linux模块编译

linux模块编译
linux模块编译

linux 模块编译步骤(原)

本文将直接了当的带你进入linux的模块编译。当然在介绍的过程当中,我也会添加一些必要的注释,以便初学者能够看懂。之所以要写这篇文章,主要是因为从书本上学的话,可能要花更长的时间才能学会整个过程,因为看书的话是一个学习过程,而我这篇文章更像是一个培训。所以实践性和总结性更强。通过本文你将会学到编译一个模块和模块makefile的基本知识。以及加载(卸载)模块,查看系统消息的一些知识;

声明:本文为初学者所写,如果你已经是一个linux模块编译高手,还请指正我文章中的错误和不足,谢谢

第一步:准备源代码

首先我们还是要来编写一个符合linux格式的模块文件,这样我们才能开始我们的模块编译。假设我们有一个源文件mymod.c。它的源码如下:

mymodules.c

1. #include /* 引入与模块相关的宏*/

2. #include /* 引入module_init() module_exit()函数*/

3. #include /* 引入module_param() */

4

5. MODULE_AUTHOR("Yu Qiang");

6. MODULE_LICENSE("GPL");

7

8. static int nbr = 10;

9. module_param(nbr, int, S_IRUGO);

10.

11. static int __init yuer_init(void)

12.{

13. int i;

14. for(i=0; i

15. {

16. printk(KERN_ALERT "Hello, How are you. %d\n", i);

17. }

18. return 0;

19.}

20.

21.static void __exit yuer_exit(void)

22.{

23. printk(KERN_ALERT"I come from yuer's module, I have been unlad.\n");

24.}

25.

26. module_init(yuer_init);

27. module_exit(yuer_exit);

我们的源文件就准备的差不多了,这就是一个linux下的模块的基本结构。第9行是导出我们的符号变量nbr。这样在你加载这个模块的时候可以动态修改这个变量的值。稍后将演示。yuer_init()函数将在模块加载的时候运

行,通过输出的结果可以看到我们的模块是否加载成功。

第二步:编写Makefile文件

首先还是来看看我们Makefile的源文件,然后我们再来解释;

Makefile

obj-m := modules.o #要生成的模块名

modules-objs:= mymod.o #生成这个模块名所需要的目标文件

KDIR := /lib/modules/`uname -r`/build

PWD := $(shell pwd)

default:

make -C $(KDIR) M=$(PWD) modules

clean:

rm -rf *.o .* .cmd *.ko *.mod.c .tmp_versions

现在我来说明一下这个Makefile。请记住是大写的Makefile而不是小写的makefile;

obj-m :这个变量是指定你要声称哪些模块模块的格式为obj-m := <模块名>.o

modules-objs :这个变量是说明声称模块modules需要的目标文件格式要求<模块名>-objs := <目标文件> 切记:模块的名字不能取与目标文件相同的名字。如在这里模块名不能取成mymod;

KDIR :这是我们正在运行的操作系统内核编译目录。也就是编译模块需要的环境

M= :指定我们源文件的位置

PWD :这是当前工作路径$(shell )是make的一个内置函数。用来执行shell命令。

第三步:编译模块

现在我们已经准备好了我们所需要的源文件和相应的Makefile。我们现在就可以编译了。在终端进入源文件目录输入make

运行结果:

make[1]: Entering directory `/usr/src/linux-headers-2.6.24-24-generic'

CC [M] /home/yuqiang/桌面/mymodule/mymodules.o

LD [M] /home/yuqiang/桌面/mymodule/modules.o

Building modules, stage 2.

MODPOST 1 modules

CC /home/yuqiang/桌面/mymodule/modules.mod.o

LD [M] /home/yuqiang/桌面/mymodule/modules.ko

make[1]: Leaving directory `/usr/src/linux-headers-2.6.24-24-generic'

第四步:加载/卸载我们的模块

从上面的编译中我可以看到。已经有一个modules.ko生成了。这就是我们的模块了。现在我们就可以来加载了。首先在终端输入:sudo insmod modules.ko

现在我们来看看我们的模块加载成功没有呢?

