西安电子科技大学附中太白校区九年级数学上册第一单元《一元二次方程》检测题(包含答案解析)

合集下载

九年级上第一章一元二次方程单元测试含答案

九年级上第一章一元二次方程单元测试含答案

第一章一元二次方程单元测试一、单选题(共10题;共30分)1.已知反比例函数y=abx ,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13 B、11 C、11或13 D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0 B、1 C、2 D、35.(2015•长春)方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根B、只有一个实数根C、没有实数根D、有两个不相等的实数根6.已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤94B.k≥﹣94 且k≠0C.k≥﹣94D.k>﹣94 且k≠08.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=29.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠310.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题(共8题;共24分)11.一元二次方程x2=3x的解是:________ .12.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________13.如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为。

数学九年级上学期《一元二次方程》单元检测题(带答案)

数学九年级上学期《一元二次方程》单元检测题(带答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一.选择题(共10小题)1.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是( )A . 任意实数B . m≠1C . m≠﹣1D . m>12.一元二次方程的一次项的系数是( )A . 4B . -4C . 1D . 53.若关于x的一元二次方程(A +1)x2+x+A 2﹣1=0的一个根是0,则A 的值为( )A . 1B . ﹣1C . ±1D . 04.方程(x+1)2=0的根是( )A . x1=x2=1B . x1=x2=﹣1C . x1=﹣1,x2=1D . 无实根5.方程x2+2x+1=0的根是( )A . x1=x2=1B . x1=x2=﹣1C . x1=﹣1,x2=1D . 无实根6.一元二次方程的根是A .B .C .D .7.方程x2=4x的根是( )A . x=4B . x=0C . x1=0,x2=4D . x1=0,x2=﹣48.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为( )A . 1B . ﹣4C . 1或﹣4D . ﹣1或39.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为( )A . k>﹣B . k>4C . k<﹣1D . k<410.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是( )A . 50(1+x)2=182B . 50+50(1+x)2=182C . 50+50(1+x)+50(1+2x)=182D . 50+50(1+x)+50(1+x)2=182二.填空题(共8小题)11.已知是方程的一个根,则的值是_______.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是_____.13.已知关于的一元二次方程有实数根,则的取值范围是__.14.将一元二次方程x2﹣6x+10=0化成(x﹣A )2=B 的形式,则B 的值为_____.15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为_____.17.已知,是方程的两个实数根,则________.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是_____.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?24.某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案一.选择题(共10小题)1.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是( )A . 任意实数B . m≠1C . m≠﹣1D . m>1[答案]B[解析][分析]本题根据一元二次方程的定义求解,一元二次方程必须满足二次项系数不为0,所以m-1≠0,即可求得m 的值.[详解]根据一元二次方程的定义得:m-1≠0,即m≠1,故答案为:B .[点睛]本题考查了一元二次方程的定义,熟练掌握该定义是本题解题的关键.2.一元二次方程的一次项的系数是( )A . 4B . -4C . 1D . 5[答案]A[解析][分析]方程整理为一般形式,求出一次项系数即可.[详解]方程整理得:x2+4x+5=0,则一次项系数为4.故选A .[点睛]本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:A x2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x2叫二次项,B x叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.3.若关于x的一元二次方程(A +1)x2+x+A 2﹣1=0的一个根是0,则A 的值为( )A . 1B . ﹣1C . ±1D . 0[答案]A[解析][分析]把x=0代入方程,再依据一元二次方程的二次项系数不为零,即可求得答案.[详解]∵关于x的一元二次方程(A +1)x2+x+A 2﹣1=0的一个根是0,∴(A +1)×02+0+A 2-1=0,∴A 2-1=0,即A =±1,∵A +1≠0,∴A ≠-1,∴A =1,故选A .[点睛]本题考查了一元二次方程的解,解一元二次方程-直接开平方法,把求未知系数的问题转化为解方程的问题,是待定系数法的应用,容易出现的错误是忽视二次项系数不等于0这一条件.4.方程(x+1)2=0的根是( )A . x1=x2=1B . x1=x2=﹣1C . x1=﹣1,x2=1D . 无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x+1)2=0,解: x+1=0,所以x1=x2=﹣1,故选B .[点睛]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.5.方程x2+2x+1=0的根是( )A . x1=x2=1B . x1=x2=﹣1C . x1=﹣1,x2=1D . 无实根[答案]B[解析][分析]由原方程得出(x+1)2=0,开方即可得.[详解]∵x2+2x+1=0,∴(x+1)2=0,则x+1=0,解得:x1=x2=−1,故答案选:B .[点睛]本题考查的知识点是解一元二次方程-配方法,解题的关键是熟练的掌握解一元二次方程-配方法.6.一元二次方程的根是A .B .C .D .[答案]D[解析][分析]先计算判别式的值,然后根据判别式的意义可判断方程根的情况.[详解]解:△,方程有两个不相等的两个实数根,即.故选:.[点睛]本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①A ≠0;②B 2-4A C ≥0.7.方程x2=4x的根是( )A . x=4B . x=0C . x1=0,x2=4D . x1=0,x2=﹣4[答案]C[解析][分析]原式利用因式分解法求解即可.[详解]方程整理得:x(x﹣4)=0,可得:x=0或x﹣4=0,解得:x1=0,x2=4.故选C .[点睛]本题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为( )A . 1B . ﹣4C . 1或﹣4D . ﹣1或3[答案]C[解析][分析]在本题中有两个未知数,且通过观察最后结果,可采用换元法,把当成一个整体进行考虑.[详解]设,则原方程变形为,解得或.故选:.[点睛]此题主要是把当成一个整体,把求代数式的值的问题转化为解关于这个整体的方程,利用求根公式求解.9.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为( )A . k>﹣B . k>4C . k<﹣1D . k<4[答案]A[解析][分析]根据方程的系数结合根的判别式△>0;即可得出关于k的一元一次不等式;解之即可得出结论.[详解]∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选A .[点睛]本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是( )A . 50(1+x)2=182B . 50+50(1+x)2=182C . 50+50(1+x)+50(1+2x)=182D . 