析学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的知识储备,并能进行简单的特殊到一般的推导。

课前准备对称的图片和函数奇偶性的PPT
教学环节教学内容学生活动教学方

导入新授
一、创设情景,兴趣导入
出示一组轴对称和中心对称的图片
给出一组函数图像,根据图像对称性认识偶函数和
奇函数
二、动脑思考、探索新知
1.偶函数
探究1.观察函数
2
)
(x
x
f=的图象
(1).求值并观察 f (-x)
与 f (x)的规律:
f (1) = ;f (-1) = ;
f (2) = ;f (-2) = ;
f (a) = ;f (-a) = ;
关系:)
(x
f-______)
(x
f
(2).思考图像有何对称的特征?
这类函数就是偶函数,具体定义和性质如下:
一般地,如果函数)
(x
f的定义域关于原点对称,
并且对定义域内任意一个值x,都有)
(
)
(x
f
x
f=
-,
观察并回

回答
结果
通过图片
引起学生
的兴趣,
培养学生
的审美
观,激发
学习兴
趣。

从熟悉的
函数入
手,符合
学生的认
知规律
从“形”
提问
回答
例题
我们称函数)
(x
f就叫做偶函数.
偶函数的图象关于y 轴对称;反之,图象关于y 轴
对称的函数是偶函数。

2、奇函数
探究2.观察函数3
)
(x
x
f=的图象
(1).求值并观察f (-x)与f (x)的规律:
f (1) = ;f (-1) = ;
f (2) = ;f (-2) = ;
f (a) = ;f (-a) = ;
关系:)
(x
f-______)
(x
f
(2).思考图像有何对称的特征?
这就是奇函数,具体定义和性质如下:
一般地,如果函数)
(x
f的定义域关于原点O对称,
并且对定义域内任意一个值,都有
)
(
)
(x
f
x
f-
=
-,我们称函数)
(x
f就叫做奇函数.
奇函数的图象关于原点中心对称;反之,图象关于
原点中心对称的函数是奇函数。

3.奇偶函数的代数定义与图像特征
三、学生思考、领会性质
(1) f(x)=x3+2x;
四、巩固知识、典型讲练
例题1:判断下列函数的奇偶性:
一、判断:
1、偶函数的图形不一定关于y轴对称。

()
2、y=x 是奇函数。

()
二、判断下列函数的奇偶性
类比
理解+记忆
过渡到
“数”,
为形成概
念做好铺
垫,通过
观察特
点,让学
生自己得
出结论。

通过类比
的方法培
养学生的
自学能力
和探索精
神。

通过比
较,加深
对概念的
理解例2证明:f(x)=x2是偶函数。

探讨:偶函数的定义域有什么特点?
练习总结
巩固习题:(1)4
2
)
(x
x
x
f+
=
(2)
x
x
x
f
2
)
(3+
= (3) 4
)
(+
=x
x
f
(4)x
x
f4
)
(=[)2,3-

x
五、归纳总结、得出方法
判断函数奇偶性的方法步骤:
1)图象法:关于Y轴对称---偶函数;
关于原点中心对称—奇函数
2)定义法:
①求函数的定义域,并判断是否关于原点对称;
若不关于原点对称,则f(x)是非奇非偶函数。


若关于原点对称,求出f(-x)
若f(-x) = f(x) ,则f(x)是偶函数;
若f(-x) =-f(x),则f(x)是奇函数.
若f(-x) ≠-f(x),则f(x)是非奇非偶函数
代数
定义
1)定义域关于原点O对称
2))
(
)
(x
f
x
f-
=
-
1)定义域关于原点O对称
2))
(
)
(x
f
x
f=
-
图像关于原点中心对称关于y轴对称
共同
特点
定义域都关于原点对称
学生
回答
教师示范
学生理解
课后小结
作业P76 习题1、2、3。

相关文档
最新文档