在终端输入:dmesg | tail -12 这是查看内核输出信息的意思。tail -12 显示最后12条;

显示结果如下:

[17945.024417] sd 9:0:0:0: Attached scsi generic sg2 type 0

[18046.790019] usb 5-8: USB disconnect, address 9

[19934.224812] Hello, How are you. 0

[19934.224817] Hello, How are you. 1

[19934.224818] Hello, How are you. 2

[19934.224820] Hello, How are you. 3

[19934.224821] Hello, How are you. 4

[19934.224822] Hello, How are you. 5

[19934.224824] Hello, How are you. 6

[19934.224825] Hello, How are you. 7

[19934.224826] Hello, How are you. 8

[19934.224828] Hello, How are you. 9

看到了吧。我们的模块的初始化函数yuer_init();已经成功运行了。说明我们的模块已经加载成功;

现在我们再来卸载模块试试看。

在终端输入:sudo rmmod modules

在终端输入:dmesg | tail -3

[19934.224826] Hello, How are you. 8

[19934.224828] Hello, How are you. 9

[20412.046932] I come from yuer's module, I have been unlad.

可以从打印的信息中看到,我们的模块的退出函数已经被执行了。说明我们的模块已经被成功的卸载了。到目前位置我们就已经算是对模块的编译到编译运行算是有了一个整体上的认识了。对于以后深入的学习还是应该有点帮助的。下面我们将在看看于模块相关的一些简单的操作。

第五步:加载模块时传递参数

在终端输入:sudo insmod module_name.ko nbr=4

在终端输入:dmesg | tail -6

显示结果如下:

[20800.655694] Hello, How are you. 9

[21318.675593] I come from onefile module, I have been unlad.

[21334.425373] Hello, How are you. 0

[21334.425378] Hello, How are you. 1

[21334.425380] Hello, How are you. 2

[21334.425381] Hello, How are you. 3

这样我们就可以看到在模块加载的时候动态设置了我们的一个变量。初始化函数中的循环只执行了4次。

可能你会问我怎么知道一个模块可以设置那些变量呢。当然,你可以先不设变量加载一次。然后可以在终端输入ls /sys/module//parameters/来查看。在这里我们是这样输入的

在终端输入:ls /sys/moedle/modules/parameters/

显示结果:

nbr

如果我们的模块加载成功了。最后我们还可以通过modinfo来查看我们的模块信息。如下

在终端输入:sudo modinfo modules.ko

显示结果:

filename: modules.ko

license: GPL

author: Yu Qiang

srcversion: 20E9C3C4E02D130E6E92533

depends:

vermagic: 2.6.24-24-generic SMP mod_unload 586

parm: nbr:int

本文总结:

本文的相关知识都好像有一点浅尝辙止的感觉。因为本篇文章主要是通过一条线式方式来讲解了模块编写的相关过程,其实在这个过程中还有很多可以发散的地方。例如:

在写到MODULE_AUTHOR("Yu Qiang")的时候,你应该想到还有

MODULE_DESCRIPTION(模块用途的简单描述);

MODULE_VERSION(模块的版本字符串);

MODULE_ALIAS(模块的别名);

...

在写到module_param(nbr, int, S_IRUGO);的时候,你应该想到还有

EXPORT_SYMBOL(name); 可以导出模块的函数,这也是模块编写的最终目的

...

在用到insmod 和modinfo的时候。你应该想到还有

depmod 分析可加载模块的依赖性,并生成modules.dep文件和映射文件

modprobe Linux内核添加删除模块

...

Linux内核修改与编译图文教程

Linux 内核修改与编译图文教程 1

1、实验目的 针对Ubuntu10.04中,通过下载新的内核版本,并且修改新版本内核中的系统调用看,然后,在其系统中编译,加载新内核。 2、任务概述 2.1 下载新内核 https://www.360docs.net/doc/3112683308.html,/ 2.2 修改新内核系统调用 添加新的系统调用函数,用来判断输入数据的奇偶性。 2.3 进行新内核编译 通过修改新版内核后,进行加载编译。最后通过编写测试程序进行测试 3、实验步骤 3.1 准备工作 查看系统先前内核版本: (终端下)使用命令:uname -r 2

3.2 下载最新内核 我这里使用的内核版本是 3.3 解压新版内核 将新版内核复制到“/usr/src”目录下 在终端下用命令:cd /usr/src进入到该文件目录 解压内核:linux-2.6.36.tar.bz2,在终端进入cd /usr/src目录输入一下命令: bzip2 -d linux-2.6.36.tar.bz2 tar -xvf linux-2.6.36.tar 文件将解压到/usr/src/linux目录中 3