50+50(1+x)+50(1+x)2=182[答案]D[解析][分析]主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.[详解]依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故答案选D .[点睛]本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是熟练的掌握由实际问题抽象出一元二次方程.二.填空题(共8小题)11.已知是方程的一个根,则的值是_______.[答案]2[解析][分析]由题意知x=-1是方程x2+A x+3-A =0的一个根,再根据一元二次方程的根的定义代入x=-1,求解即可.[详解]∵x=-1是方程的根,由一元二次方程的根的定义,可得,1-A +3-A =0,解此方程得到A =2.[点睛]本题考查一元二次方程解的定义,把解代入方程易得出A 的值.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是_____.[答案][解析][分析]直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.[详解]由题意得:,∴m=1,原方程变为:﹣x2+2=0,x=,故答案为:.[点睛]此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键.13.已知关于的一元二次方程有实数根,则的取值范围是__.[答案]且[解析][分析]由于关于的一元二次方程有实数根,计算根的判别式,得关于的不等式,求解即可[详解]解:关于的一元二次方程有实数根,则△,且.解得且.故答案为:且.[点睛]本题考查了根的判别式、一次不等式的解法及一元二次方程的定义.题目难度不大,解题过程中容易忽略条件而出错.14.将一元二次方程x2﹣6x+10=0化成(x﹣A )2=B 的形式,则B 的值为_____.[答案]8[解析][分析]对原方程移项,利用完全平方公式的特点对其配方.[详解]原方程移项得x2﹣6x=-1,配方得x2﹣6x+9=-1+9,即(x-3)2=8故B 的值为8.[点睛]本题考查的知识点是解一元二次方程配方法,解题的关键是熟练的掌握解一元二次方程配方法. 15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.[答案]x(x﹣1)=110[解析][分析]设这个小组有人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送-1张贺卡,所以全组共送(-1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.[详解]设这个小组有x人,则每人应送出x−1张贺卡,由题意得:x(x−1)=110,故答案为:x(x−1)=110.[点睛]本题考查了由实际问题抽象出二元一次方程,熟练掌握该知识点是本题解题的关键.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为_____.[答案]20%[解析][分析]先设每年投资的增长率为x.根据2015年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2017年投资7.2亿元人民币,列方程求解.[详解]设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=−2.2(舍去),答:每年投资的增长率为20%.故答案为:20%.[点睛]本题考查了一元二次方程的定义,熟练掌握该定义是本题解题的关键.17.已知,是方程的两个实数根,则________.[答案][解析][分析]找出方程的二次项系数,一次项系数及常数项的值,由方程的两个实数根,利用根与系数的关系求出两个之和与两根之积的值,然后把所求式子通分后,将求出的两根之和与两根之积代入即可求出值.[详解]∵方程的两个实数根,∴则故答案为:−3[点睛]本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是_____.[答案]x=3.[解析][分析]设方程的另一根为A ,由根与系数的关系可得到方程2A =6,解方程求得A 的值,即可求得原方程的另一根.[详解]设方程的另一根为A ,∵x=2是一元二次方程x2+mx+6=0的一个根,∴2A =6,解得A =3,即方程的另一个根是x=3,故答案为:x=3.[点睛]本题考查一元二次方程根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.[答案](1)x1=3,x2=;(2)x1=,x2=﹣1.[解析][分析](1)方程整理后,利用因式分解法求出解即可;(2)方程变形后,利用因式分解法求出解即可.[详解]解:(1)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=;(2)(2x﹣3)(x+1)=0,2x﹣3=0或x+1=0,所以x1=,x2=﹣1.[点睛]本题考查了解一元二次方程-因式分解法,熟练掌握解一元二次方程的方法是本题解题的关键. 20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.[答案]实数m=﹣3,两方程的公共根为x=1.[解析][分析]设两方程的公共根为A ,然后将两方程相减,消去二次项,求出公共根和m的值.[详解]解:假设存在符合条件的实数m,且设这两个方程的公共实数根为A ,则①﹣②,得A (m﹣2)+(2﹣m)=0(m﹣2)(A ﹣1)=0∴m=2 或A =1.当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;当A =1时,代入②得m=﹣3,把m=﹣3代入已知方程,求出公共根为x=1.故实数m=﹣3,两方程的公共根为x=1.[点睛]本题考查了一元二次方程的解及定义,熟练掌握该知识点是本题解题的关键.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.[答案]m的值为3.[解析][分析]根据一元二次方程的定义,m+1≠0、│m-1│=2即可求出答案.[详解]解:根据题意得,|m﹣1|=2,且m+1≠0,解得:m=3,答:m的值为3.[点睛]本题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是本题解题的关键.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.[答案](1)见解析;(2)k<﹣1.[解析][分析]根据一元二次方程的解及定义,(1)根据公式法可知当 ≥0时,方程总有两个实数根;(2)通过因式分解法求出两根,可得其中一个为实数、一个为k+1,再根据方程一根小于0即可求出本题答案.[详解](1)证明:∵△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根;(2)解:∵x2﹣(k+3)x+2k+2=0,即(x﹣2)[x﹣(k+1)]=0,∴x1=2,x2=k+1.∵方程有一个根小于0,∴k+1<0,∴k<﹣1.[点睛]本题考查了一元二次方程的解及定义,熟练掌握该知识点是本题解题的关键.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?[答案](1)年增长率为20%;(2)预计2018年盈利2592万元.[解析][分析](1)设每年盈利的年增长率为,根据题意列出方程求解即可;(2)利用2018年盈利=2160×(1+),由此计算即可;[详解]解:(1)设平均年增长率为x,根据题意得:1500(1+x)2=2160,整理得:(1+x)2=1.44,开方得:1+x=±1.2,解得:x=0.2=20%或x=﹣2.2(舍去),则平均年增长率为20%;(2)根据题意得:2160×(1+20%)=2592(万元),则预计2018年盈利2592万元.[点睛]本题考查了一元二次方程的应用,熟练掌握该知识点是本题解题的关键.24.某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?[答案](1)年平均增长率为10%;(2)该镇2019年预计投入资金1331万元.[解析][分析](1)利用2016年投资1000万元,2018年投资1210万元,进而得出等式求出即可;(2)利用(1)中所求,得出2019年邹城市投入河道治污与园林绿化两项工程的经费.[详解]解:(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据题意得:1000(1+x)2=1210,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:该镇投入资金从2016年至2018年的年平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:该镇2019年预计投入资金1331万元.[点睛]本题考查了一元二次方程的应用,熟练掌握该知识点是本题解题的关键.25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?[答案]共有35名同学参加了研学游活动.[解析]试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用。

