函数的概念微课教学设计
《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
中职数学函数的概念教案

中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。
讲解函数的表示方法,包括函数表格、函数图像和函数表达式。
1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。
通过实例让学生理解函数的性质,并学会如何判断函数的性质。
第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。
通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。
2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。
通过实例让学生理解函数图像的性质,并学会如何分析函数图像。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。
通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。
3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。
通过实例让学生理解二次函数的图像和性质,并学会解二次方程。
第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。
通过实例让学生理解函数极限的性质,并学会计算函数极限。
4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。
通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。
第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。
通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。
5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。
通过实例让学生理解函数微分的应用,并学会计算函数的微分。
第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。
通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。
6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。
中职数学函数的概念教案

中职数学函数的概念教案一、教学目标:1.知识目标:掌握数学函数的概念、函数的定义域、值域、反函数以及函数的图象特性。
2.能力目标:能够正确理解和运用函数的概念和相关定理,解决函数相关的问题。
3.情感目标:培养学生对于数学函数的兴趣,增强他们的自学能力和数学思维能力。
二、教学重难点:1.重点:函数的概念、定义域、值域、反函数以及函数的图象特性。
2.难点:函数的图象特性。
三、教学过程:Step 1:导入新知(10分钟)1.让学生回顾一元二次方程的函数图像,回顾函数的概念。
2.提问:什么是函数?回答学生提出的问题,引导学生思考。
Step 2:概念解释与讲解(15分钟)1.讲解函数的定义:函数是一个有序对集合的规律关系,即每个自变量(x)只对应一个唯一的因变量(y)。
2.讲解函数的记号:y=f(x)表示函数,y是因变量,x是自变量,f(x)是函数名称。
3.通过例题解释函数的概念,让学生理解函数的定义。
Step 3:函数的定义域和值域(15分钟)1.讲解定义域:定义域是自变量可能取值的集合,记作D(f)。
2.讲解值域:值域是因变量可能取值的集合,记作R(f)。
3.通过例题解释定义域和值域的概念,让学生掌握如何确定函数的定义域和值域。
Step 4:反函数(15分钟)1.讲解反函数的概念:如果函数f的定义域和值域分别为D(f)和R(f),则对于任意y∈R(f),都存在唯一的x∈D(f)使得f(x)=y。
此时,由y关于x的关系式y=f(x)确定一个关于y的函数g,称为函数f的反函数。
2.通过例题,让学生理解反函数的概念,掌握如何求反函数。
Step 5:函数的图象特性(20分钟)1.讲解函数图象的基本概念:函数图象是反映函数f(x)经过点(x,f(x))的轨迹。
2.讲解函数图象的性质:单调性、奇偶性、周期性、最值点等。
3.通过例题,让学生掌握函数图象的特性及如何根据函数图象确定函数的性质。
Step 6:练习与巩固(15分钟)1.分发练习题,让学生根据所学知识完成练习。
函数概念的教学设计

函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。
教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。
教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。
那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。
2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。
第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。
2.函数的调用:通过示范调用已定义的函数来实现封装的功能。
第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。
2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。
第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。
第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。
第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。
第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。
教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。
可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。
函数概念教案