使用命令: ln -s linux-2.6.36 linux 在终端下输入一下命令: sudo apt-get install build-essential kernel-package libncurses5-dev fakeroot sudo aptitude install libqt3-headers libqt3-mt-dev libqt3-compat-headers libqt3-mt 4

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程

linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转) linux是如何组成的? 答:linux是由用户空间和内核空间组成的 为什么要划分用户空间和内核空间? 答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的 安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间 linux内核是如何组成的? 答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、 VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动 linux 内核源代码 linux内核源代码是如何组成或目录结构? 答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录 block目录部分块设备驱动代码 crypto目录加密、压缩、CRC校验算法 documentation 内核文档 drivers 设备驱动 fs 存放各种文件系统的实现代码 include 内核所需要的头文件。与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中 init 内核初始化代码 ipc 进程间通信的实现代码 kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化) lib 库文件代码 mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动 samples 内核编程的范例 scripts 配置内核的脚本 security SElinux的模块 sound 音频设备的驱动程序 usr cpip命令实现程序 virt 内核虚拟机 内核配置与编译 一、清除 make clean 删除编译文件但保留配置文件

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

linux内核配置模块编译安装

Linux内核配置编译和加载 Linux内核模块 Linux内核结构非常庞大,包含的组件也非常多,想要把我们需要的部分添加到内核中,有两个方法:直接编译进内核和模块机制 由于直接编译进内核有两个缺点,一是生成的内核过大,二是每次修改内核中功能,就必须重新编译内核,浪费时间。因此我们一般采用模块机制,模块本身不被编译进内核映像,只有在加载之后才会成为内核的一部分,方便了修改调试,节省了编译时间。 配置内核 (1)在drivers目录下创建hello目录存放hello.c源文件 (2)在hello目录下新建Makefile文件和Kconfig文件 Makefile文件内容: obj-y += hello.o //要将hello.c编译得到的hello.o连接进内核 Kconfig文件内容: 允许编译成模块,因此使用了tristate (3)在hello目录的上级目录的Kconfig文件中增加关于新源代码对应项目的编译配置选项 修改即driver目录下的Kconfig文件,添加

source "drivers/hello/Kconfig" //使hello目录下的Kconfig起作用 (4)在hello目录的上级目录的Makefile文件中增加对新源代码的编译条目 修改driver目录下的Makefile文件,添加 obj-$(CONFIG_HELLO_FOR_TEST) += hello/ //使能够被编译命令作用到 (5)命令行输入“make menuconfig”,找到driver device,选择select,发现test menu 已经在配置菜单界面显示出来 (6)选择test menu进入具体的配置,可以选择Y/N/M,这里我选择编译为M,即模块化 (7)保存退出后出现 (8)进入kernels目录中使用“ls -a”查看隐藏文件,发现多出.config隐藏文件,查看.config 文件

嵌入式Linux系统内核的配置、编译和烧写

实验二 嵌入式Linux系统内核的配置、编译和烧写 1.实验目的 1)掌握交叉编译的基本概念; 2)掌握配置和编译嵌入式Linux操作系统内核的方法; 3)掌握嵌入式系统的基本架构。 2.实验环境 1)装有Windows系统的计算机; 2)计算机上装有Linux虚拟机软件; 3)嵌入式系统实验箱及相关软硬件(各种线缆、交叉编译工具链等等)。 3.预备知识 1)嵌入式Linux内核的配置和裁剪方法; 2)交叉编译的基本概念及编译嵌入式Linux内核的方法; 3)嵌入式系统的基本架构。 4.实验内容和步骤 4.1 内核的配置和编译——配置内核的MMC支持 1)由于建立交叉编译器的过程很复杂,且涉及汇编等复杂的指令,在这里 我们提供一个制作好的编译器。建立好交叉编译器之后,我们需要完成 内核的编译,首先我们要有一个完整的Linux内核源文件包,目前流行 的源代码版本有Linux 2.4和Linux 2.6内核,我们使用的是Linux 2.6内核; 2)实验步骤: [1]以root用户登录Linux虚拟机,建立一个自己的工作路径(如用命令 “mkdir ‐p /home/user/build”建立工作路径,以下均采用工作路径 /home/user/build),然后将“cross‐3.3.2.tar.bz2、dma‐linux‐2.6.9.tar.gz、 dma‐rootfs.tar.gz”拷贝到工作路径中(利用Windows与虚拟机Linux 之间的共享目录作为中转),并进入工作目录; [2]解压cross‐3.3.2.tar.bz2到当前路径:“tar ‐jxvf cross‐3.3.2.tar.bz2”; [3]解压完成后,把刚刚解压后在当前路径下生成的“3.3.2”文件夹移 动到“/usr/local/arm/”路径下,如果在“/usr/local/”目录下没有“arm” 文件夹,用户创建即可; [4]解压“dma‐linux‐2.6.9.tar.gz”到当前路径下:

linux2.6内核的编译步骤及模块的动态加载-内核源码学习-linux论坛

[原创]linux2.6内核的编译步骤及模块的动态加载-内核源码 学习-linux论坛 05年本科毕业设计做的是Linux下驱动的剖析,当时就买了一本《Linux设备驱动程序(第二版)》,但是没有实现将最简单的helloworld程 序编译成模块,加载到kernel里。不过,现在自己确实打算做一款芯片的Linux的驱动,因此,又开始看了《Linux设备驱动程序》这本书,不过已 经是第三版了。第二版讲的是2.4的内核,第三版讲的是2.6的内核。两个内核版本之间关于编译内核以及加载模块的方法都有所变化。本文是基于2.6的内核,也建议各位可以先看一下《Linux内核设计与实现(第二版)》作为一个基础知识的铺垫。当然,从实践角度来看,只要按着以下的步骤去做也应该可以实现成功编译内核及加载模块。个人用的Linux版本为:Debian GNU/Linux,内核版本为:2.6.20-1-686.第一步,下载Linux内核的源代码,即构建LDD3(Linux Device Drivers 3rd)上面所说的内核树。 如过安装的Linux系统中已经自带了源代码的话,应该在/usr/src目录下。如果该目录为空的话,则需要自己手动下载源代码。下载代码的方法和链接很多,也可以在CU上通过

https://www.360docs.net/doc/3112683308.html,/search/?key=&;q=kernel&a mp;frmid=53去下载。不过,下载的内核版本最好和所运行的Linux系统的内核版本一致。当然,也可以比Linux系统内核的版本低,但高的话应该不行(个人尚未实践)。 Debian下可以很方便的通过Debian源下载: 首先查找一下可下载的内核源代码: # apt-cache search linux-source 其中显示的有:linux-source-2.6.20,没有和我的内核版本完全匹配,不过也没关系,直接下载就可以了: # apt-get install linux-source-2.6.20 下载完成后,安装在/usr/src下,文件名为: linux-source-2.6.20.tar.bz2,是一个压缩包,解压缩既可以得到整个内核的源代码: # tar jxvf linux-source-2.6.20.tar.bz2

linux设备驱动程序的hello模块编译过程

linux设备驱动程序的hello模块编译过程 今天把linux设备驱动程序(第三版)的第一个模块hello模块编译通过了,这个东西卡了我好长时间了,期间我又花了很多时间去看linux程序设计(第二版),终于今天机械性地完成了这个试验。 编译环境:虚拟机linux2.6.18内核,(如果内核不是2.6的,可以参考我的内核升级过程,另外一篇文章有详细记录) 源程序hello.c: ///////////////////////////////////////////////////////////////////// /////// #include #include #include MODULE_LICENSE("Dual BSD/GPL"); static int hello_init(void) //有的上面定义的是init_modules(void)是通不过编译的 { printk(KERN_ALERT "Hello, world\n"); return 0; } static void hello_exit(void) { printk(KERN_ALERT "Goodbye, world\n"); } module_init(hello_init); module_exit(hello_exit); ///////////////////////////////////////////////////////////////////// /// Makefile的内容: ifneq ($(KERNELRELEASE),) obj-m := hello.o else KDIR:=/lib/modules/$(shell uname -r)/build PWD:=$(shell pwd)

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

linux 模块编译步骤(详解)

MODULE_LICENSE("Dual BSD/GPL"); static int hello_init(void) { printk(KERN_ALERT "hello,I am edsionte/n"); return 0; } static void hello_exit(void) { printk(KERN_ALERT "goodbye,kernel/n"); } module_init(hello_init); module_exit(hello_exit); // 可选 MODULE_AUTHOR("Tiger-John"); MODULE_DESCRIPTION("This is a simple example!/n"); MODULE_ALIAS("A simplest example"); Tiger-John说明: 1.> 相信只要是学过 C 语言的同学对第一个程序都是没有问题的。但是也许大家看了第二个程序就有些不明白了。 可能有人会说: Tiger 哥你没疯吧,怎么会把 printf() 这么简单的函数错写成了 printk() 呢。 也有的人突然想起当年在大学学 C 编程时,老师告诉我们“一个 C 程序必须要有 main() 函数,并且系统会首先进入 main() 函数执行 " ,那么你的程序怎么没有 main() 函数呢?没有 main() 函数程序是怎么执行的呢?