九年级数学上册《一元二次方程》单元检测试卷

九年级数学上册《一元二次方程》单元检测试卷

九年级数学上册《一元二次方程》单元检测试卷一、选择题1.若方程是关于的一元二次方程,则的值为( )a x |a ‒2|+ax ‒1=0x a A.0 B.2 C.4 D.或042.如果关于的一元二次方程有两个不相等的实数根,那么的取x k 2x 2‒(2k +1)x +1=0k 值范围是( )A.k >‒14B.且k >‒14k ≠0C.k <‒14D.且k ≥‒14k ≠0 3.一元二次方程的二次项系数是()3x 2‒4x =5A.3 B.‒4 C.5 D.‒54.已知实数x 1、x 2满足x 1+x 2=4,x 1x 2=-3,则以x 1、x 2为根的一元二次方程是( )A .x 2-4x -3=0 B .x 2+4x -3=0C .x 2-4x +3=0D .x 2+4x +3=05.在实数范围内定义一种新运算“¤”,其规则为¤,根据这个规则,方程a b =a 2‒b 2(x +2)¤的解为( )3=0A.或x =‒5x =‒1B.或x =5x =1C.或x =5x =‒1D.或x =‒5x =16.用配方法解一元二次方程时,可配方得( )x 2‒4x +2=0A.(x ‒2)2=6B.(x +2)2=6C.(x ‒2)2=2D.(x +2)2=27.已知是关于方程的一个根,则关于的方程的解是x =33x 2+2ax ‒3a =0y y 2‒12=a ( )A.3 B.‒3C.±3D.以上答案都不对8.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为()A .7B .10C .11D .10或11 9.假设每位参加会的人跟其他与会人员均握一次手,所有的与会者总共握了次手,那么28与会人士共有( )A.人28B.人14C.人8D.人27 10.某学校计划在一块长米,宽米的矩形草坪块的中央划出面积为平方米的矩形地块8616栽花,使这矩形地块四周的留地宽度都一样,求这宽度应为多少?设矩形地块四周的留地宽度为,根据题意,下列方程不正确的是( )x A. B.48‒(16x +12x ‒4x 2)=1616x +2x (6‒2x )=32C. D.(8‒x )(6‒x )=16(8‒2x )(6‒2x )=16二、填空题11.一元二次方程有实数根,则的取值范围是________.x 2‒2x +2k =0k 12.关于的方程有两个相等的实数根,则实数的值为________.x x 2+4+k =0k 13.若是关于的一元二次方程的一个根,则________.‒2x (k 2‒1)x 2+2kx +4=0k =14.已知关于x 的方程x 2+px +q =0的两根为-3和-1,则p =____,q =____.15.已知关于的方程的一个根是,则________;另一根为________.x 2x 2‒mx ‒6=03m = 16.已知关于的方程两个根是互为相反数,则的值为x x 2‒(a 2‒2a ‒15)x +a ‒1=0a ________.17.已知一元二次方程的两根分别为,,则________.x 2‒4x ‒3=0x 1x 2x 1‒x 2=18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是_ _.19.某公司今年一月份的利润为万元,三月份的利润下降到万元,为量化该公司一月10081份至三月份利润下降的速度,请你提出一个数字问题为________.100m60m600m20.一个长,宽的矩形游泳池扩建成一个周长为的大型矩形水上游乐场,把游泳池的长增加,水上游乐场面积为,列出方程为________.xm20000m2三、解答题21.按要求解下列一元二次方程:2x2‒7x+2=0‒3x2+1=‒5x①;(配方法)②;(公式法)(3)(x+1)2=6x+6.(4)x(x+5)=5x+10.22.已知一元二次方程的一个根为.x2+px+q+2=0x=3试用的代数式表示;(1)p q求证:一元二次方程一定有两个不相等的实数根.(2)x2+px+q=0a x2+4x‒1=0a a23.已知方程;则①当取什么值时,方程有两个不相等的实数根?②当取什么值时,方程有两个相等的实数根?③当取什么值时,方程没有实数根?a24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2016年图书借阅总量是7500本,2018年图书借阅总量是10 800本.(1)求该社区的图书借阅总量从2016年至2018年的年平均增长率;(2)已知2018年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2018年至2019年图书借阅总量的增长率不低于2016年至2018年的年平均增长率,那么2019年的人均借阅量比2016年增长a%,则a的值至少是多少?25.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了棵,已知这些学生在初一时种了棵,若平均成活率,求这个年级两年来植树200040095%数的年平均增长率.ABCD AB=16cm BC=6cm P Q3cm/s2cm/s 26.如图,在矩形中,,,动点、分别以、的速度从点、同时出发,点从点向点移动.A C Q C D若点从点移动到点停止,点随点的停止而停止移动,点、分别从点、同时(1)P A B Q P P Q A C出发,问经过多长时间、两点之间的距离是?P Q10cm若点沿着移动,点、分别从点、同时出发,点从点移动到点停(2)P AB→BC→CD P Q A C Q C D 止时,点随点的停止而停止移动,试探求经过多长时间的面积为?P Q△PBQ12c m2答 案1.C2.B3.A4. A5.D6.C7.C8.D9.C 10.C 11. 12. 13. 14.4 3 15. 16. 17. 18.10% 19.该公司k ≤12404‒1‒3±27一到三月份平均每月利润下降的百分率是多少? 20.(100+x )(200‒x )=2000021.解:①∵,∴,2x 2‒7x +2=0x 2‒72x +1=0∴,∴,(x ‒74)2‒4916+1=0(x ‒74)2=3316∴,∴,;(x ‒74)=±332x 1=7+2334x 2=7‒2334②∵,∴,‒3x 2+1=‒5x 3x 2‒5x ‒1=0∴,,,,a =3b =‒5c =‒1b 2‒4ac =37∴,∴x =‒b ±b 2‒4ac 2a x 1=‒(‒5)+(‒5)2‒4×3×(‒1)2×3,∴,;x 2=‒(‒5)‒(‒5)2‒4×3×(‒1)2×3x 1=5+376x 2=5‒376∵,∴,(3)(x +1)2‒6(x +1)=0(x +1)(x ‒5)=0则或,解得:或.x +1=0x ‒5=0x =‒1x =5④解:整理,得x 2=10.解得x 1=10,x 2=-10.22.解:把代入方程:,(1)x =39+3p +q +2=0∴;,q =‒3p ‒11(2)△=p 2‒4q =p 2‒(‒3p ‒11)=p 2+12p +44=(p +6)2+8>0,∴方程一定有两个不相等的实数根.23.解:∵,且△=b 2‒4ac =16+4a a ≠0①:当时有两个不相等的实数根,∴,∴且;△>016+4a >0a >‒4a ≠0②:当时有两个相等的实数根,∴,∴;△=016+4a =0a =‒4③:当时没有实数根,∴,∴.△<016+4a <0a <‒424.解:(1)设该社区的图书借阅总量从2016年至2018年的年平均增长率为x .根据题意,得7500(1+x )2=10 800,即(1+x )2=1.44,解得x 1=0.2,x 2=-2.2(舍去).该社区的图书借阅总量从2016年至2018年的年平均增长率为20%. (2)10 800×(1+0.2)=12 960(本),10 800÷1350=8(本),12 960÷1440=9(本),(9-8)÷8×100%=12.5%.故a 的值至少是12.5.25.解:由题意得:初二时植树数为:,那么这些学生在初三时的植树数为:400(1+x );由题意得:.400(1+x )295%[400+400(1+x )+400(1+x )2]=200026.解:过点作于.则根据题意,得设秒后,点和点的距离是.(1)P PE ⊥CD E x P Q 10cm ,即,∴,∴,;(16‒2x ‒3x )2+62=102(16‒5x )2=6416‒5x =±8x 1=85x 2=245∴经过或、两点之间的距离是;85s 245sP Q 10cm连接.设经过后的面积为.(2)BQ ys △PBQ 12cm 2①当时,则,∴,即,0≤y ≤163PB =16‒3y 12PB ⋅BC =1212×(16‒3y )×6=12解得;y =4②当时,,,则163<x ≤223BP =3y ‒AB =3y ‒16QC =2y ,解得,(舍去);12BP ⋅CQ =12(3y ‒16)×2y =12y 1=6y 2=‒23③时,,则,223<x ≤8QP =CQ ‒PQ =22‒y 12QP ⋅CB =12(22‒y )×6=12解得(舍去).综上所述,经过秒或秒的面积为 .y =1846△PBQ 12c m 2。

九年级数学(上)《一元二次方程》检测题含答案.doc

九年级数学(上)《一元二次方程》检测题含答案.doc

九年级数学 ( 上) 《一元二次方程》检测题含答案一、选择题 (每小题 3 分,共 30 分 ) 1、下列方程是一元二次方程的是 ( )A. x(4- 7x 2)=0;B.(3x -3)(x + 1)=(x -3)(3x + 5)C. 121 2x ;D.4x 2= 1- x ;x4x 2-2x - 5 与 2x 2+1 的值互为相反数 ,则 x 的值为 ()、若代数式2A .1或- 3; B .1或- 2;C .-1或2;D .1或3;23323、解方程 2(x - 1) 2= 3(1- x)最合适的方法是 ( )A. 配方法;B. 公式法;C. 因式分解法;D. 无法确定; 4、用配方法解方程 x 2+4x + 1= 0,配方后的方程是 ( )A.(x +2) 2=3;B.(x - 2) 2= 3;C.(x -2) 2= 5;D.(x +2) 2=5;5、已知命题 “关于 x 的一元二次方程 x 2+ bx +1=0,必有实数解 ”是假命题 ,则在下列选项中 ,b 的值可以是 ( ) A . b =- 3; B . b =- 2; C .b =- 1; D . b = 2;6、对于任意实数 k,关于 x 的方程 x 2-2(k +1)x -k 2+2k - 1= 0 的根的情况为 ( ) A. 有两个相等的实数根; B. 没有实数根; C. 有两个不相等的实数根; D. 无法确定;2+x 2 的值是 ( ) 、已知 x 1,x 2 是一元二次方程 3x 2= 6- 2x 的两根 ,则 x 1-x 1x 7A. - 4 ;B. 8;C.- 8;D. 4;33338、某商店销售某种商品可获利润 40 元 ,若打八折销售 ,每件商品所获利润比原来 减少了 20 元 ,则该商品的进价是 ( ) A. 30 元; B. 40 元; C. 50 元; D. 60 元;9、股票每天的涨、跌幅均不能超过 10%,即当涨了原价 10%后 ,便不能再涨 ,叫做 涨停 ;当跌了原价的 10%后便不能再跌 ,叫做跌停.已知一只股票某天跌停 ,之后两 天时间又涨回原价 ,若这两天此股票股价的平均增长率为 x,则 x 满足的方程 是 ( ) A . (1+x) 2=11; B .(1+x) 2=10; C . 1+2x =11; D .1+2x) =10;10910910、 如图是由三个边长分别为 6,9 和 x 的正方形 所组成的图形 ,若直线 AB 将它分成面积相等的两部 分 ,则 x 的值是 ( ) A .1 或 9; B .3 或 5; C .4 或 6; D .3 或 6; 二、填空题 (每小题 4 分,共 32 分 )第 10题图 11、k 时,关于 x 的方程 kx 2-3x = 2x 2+ 1 是一元二次方程.12、已知 m 是关于 x 的方程 x 2-2x - 3= 0 的一个根 ,则 2m 2-4m =.13、已知 x 为实数 ,且满足 (x 2+3x) 2+ (x 2+3x)-2=0,则 x 2+3x 的值为 .14、关于 x 的一元二次方程 x 2+2x -2m +1=0 的两实数根之积为负 ,则实数 m的取值范围是 .15、三角形两边的长是 3 和 4,第三边的长是方程 x 2- 12x +35= 0 的根 ,则该三角形的周长为.16、已知一元二次方程x2- (4k-2)x+4k2=0 有两个不相等的实数根 ,则 k 的最大整数值为.17、新世纪百货大楼某品牌童装平均每天可售出20 件,每件盈利 40 元,为了迎接六一儿童节 ,商场决定采取适当的降价措施,经调查 ,如果每件童装降价 1 元 ,那么平均每天就可多售出 2 件,要想平均每天销售这种童装盈利1200 元,则每件童装应降价多少元 ? 设每件童装应降价x 元 ,可列方程为。