可能也会有更仔细的人会发现:怎么两个程序头文件不一样呢?不是要用到输入和输出函数时,一定要用到 这个头文件,你怎么没有呢? -------------------------------------------------------------------------------------------- Tiger 哥很淡定的告诉大家其实第二个程序是正确的,现在我们就来看看到底如何来编写一个内核模块程序。 2. 内核模块编程的具体实现 第一步:首先我们来看一下程序的头文件 #include #include #include 这三个头文件是编写内核模块程序所必须的 3 个头文件。 Tiger-John 说明: 1> 由于内核编程和用户层编程所用的库函数不一样,所以它的头文件也和我们在用户层编写程序时所用的头文件也不一样。 2> 我们在来看看在 L inux 中又是在那块存放它们的头文件 a. 内核头文件的位置: /usr/src/linux-2.6.x/include/ b. 用户层头文件的位置 : /usr/include/ 现在我们就明白了。其实我们在编写内核模块程序时所用的头文件和系统函数都和用层编程时所用的头文件和系统函数是不同的。 第二步:编写内核模块时必须要有的两个函数 : 1> 加载函数: static int init_fun(void)

Linux 2.6内核 模块编译 Makefile

编译模块的make file 必须是Makefile,不能是makefile. //why? ifneq ($(KERNELRELEASE),) obj-m := mytest.o mytest-objs := file1.o file2.o file3.o else KDIR := /lib/modules/$(shell uname -r)/build PWD := $(shell pwd) default: $(MAKE) -C $(KDIR) M=$(PWD) modules endif 解释为: KERNELRELEASE 是在内核源码的顶层Makefile中定义的一个变量,在第一次读取执行此Makefile时,KERNELRELEASE没有被定义, 所以make将读取执行else之后的内容。如果make的目标是clean,直接执行clean操作,然后结束。当make的目标为all时,-C $(KDIR) 指明跳转到内核源码目录下读取那里的Makefile;M=$(PWD) 表明然后返回到当前目录继续读入、执行当前的Makefile。当从内核源码目录返回时,KERNELRELEASE已被被定义,kbuild也被启动去 解析kbuild语法的语句,make将继续读取else之前的内容。else之前的内容为kbuild语法的语句, 指明模块源码中各文件的依赖关系,以及要生成的目标模块名。mytest-objs := file1.o file2.o file3.o表示mytest.o 由file1.o,file2.o与file3.o 连接生成。obj-m := mytest.o表示编译连接后将生成mytest.o模块。 ---------------------------------------------------------------------- 另外转载:

linux模块编译

linux 模块编译步骤(原) 本文将直接了当的带你进入linux的模块编译。当然在介绍的过程当中,我也会添加一些必要的注释,以便初学者能够看懂。之所以要写这篇文章,主要是因为从书本上学的话,可能要花更长的时间才能学会整个过程,因为看书的话是一个学习过程,而我这篇文章更像是一个培训。所以实践性和总结性更强。通过本文你将会学到编译一个模块和模块makefile的基本知识。以及加载(卸载)模块,查看系统消息的一些知识; 声明:本文为初学者所写,如果你已经是一个linux模块编译高手,还请指正我文章中的错误和不足,谢谢 第一步:准备源代码 首先我们还是要来编写一个符合linux格式的模块文件,这样我们才能开始我们的模块编译。假设我们有一个源文件mymod.c。它的源码如下: mymodules.c 1. #include /* 引入与模块相关的宏*/ 2. #include /* 引入module_init() module_exit()函数*/ 3. #include /* 引入module_param() */ 4 5. MODULE_AUTHOR("Yu Qiang"); 6. MODULE_LICENSE("GPL"); 7 8. static int nbr = 10; 9. module_param(nbr, int, S_IRUGO); 10. 11. static int __init yuer_init(void) 12.{ 13. int i; 14. for(i=0; i

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.360docs.net/doc/3112683308.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.360docs.net/doc/3112683308.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.360docs.net/doc/3112683308.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.360docs.net/doc/3112683308.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.360docs.net/doc/3112683308.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.360docs.net/doc/3112683308.html,/guestbook留下你的邮箱,我给你发过去)