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题1.将一元二次方程2316x x +=化为一般式后,二次项系数和一次项系数分别为( ) A .3,-6 B .3,6 C .3,1 D . 23,6x x -2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .()223x +=B .()223x -=C .()225x +=D .()225x -= 3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣24.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .a c =B .a b =C .a b =D .a b c == 5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值( ) A .0 B .1或2 C .1 D .26.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( ) A .1 B .-1 C .±1 D .07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.关于x 的方程(m +n )x 2+mn 2-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为12,差为2,则常数项为( ) A .18 B .12 C .116 D .149.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根10.若代数式2x 6x 5-+的值是12,则x 的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 11.将一元二次方程2230x x --=用配方法化成()2()0x h k k +=≥的形式为( )A .2 (1)4x -=B .2(1)1x -=C .2 (1)4x +=D .2 (1)1x +=12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3二、填空题13.若方程2234mx x x +-=是关于x 的一元二次方程,则m 的取值范围是_____.14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.15.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.16.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为_________.三、解答题17.已知:已知关于x 的方程220x mx m ++-=(1)求证:不论m 为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求m 的值及方程的另一个根.18.据统计某市农村2013年人均纯收入是10000元,预计2015年人均纯收入可达到12100元. ()1试求该市农村这两年人均纯收入的平均增长率;() 2按此增长速度2016年该市农村人均纯收入可达到多少元?19.选择适当方法解下列方程:(1)2510x x -+=(用配方法); (2)()()2322x x x -=-;(3)2250x --=;(4)()()22231y y +=-.20.已知关于x 的方程()()22110m x m x m --++=. ()1m 为何值时,此方程是一元一次方程?()2m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.22.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具()1若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围; ()2在实际销售中,玩具城以()1中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%a ,从而每天的销售量降低了2%a ,当每天的销售利润为147元时,求a 的值.23.某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为21.6m ,上口宽比渠深多2m ,渠底比渠深多0.4m()1渠道的上口宽与渠底宽各是多少?()2如果计划每天挖土348m ,需要多少天才能把这条渠道挖完?24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.参考答案一、选择题1.将一元二次方程化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D .[答案]A[解析][分析]一元二次方程的一般形式是:A x 2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x 2叫二次项,B x 叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.[详解]解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6. 故选A .[点评]此题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 2316x x +=23,6x x -2316x x +=23-610x x +=2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .B .C .D . [答案]C[解析][分析]根据一元二次方程的配方法即可求出答案.[详解]∵x 2+4x-1=0,∴x 2+4x+4=5,∴(x+2)2=5,故选:C .[点评]此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 [答案]B[解析][分析]根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k 的方程即可.[详解]把x=2代入得,4-6+k=0,解得k=2.故答案为:B . ()223x +=()223x -=()225x +=()225x -=2x -3x+k=02x -3x+k=0[点评]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k 的新方程,通过解新方程来求k 的值是解题的关键.4.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .B .C .D .[答案]A[解析] [分析]因为方程有两个相等的实数根,所以根的判别式△=B 2-4A C =0,又A +B +C =0,即B =-A -C ,代入B 2-4AC =0得(-A -C )2-4A C =0,化简即可得到A 与C 的关系.[详解]∵一元二次方程A x 2+B x+C =0(A ≠0)有两个相等的实数根∴△=B 2−4A C =0,又A +B +C =0,即B =−A −C ,代入B 2−4A C =0得(−A −C )2−4A C =0,即(A +C )2−4A C =A 2+2A C +C 2−4A C =A 2−2A C +C 2=(A −C )2=0,∴A =C故选:A[点评]本题考查了一元二次方程根的判别式的应用,根据方程根的情况确定方程中字母系数之间的关系. 5.若关于的一元二次方程有一个根为0,则的值( ) A .0B .1或2C .1D .2[答案]D 20(a 0)++=≠ax bx c 0a b c ++=20(a 0)++=≠ax bx c a c =a b =a b =a b c ==x 22(1)5320m x x m m -++-+=m[解析][分析]把x=0代入已知方程得到关于m 的一元二次方程,通过解方程求得m 的值;注意二次项系数不为零,即m-1≠0.[详解]解:根据题意,将x=0代入方程,得:m 2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D .[点评]本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m 的值必须满足:m-1≠0这一条件.6.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( )A .1B .-1C .±1D .0[答案]A[解析][分析]方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于A 的方程,从而求得A 的值,且(A +1)x 2+x +A 2-1=0为一元二次方程,即.[详解]把x=0代入方程得到:A 2-1=0解得:A =±1. (A +1)x 2+x +A 2-1=0为一元二次方程 即.+10a ≠-1a ≠∴+10a ≠-1a ≠综上所述A =1.故选:A .[点评]此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A .2根小分支B .3根小分支C .4根小分支D .5根小分支[答案]B[解析][分析]先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可.[详解]设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B .[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.关于x 的方程(m +n )x 2+-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为,差为2,则常数项为( ) A . B . C . D . [答案]A[解析][分析]二次项系数与一次项系数的和为,差为2列方程组求出m 、n 的值,然后可求出常数项. [详解]由题意得 , 解之得, ∴. 故选A .[点评]本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程.对于一元二次方程A x 2+B x +C =0(A ≠0),其中A 是二次项系数,B 是一次项系数,C 是常数项.本题也考查了二元一次方程组的解法. mn 21218121161412()()()()122m n m n m n m n ⎧+--=⎪⎨⎪++-=⎩114m n =⎧⎪⎨=⎪⎩1114=228mn ⨯=9.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B .[点评]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.10.若代数式的值是,则的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 [答案]A[解析][分析]首先把方程化为一般形式x 2-6x+5-12=0,即x 2-6x-7=0,用因式分解法求解.[详解]2x 6x 5-+12x 26512,x x -+=265120,x x -+-=2670,x x --=∴解得:故选:A .[点评]考查一元二次方程的解法,掌握一元二次方程的解法是解题的关键.11.将一元二次方程用配方法化成的形式为( ) A .B .C .D .