Linux编译选项详解

linux内核编译选项详解(一):General setup 空间中有一些有关编译出错的信息 [*]Prompt for development and/or incomplete code/drivers 显示尚在开发中或尚未完成的代码与驱动.你应该选择它,因为有许多设备可能必需选择这个选项才能进行配置,实际上它是安全的。这个选项同样会让一些老的驱动的可用。如果你选了Y,你将会得到更多的阿尔法版本的驱动和代码的配置菜单。 ()Local version – append to kernel release 在内核版本后面加上自定义的版本字符串(小于64字符),可以用‖uname -a‖命令看到 [ ]Automatically append version information to the version string 自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- – append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (Gzip) 内核压缩模式选baip2 ?gzip用于UNIX系统的文件压缩。后缀为.gz的文件。现今已经成为Internet 上使用非常普遍的一种数据压缩格式,或者说一种文件格式。HTTP协议上的GZIP 编码是一种用来改进WEB应用程序性能的技术。大流量的WEB站点常常使用 GZIP压缩技术来让用户感受更快的速度。 ?bzip2是一个基于Burrows- Wheeler 变换的无损压缩软件,压缩效果比传统的LZ77/LZ78压缩算法来得好。它是一款免费软件。bzip2能够进行高质量的数据 压缩。它利用先进的压缩技术,能够把普通的数据文件压缩10%至15%,压缩 的速度和解压的效率都非常高!支持现在大多数压缩格式,包括tar、gzip 等等。 ?lzma是一个Deflate和LZ77算法改良和优化后的压缩算法,开发者是Igor Pavlov,2001年被首次应用于7-Zip压缩工具中,是2001年以来得到发展的 一个数据压缩算法。它使用类似于LZ77 的字典编码机制,在一般的情况 [*] Support for paging of anonymous memory (swap) 将使你的内核支持虚拟内存。这个虚拟内存在LINUX中就是SWAP分区。除非你不想要SWAP分区,否则这里必选Y。

linux实验报告(编译内核)

湖北大学 学生实验报告 实验课程网络实用技术 开课学院计算机与信息工程学院 任课教师徐婕 学生姓名骆婧 学生学号20112211042100 70 专业班级计科一班 学生年级2011级 2013-2014 学年第二学期

一.实验目的 通过实验,熟悉Linux操作系统的使用,掌握构建与启动Linux内核的方法;掌握用户程序如何利用系统调用与操作系统内核实现通信的方法,加深对系统调用机制的理解;进一步掌握如何向操作系统内核增加新的系统调用的方法,以扩展操作系统的功能。 二.实验内容 1.Linux环境下的C或者C++编译和调试工具的使用 2.向Linux内核增加新的系统调用,系统调用的功能为打印出自己的学号和 姓名信息。 3.Linux新内核的编译、安装和配置。 4.编写应用程序以测试新的系统调用并输出测试结果。 三、实验步骤 第一步:解压文件 1.下载linux-3.13.3.tar.xz压缩包。 2.在Ubantu系统下,解压该文件,解压之后得到linux- 3.13.3文件包 # tar –xf linux-3.13.3.tar.xz 3.将解压后的文件包复制到/usr/src # cp linux3.13.3 /usr/src 第二步:修改源程序,增加系统调用 1.gedit /usr/src/linux-3-13.3/kernel/sys.c (增加系统调用,使用面向内核的 打印函数printk打印姓名学号) 使用gedit命令,可以直接在文档编辑器中直接修改。修改好后按保存关闭文档编辑器。 在开头加入头文件: #include 在末尾加入函数 asmlinkage int sys_mycall(void) { printk(KERN_ALERT "My name is XXXX!My studentid is XXXXXXX\n"); return 1; } 2.gedit /usr/src/linux-3-1 3.3/arch/x86/include/asm/syscalls.h 在倒数第二行后插入 asmlinkage int sys_mycall(void);

在linux下如何编译c程序

在linux下如何编译C++程序 一、GCC(GNUCompilerCollection)是linux下最主要的编译工具,GCC不仅功能非常强大,结构也异常灵活。它可以通过不同的前端模块来支持各种语言,如Java、Fortran、Pascal、Modula-3和Ada g++是GCC中的一个工具,专门来编译C++语言的。 GCC的参数有:(也是分步实现) -E让GCC在预处理结束后停止编译g++ -E hello.cpp-ohello.i -c将hello.i编译成目标代码g++-chello.i-ohello.o 将目标文件连接成可执行文件g++ hell.o-ohello 可以一步实现g++hello.cpp-ohello 二、假如有两个以上源文件应该一下编译。 一步就实现g++foo1.cppfoo2.cpp-ofoo 也可以分步实现g++-cfoo1.cpp-ofoo1.o g++-cfoo2.cpp-ofoo2.o g++foo1.ofoo2.o-ofoo 三、GCC一些常用选项 1、产生警告信息的选项大多数以-W开头其中有-Wall g++-Wallhello.cpp-ohello 2、将所有的警告当成错误的选项-Werror g++ -Werrorhello.cpp-ohello 3、寻找头文件选项-I(linux默认路径:头文件在/usr/include/下),不在这个路径下就要用-I指定。

gccfoo.cpp-I/home/include-ofoo 4、库依赖选项-L(linux默认路径:库文件在/usr/lib/下),不在这个路径下就要用-L指定。 g++foo.cpp-L/home/lib-lfoo-ofoo 库就是将源文件编译之后生成的目标文件的集合。 库命名以lib开头。 库有静态库(通常以.a结尾)和动态库(通常以.so结尾) 默认情况下,g++以动态库形式连接。如果要静态库连接则要用-static指定(g++ foo.cpp-L/home/lib-static-lfoo-ofoo) 5、优化选项-On(n取0到3之间) 四、介绍一些GNU二进制链工具 1、ar命令(也称为工具)可以用来编译成静态库 ar[-] {操作选项} {任选项} [成员名] [count] archive files.... arrvlibtest.ahello.ohello1.o生成一个库名为test,该库中存放了hello.o和hello1.o这两个模块。 操作项:d(删除)、m(移动)、p(标准输出)、q(快速追加)、r(在库中插入模块)、t(显示库的模块清单)、x(从库中提取一个成员)。 任选项:a(成员后面添加一个新文件)、b(成员前面添加一个新文件)、c(创建一个库)、f(截短指定名字)、v(显示执行操作选项的附加信息)。澳门新濠天地https://www.360docs.net/doc/3112683308.html,2、编译成动态库 分步完成:gcc-fPIC-cfunc.cpp-ofunc.o gcc -shared-olibfunc.sofunc.o 一步就完成:gcc -fPIC-shared -o libfunc.sofunc.cpp