[答案]A[解析] [分析]先移项得,x 2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h )2=k 的形式.[详解]移项,得x 2-2x=3,配方,得x 2-2x+1=3+1,即(x-1)2=4.故选A .[点评]本题考查了配方法的应用,将一元二次方程x 2-2x-3=0用配方法化成(x+h )2=k (k≥0)的形式,其关键步骤就是移项后,在方程的左右两边加上一次项系数一半的平方.12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3[答案]A ()()710,x x -+=70,x -=10,x +=127, 1.x x ==-2230x x --=()2()0x h k k +=≥2 (1)4x -=2(1)1x -=2 (1)4x +=2 (1)1x +=[解析][分析]把X=0代入方程(m-3)x +3x+m -9=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0[详解]把x=0代入方程(m-3)x +3X+m -9=0中得:m -9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A[点评]此题主要考查一元二次方程的定义,难度不大二、填空题13.若方程是关于的一元二次方程,则的取值范围是_____.[答案][解析][分析]将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.[详解]原方程可化为:, ∵方程是关于的一元二次方程,∴,即,故答案为:.[点评]本题考查了一元二次方程的定义,掌握二次项系数不能为零这一点是解题关键.222222234mx x x +-=x m 1m ≠()21340m x x -+-=2234mx x x +-=x 10m -≠1m ≠1m ≠14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.[答案]3或-7[解析]据题意得,∵(x+2)*5=(x+2)2-52∴x 2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.15.若方程的两根,则的值为__________.[答案]5[解析][分析]根据根与系数的关系求出,代入即可求解.[详解]∵是方程的两根∴=-=4,==1 ∴===4+1=5,故答案为:5.[点评]此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用. 16.已知是一元二次方程的一根,则该方程的另一个根为_________.[答案]-2[解析][分析]由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.[详解]2410x x -+=12,x x 122(1)x x x 12x x +12x x ⋅12,x x 2410x x -+=12x x +b a 12x x ⋅c a122(1)x x x 1122x x x x ++1212x x x x ++12x x +b a 12x x ⋅c a1x =220x mx +-=设方程的另一根为x 1,由根与系数的关系可得:1×x 1=-2, ∴x 1=-2.故答案为:-2.[点评]本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.三、解答题17.已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.[答案](1)见解析;(2),方程的另一个根是. [解析][分析](1)由方程的各系数 结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m 的一元一次方程,解方程求出m 的值,将其代入原方程得出关于x 的一元二次方程,结合根与系数的关系得出方程的另一个解.[详解]解:(1)证明:∵在关于x 的方程中, ,所以不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0解得:, x 220x mx m ++-=m m 12m =32-220x mx m ++-=()()22412240m m m =-⨯⨯-=-+>m 1m 2=∴原方程为: ∴ ∵∴ ∴,方程的另一个根是. [点评]本题考查的知识点是根的判别式以及根与系数的关系,熟记每个公式是解题的关键.18.据统计某市农村年人均纯收入是元,预计年人均纯收入可达到元. 试求该市农村这两年人均纯收入的平均增长率;按此增长速度年该市农村人均纯收入可达到多少元?[答案](1);年该市农村人均纯收入可达到元.[解析][详解](1)设该市农村这两年人均纯收入的平均增长率为x ,根据题意得:10000(1+x )2=12100,解得:x=0.1或x=﹣2.1(舍去),故该市农村这两年人均纯收入的平均增长率为;(元), 答:年该市农村人均纯收入可达到元.[点评]本题主要考查一元二次方程的应用,解此题的关键在于先设出未知数x ,再根据题意列出方程求解即213022x x +-=1212b x x a +=-=-11x =232x =-12m =32-201310000201512100()1() 220161?0%()220161331010%()()212100110%13310⨯+=201613310可.19.选择适当方法解下列方程:(1)(用配方法);(2);(3); (4). [答案](1),(2),;(3),;(4),. [解析][分析][详解]解:, 移项得:,配方得:, 即, ∴, ∴,;,移项,得 , ,2510x x -+=()()2322x x x -=-2250x --=()()22231y y +=-1x=2x =12x =23x=1x =2x =132y =214y =-()21510x x -+=251x x -=-225255144x x -+=-+2521()24x -=522x -=±152x =252x =()()223(2)2x x x -=-()23(2)20x x x ---=()()2360x x x ---=或,,;; , ∵,,∴,∴, ∴,; ; .,,或,,. [点评]掌握一元二次方程的求根方法是解题的关键.20.已知关于的方程. 为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.[答案](1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;20x -=260x -=12x =23x =()23250x --=2a =b =-5c =-()842548=-⨯⨯-=222x ==⨯1x =2x =()224(2)(31)y y +=-()231y y +=±-231y y +=-()231y y +=--132y =214y =-x ()()22110m x m x m --++=()1m ()2m 1m =1m ≠±21m -()1m -+m试题分析:(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m 的值;(2)根据一元二次方程的定义可得≠0,可得m 的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.试题解析:解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m .考点:一元一次方程的定义;一元二次方程的定义.21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.[答案](1);(2)5. [解析][分析](1)根据题中的解法即可得到答案;(2)同理(1). 21m -21m -21m -21m -21m -34(1)m 2+m+1=m 2+m++=(m+)2+≥, 则m 2+m+1的最小值是; (2)4﹣x 2+2x=﹣x 2+2x ﹣1+5=﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值是5.[点评]本题主要考查了配方法与偶次方的非负性,解此题的关键在于利用配方法得到完全平方式,再利用非负数的性质即可得解.22.一玩具城以元/个的价格购进某种玩具进行销售,并预计当售价为元/个时,每天能售出个玩具,且在一定范围内,当每个玩具的售价平均每提高元时,每天就会少售出个玩具若玩具售价不超过元/个,每天售出玩具总成本不高于元,预计每个玩具售价的取值范围; 在实际销售中,玩具城以中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了,从而每天的销售量降低了,当每天的销售利润为元时,求的值.[答案]预计每个玩具售价的取值范围是; 或.[解析][分析]根据题意列不等式组即可得到结论;; 由知最低销售价为元/个,对应销售量为,根据题意列方程即可得到结论. [详解] 解:每个玩具售价元/个,根据题意得, 1434123434344950500.53()160686()2()1%a 2%a 147a ()15660x ≤≤()225a =12.5a =()1()2()1565650503140.5--⨯=个()1x 6050495036860.5x x ≤⎧⎪-⎨⎛⎫-⨯≤ ⎪⎪⎝⎭⎩解得:,答:预计每个玩具售价的取值范围是;由知最低销售价为元/个,对应销售量为, 由题意得:,令,整理得:,解得:,, ∴或.[点评]考查一元二次方程的应用,解决问题的关键是读懂题意,根据题意列出方程和不等式进行求解即可. 23.某林场计划修一条长,断面为等腰梯形的渠道,断面面积为,上口宽比渠深多,渠底比渠深多渠道的上口宽与渠底宽各是多少?如果计划每天挖土,需要多少天才能把这条渠道挖完?[答案]渠道的上口与渠底宽各是米和米; 需要天才能把这条渠道的土挖完.[解析][分析](1)设渠道深x 米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.[详解]设渠道深米,则上口的宽度是米,渠底宽米,根据题意得:5660x ≤≤5660x ≤≤()2()1565650503140.5--⨯=个()()561%491412%147a a ⎡⎤+-⨯⨯-=⎣⎦%t a =2321210t t -==114t =218t =25a =12.5a =750m 21.6m 2m 0.4m ()1()2348m ()1 2.8 1.2()225()1x ()2x +()0.4x +, 解得:(舍去),,则渠道的上口宽是:(米),渠底宽是(米);答:渠道的上口与渠底宽各是米和米;∵渠道的长为米,∴渠道的体积为(立方米),∵每天挖土立方米,∴需要的天数是:(天),答:需要天才能把这条渠道的土挖完.[点评]考查了一元二次方程的应用,解题的关键是读懂题目,设出未知数,找出等量关系,列方程求解. 24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.[答案]x 1=﹣0.5,x 2=1()()120.4 1.62x x x ⎡⎤+++=⎣⎦12x =-20.8x =0.82 2.8+=0.80.4 1.2+= 2.8 1.2()2750750 1.61200⨯=4812004825÷=25[解析][分析]解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.[详解]解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1[点评]本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.。

陕西师范大学附属中学分校九年级数学上册第一单元《一元二次方程》检测(有答案解析)

陕西师范大学附属中学分校九年级数学上册第一单元《一元二次方程》检测(有答案解析)

一、选择题1.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .32.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 3.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .164.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根8.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x 9.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-10.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =- 11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.15.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.16.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.19.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解方程:(1) 2890x x --=(2)(x+1)2=6x+622.解方程:2x²-4x-3=0.23.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.24.解方程:22350x x --= (请用两种方法解方程)25.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.26.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.2.B解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.3.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.6.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.9.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.10.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 11.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 14.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.16.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 19.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)11x =-,29x =;(2)11x =-,25x =.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(2)289x x ,2228494x x -+=+2(4)25x -=,45x =±,∴11x =-,29x =;(2)()2166x x +=+, ()21(66)0x x +-+=, ()216(1)0x x +-+=, ()()1160++-=x x ,(1)(5)0x x +-=,11x =-, 25x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.12x x ==【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴42242b x a -±±===,∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键.23.(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.24.152x =,21x =-【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。

西安交通大学附属中学航天学校九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)

西安交通大学附属中学航天学校九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)

一、选择题1.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( ) A .10B .17C .20D .17或202.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b3.方程()55x x x +=+的根为( ) A .15=x ,25x =- B .11x =,25x =- C .0x =D .125x x ==-4.下列一元二次方程中,有两个不相等实数根的是( ) A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=5.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .206.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( ) A .a <-2B .a >-2C .-2<a <0D .-2≤a <07.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x += B .()2002001500x ++= C .()22001500+=x D .()20012500+=x8.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人 B .7人C .8人D .9人9.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40B .10C .9D .810.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .1031911.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( ) A .0 B .2020 C .1 D .-2020 12.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2二、填空题13.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.14.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a+3β的值为________.15.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 16.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.17.已知关于x 的方程2x m =有两个相等的实数根,则m =________.18.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.19.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解下列方程: (1)2x 2﹣4x +1=0; (2)(2x ﹣1)2=(3﹣x )2.22.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由.23.解方程:(2)4x x x +=- 24.解方程: (1)2340x x --=;(2)()()2151140x x -+--=.25.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高. 26.解下列方程: (1)x (x -1)=1-x (2)(x-3) 2 = (2x-1) (x +3)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可. 【详解】解:∵217700x x -+=, ∴(10)(7)0x x --=, ∴110x =,27x =,∵4610+=,无法构成三角形, ∴此三角形的周长是:46717++=. 故选B . 【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.2.C解析:C 【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出ab的值即可得到a 、b 的关系式 . 【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=,又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭,∴133a a b b ==,(舍去), ∴a=3b , 故先C . 【点睛】本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.3.B解析:B 【分析】根据因式分解法解方程即可; 【详解】()55x x x +=+, ()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B . 【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.4.D解析:D 【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断. 【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根; C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.C解析:C 【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2, ∵a <0, ∴−2<a <0. 故选C . 【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.7.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.8.B解析:B 【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得. 【详解】设参加活动的同学有x 人, 由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去), 即参加活动的同学有7人, 故选:B . 【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.9.D解析:D 【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可. 【详解】解:设每轮传染中平均一个人传染了x 人, 由题意,得:(1+x )+x(1+x)=81, 即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去), 故每轮传染中平均一个人传染了8人, 故选:D . 【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.10.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.11.A解析:A 【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案. 【详解】解:∵方程2202030x x +-=的根分别为a 和b ∴2202030a a +-=,即220302a a =- ∴2a a 2020a b ++=32020a -+ab+2020a=3+ab ∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0 故选:A . 【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.12.B解析:B 【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论. 【详解】设方程的另一个根为x 1, 根据题意得:2+x 1=3, ∴x 1=1. 故选:B . 【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题13.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6 【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论. 【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5, ∴m 、n 为方程x 2+2x ﹣1=0的两个根, ∴m+n=﹣2,mn=﹣1, ∴m 2+n 2=(m+n )2﹣2mn=6. 故答案为6. 【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于ca是解题的关键. 14.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10 【分析】原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可. 【详解】解:∵α2+3α﹣1=0,∴(21a)-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,∴1a、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10. 【点睛】本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键.15.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x ﹣2=0的两个根分别为mn ∴m+n =﹣1mn =﹣2故答案为:【点睛】本题考查了根与系数的关系牢解析:12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n , ∴m +n =﹣1,mn =﹣2,111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca是解题的关键. 16.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1 【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论. 【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根, ∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0, 解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m2-m,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m2-m)=12,即m2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.17.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】=有两个相等的实数根,解:∵关于x的方程2x m∴关于x的方程20-=有两个相等的实数根,x m∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.18.-1【分析】根据新定义可得出mn为方程x2+2x−1=0的两个根利用根与系数的关系可得出m+n=−2mn=−1变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m、n为方程x2+2x−1=0的两个根,利用根与系数的关系可得出m+n =−2、mn=−1,变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴(m+2)(n+2)=mn+2(m+n)+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根为x1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 19.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是 解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】 (1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=, ∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.23.1241x x =-=,【分析】方程整理后,利用因式分解法求解即可.【详解】解:(2)4x x x +=-,方程整理得:2340x x +-=,因式分解得:()()410x x +-=,则40x +=或10x -=,∴1241x x =-=,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.24.(1)14x =,21x =-;(2)16x =-,23x =.【分析】(1)用十字相乘法分解因式求解即可;(2)把x-1看作一个整体,用十字相乘法分解因式求解即可;【详解】解:(1)2340x x --=,()()410x x -+=,40x ∴-=或10x +=,14x ∴=,21x =-;(2)()()2151140x x -+--=, ()()17120x x -+-⎡⎤⎡⎤⎣⎦⎣⎦-=,60x ∴+=或30x -=,16x ∴=-,23x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.25.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.26.(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案; (2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0, 因式分解,得,(x ﹣1)(x +1)=0 于是,得,x ﹣1=0或x +1=0, 解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0 于是,得,x +12=0或x ﹣1=0, 解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。