Linux内核的配置与编译

Computer Knowledge and Technology 电脑知识 与技术第5卷第3期(2009年1月)Linux 内核的配置与编译 胡庆烈 (佛山职业技术学院电子信息工程系,广东佛山528000) 摘要:Linux 是一种实用性很强的现代操作系统,它开放源代码,并允许用户升级其内核。在Redhat 7.2环境中,详细分析了Linux 2.4.18版本的内核配置、编译及新内核切换等操作过程。 关键词:Linux ;内核;配置;编译 中图分类号:TP316文献标识码:A 文章编号:1009-3044(2009)03-0730-02 Configuration and Compiling of Linux Kernel HU Qing-lie (Department of Electonics &Information,Foshan Polytechnic College,Foshan 528000,China) Abstract:Linux is a very practical modern operating system,which opens source coding and allows the user to upgrade its kernel.In the environment of Redhat 7.2,the paper analysis the Linux 2.4.18version of kernel configuration,compiling and new kernel process switch -ing,and so on. Key words:Linux;kernel;configuration;compile 1引言 Linux 是一个自由的多任务操作系统,它以开放源码、对硬件的配置要求低并兼具现代操作系统的优点而得到了迅猛的发展。操作系统的内核是操作系统的核心,它有很多基本的功能,如虚拟内存、多任务、共享库、需求加载、共享的写时拷贝(copy-on-write)、可执行程序和TCP/IP 网络功能等。 用户编译配置Linux 的内核,主要有以下三个原因:1)从现有内核中去除一些不需要的功能,使自定制的内核运行速度更快、更稳定,且具有更少的代码;2)使系统拥有更多的内存,内核部分将不会被交换到虚拟内存中;3)为了提高速度,将某种功能编译到内核中。 2Linux 内核升级的准备 2.1安装一个Linux 操作系统 在编译一个新的Linux 内核之前,首先应在微机中安装一个Linux 操作系统,以便利用该Linux 环境进行新内核的配置和安装。这里是以Redhat 7.2为例,在安装Redhat 7.2的过程中,有两个问题需要注意: 1)硬盘的分区:由于每个硬盘只能拥有4个主分区(Primary Partition ),故用户需要扩展分区,则至少需要腾出一个主分区来划分逻辑分区。在安装Linux 操作系统时,至少需要两个分区,其中本机分区(Linux Native )是供Linux 存放系统文件,而置换分区(Linux Swap )是用作虚拟内存的存取空间。此外,为了和Windows 系统进行文件的复制转换,还应创建一个FAT32类型的分区。 2)安装LILO 启动程序:LILO 是Linux 的核心加载程序,它提供了从DOS 环境启动Linux 的功能,并支持多重启动菜单,让用户选择启动哪一个分区的操作系统。 2.2获取新的Linux 内核源代码 安装了Linux 操作系统后,接下来的工作是寻找新内核的源代码。目前,在Internet 上提供Linux 源代码的站点有很多,如https://www.360docs.net/doc/3112683308.html, 就是Linux 内核版本发布的官方网站,用户可以从该站点上获得最新版本的Linux 内核源代码,这里是以linux- 2.4.18版本为例。 2.3对新的Linux 内核源代码包进行解压 由于大部分开放性操作系统的程序都是以压缩文件(tgz 、zip 、gz 与bz2)的形式进行发布,所以从网络上取得这些压缩文件后,都先要解压缩之后才能安装使用。具体过程如下: 1)执行“GNOME Terminal ”,把X Windows System 图形用户界面切换至文件操作模式; 2)执行“#cp /root/linux-2.4.18.tar.gz /usr/src ”,把从网络下载的压缩包复制至/usr/src 处; 3)执行“#tar -zxvf linux-2.4.18.tar.gz ”,对压缩包进行解压,解压文件存放在/usr/src/linux-2.4.18目录中。 2.4清除不正确文件及其它从属文件 为了确保源代码目录中没有不正确的文件和其它从属文件,一般需要运行mrproper 命令进行清理,具体操作如下: #cd /usr/src/linux-2.4.18 #make mrproper 如果是使用刚下载的完整的源程序包进行编译,则可以省略mrproper 操作。但若已反复多次使用这些源程序来进行内核编译的,则应要先运行一下这个命令。 收稿日期:2008-12-11 作者简介:胡庆烈(1969-),男,揭阳惠来人,电子助理工程师,主要从事电子技术的教研工作。 ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.5,No.3,January 2009,pp.730-731,735E-mail:kfyj@https://www.360docs.net/doc/3112683308.html, https://www.360docs.net/doc/3112683308.html, Tel:+86-551-56909635690964

内核模块编译总结

Modules在编译的时候会遇到下列问题: 1.首先是要加载内核存放的路径,同时,在编译modules之前要先区内核所在的目录下执 行make modules_prepare。 2.如果模块在编译过程中出现没有定义的变量(编译过程中显示*.*undefined!)警告时, 这样编译出来的ko在最后插入时候将报以下错误(unknown symbol,can’t insert) 3.第二个是不同的ko insmod有个先后的顺序,依赖其它模块的ko最后插入,被依赖的 模块在最前面插入。 4.最后看一下编译一个模块所用的makefile文件: INCLUDE := $(PWD)/ ifneq ($(KERNELRELEASE),) EXTRA_CFLAGS += -I$(INCLUDE) EXTRA_CFLAGS += -march=ba2 obj-m += ec_ap.o ec_ap-objs := ec_ap.o ec_ap_core.o ec_ap_diag.o else PWD := $(shell pwd) KDIR := /home/share/Develop/code/linux/kernel/linux-2.6.29 all: make -C $(KDIR) M=$(PWD) modules .PHONY clean: make -C $(KDIR) M=$(PWD) clean -rm -f *.o *.ko *.mod.c modules.order Module.symvers Endif #KERNELRELEASE是在内核源码的顶层Makefile中定义的一个变量,在第一次读取执行此Makefile 时,#KERNELRELEASE没有被定义,所以make将读取执行else之后的内容。#obj-m :=ec_ap.o表示编译连接后将生成ec_ap.o模块。 #ec_ap-objs := ec_ap.o ec_ap_core.o ec_ap_diag.o表示ec_ap.o 由ec_ap.o与ec_ap_core.o ec_ap_diag.o连接生成。如果有多个依赖文件文件,需要把这一句加上 #PWD := $(shell pwd) 执行shell命令,把当前路径赋值给PWD

相关文档
最新文档