数学九年级上学期《一元二次方程》单元测试题(带答案)

数学九年级上学期《一元二次方程》单元测试题(带答案)
(2)如果所围成 花圃的面积为63平方米,试求宽A B的长;
(3)按题目的设计要求,(填“能”或“不能”)围成面积为80平方米的花圃.
参考答案
一.选择题((每小题4分,总计40分.请将唯一正确答案的字母填写在表格内))
1.下列方程中,是一元二次方程的是( )
A.x2﹣3=(x﹣2)(x+3)B.(x+3)(x﹣3)=6
(2)求代数式4﹣x2+2x的最大值.
21.某地2015年为做好“精准扶贫”工作,投入资金2000万元用于异地安置,并规划投入资金逐年增加,2017年投入资金2880万元,求2015年到2017年该地投入异地安置资金的年平均增长率.
22.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量 (千克)与销售价 (元/千克)之间的函数关系如图所示:
C. 无实数根D. 不能确定
[答案]A
[解析]
[分析]根据一元二次方程的根的判别式进行判断即可.
[详解] ,
△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,
∵(k+1)2≥0,
∴(k+1)2+8>0,
即△>0,
∴方程有两个不相等实数根,
故选A.
[点睛]本题考查了一元二次方程Ax2+Bx+C=0(A≠0,A,B,C为常数)的根的判别式△=B2-4A C.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
8.已知x1,x2是关于x的方程x2+Bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么B的值为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 2.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 3.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4 D .1或-4 4.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长 5.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根 6.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .77.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 8.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0 10.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0 12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______14.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.15.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.16.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 17.一元二次方程x 2=2x 的解为__________18.已知等腰三角形的边长是方程213360x x -+=的两个根,则这个等腰三角形的周长是______.19.当x=______时,−4x 2−4x+1有最大值.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 23.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a 的值.24.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.25.解下列方程 (1)2210x x ++= (2)233x x26.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 2.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.3.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式. 4.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD中,由勾股定理得,BD =∴a , 解方程2240x ax +-=得22x a a -=±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.5.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.6.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0,解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭, ∴5252⨯=. 故选:D .【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.8.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.11.C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.13.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键. 14.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.15.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.16.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.17.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.22【分析】先利用因式分解法求出方程的两个根从而可得等腰三角形的两边长再根据等腰三角形的定义三角形的三边关系定理可得这个等腰三角形的三边长然后利用三角形的周长公式即可得【详解】因式分解得解得等腰三角 解析:22【分析】先利用因式分解法求出方程的两个根,从而可得等腰三角形的两边长,再根据等腰三角形的定义、三角形的三边关系定理可得这个等腰三角形的三边长,然后利用三角形的周长公式即可得.【详解】213360x x -+=,因式分解,得(4)(9)0x x --=,解得124,9x x ==,等腰三角形的边长是方程213360x x -+=的两个根,∴这个等腰三角形的两边长为4,9,(1)当边长为4的边为腰时,这个等腰三角形的三边长为4,4,9,此时449+<,不满足三角形的三边关系定理,舍去;(2)当边长为9的边为腰时,这个等腰三角形的三边长为4,9,9,此时499+>,满足三角形的三边关系定理,则这个等腰三角形的周长为49922++=;综上,这个等腰三角形的周长为22,故答案为:22.【点睛】本题考查了解一元二次方程、等腰三角形的定义、三角形的三边关系定理等知识点,熟练掌握一元二次方程的解法是解题关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:1 2 -【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x2-4x+1有最大值是2.故答案为:-12.【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.20.-43【分析】由根与系数的关系可得出关于p或q的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p﹣3×(﹣1)=q所以p=﹣4q=3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p或q的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p,﹣3×(﹣1)=q,所以p=﹣4,q=3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q是解题的关键.三、解答题21.(1)505x-;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.22.(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.24.(1)54m ≤;(2)0m = 【分析】(1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=-()()222141m m =----⎡⎤⎣⎦ 2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.25.(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=, 2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x ,3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.26.(1)580;(2)70元.【分析】(1)根据降价后销量=降价前销量+增加的销量可求得结果;(2)设定价x 元,根据每季度的总利润=每个玩具利润×降价后每天的销售数量列出方程,解方程可求得定价.【详解】(1)500240580+⨯=(个).故答案为:580.(2)设定价x 元,根据题意得:(50)[50040(80)]18000x x -+-=,解得:1272.5,70x x ==,∵尽可能让利与顾客,70x ∴=.答:应该定价70元.【点睛】本题主要考查一元二次方程的实际应用,理解题意找到题目隐含的等量关系是解决问题的关键.。

相关文档
最新文档