函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
《函数的概念》教学设计

3.1函数的概念及其表示(第一课时)一、教学内容解析函数是现代数学中最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具.在高中阶段,函数不仅贯穿数学课程的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础.在初中,函数定义采用“变量说”,高中阶段要建立函数的“对应关系说”,与初中的“变量说”相比,高中用集合语言与对应关系表述函数概念,明确了定义域、值域,引入抽象符号f(x).函数概念的核心是“对应关系”:两个非空数集A、B间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一一个确定的y和它对应.基于以上分析,确定本节课的教学重点和难点.二、重、难点分析1.教学重点:用集合语言与对应关系建立函数概念,培养学生的数学抽象素养.2.教学难点:从不同的问题情境中提炼出函数要素,并由此抽象出函数的概念,理解函数的对应关系f.三、教学目标分析1.目标(1)在“变量说”的基础上,理解函数的“对应关系说”;(2)经历函数概念的抽象过程,培养学生的数学抽象素养;(3)从数学模型构成要素的角度认识具体函数,并通过函数的表示,进一步加深对函数概念的认识.2.目标达成(1)学生从具体实例出发,能在初中“变量说”的基础上,进一步抽象对应关系、定义域与值域等三个要素,构建函数的一般概念;(2)学生能在确定变量变化范围的基础上,通过解析式、图象、表格等形式表示对应关系,理解函数对应关系的本质,体会引入符号f表示对应关系的必要性;(3)学生能在不同实例的比较、分析基础上,归纳共性进而抽象出函数概念,体验用数学的眼光看待事物,发展数学抽象素养.四、学情分析由于初中函数的概念是“变量说”定义,学生对这种定义已经很熟悉,应用起来得心应手,受先入为主思想的影响对“对应关系说”定义引入的必要性认识不足,对函数的“对应关系说”定义接受起来多少有一种排斥心理;学生初中对函数的理解仅停留在一些具体函数的层面上,更确切的说是局限于对函数具体解析式的理解,初中数学学习学生重计算、重例题,对抽象的函数概念的理解有一定困难.不过,学生生活中已经积累了丰富的函数的实例素材,这为函数教学做好了准备.从学生的学习习惯上看,学生初入高中自主学习的目的性、主动性还不够,知识的接受基本在课堂,有的学生甚至还不会听课.所以高中数学教学还肩负着教会学生学习的任务.在课堂教学中采用课前预习、引导发现、学生合作交流的教学方法,通过课前预习,实现课堂教学效益的最大化.五、教学方法归纳法教学六、教学过程设计为达到本节课的教学目标,突出重点,突破难点,计划将教学过程设计为六个阶段:(一)引入1.回顾初中学过的函数及其表示(1)一次函数y=ax+b(a ≠0)(2)二次函数y=ax 2+bx+c(a ≠0)(3)反比例函数y=xk (k ≠0) 提问:这些函数的共性是什么?如何描述?2.初中函数的概念(变量说)一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,则称y 是x 的函数.[师生活动] 教师提出问题,学生自主回答,教师归纳总结.[设计意图] 让学生再次归纳,复习巩固“变量说”.3.思考:正方形的周长l 与边长x 的对应关系是l=4x ,l 是x 的函数吗?若是,它与正比例函数y=4x 相同吗?你能用已有的函数知识判断y=x 与y=x x 2是否相同吗?[师生活动] 教师提出问题,让学生产生疑惑.[设计意图] 说明学习函数概念的“对应关系说”的必要性.(二)函数概念的构建问题1 阅读教材中的实例1,回答下列问题:(1)这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系如何表示?这是一个函数吗?为什么?(2)有人说:“根据对应关系S=350t ,这趟列车加速到350km/h 后运行1h 就前进了350km.”这个说法正确吗?为什么?(3)时间t 的变化范围是什么?(4)能根据现有条件回答0.6h 时对应的距离是多少吗?(5)你认为如何描述才能准确反映问题情境?[师生活动] 教师给出问题,学生先思考并将问题的要点写出,然后小组交流,收集并归纳问题的回答要点,教师点评.[设计意图] 问题(1)是为了让学生回顾初中所学函数的概念用“是否满足定义要求”来回答问题;问题(2)(3)(4)是要激发学生认知冲突,发现其中的不严谨;问题(5)是为了让学生关注到t 的变化范围,并尝试用精确的语言表述.问题2 阅读教材中的实例2,回答下列问题:(1)你认为该怎样确定一个工人的每周所得?(2)一个工人的工资w 是他工作天数d 的函数吗?(3)你以仿照问题1对S 与t 的对应关系的精确表示,给出这个问题中w 与d 的对应关系的精确表示吗?(4)问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?[师生活动] 学生阅读题目后,自主回答.[设计意图] 问题(1)是引导学生使用不同的表示方法;问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,又训练抽象概括能力;问题(4)是使学生进一步关注到对于函数而言,解析式与自变量的变化范围都是确定函数的要素.问题3 阅读教材中的实例3,回答下列问题:(1)I是t的函数吗?为什么?①给定t的值,怎么给?(在0~24小时内给定一个时该t)②通过图形能确定唯一的I与t0对应,怎么找?(在横轴上,过t作垂线交曲线于点(t0,I),I就是与t对应的值.)(2)从所给的图中能回答11月24日8:00的AQI值吗?为什么?(3)11月23日这一天AQI的值的变化范围是什么?(4)这是一个函数,有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 给学生适当的时间阅读思考,教师引导学生一起分析上述问题,并归纳出结果.[设计意图] 问题(1)是让学生认可图象表示一个函数;问题(2)再次强调自变量的取值集合;问题(3)让学生意识到函数值构成集合;问题(4)(5)通过教师讲解,给出对应,关系的描述方法,化解难点. 问题4阅读教材中的实例4,回答下列问题:(1)这个表格中,时间的变化范围是什么?能不能用[2006,2015]表示?恩格尔系数的变化范围是什么?(2)由这个表格,恩格尔系数是不是年份的函数?你能说清楚到底是怎么对应的吗?(3)由这个表格,能得到2005年的恩格尔系数吗?(4)这个函数有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 先让学生思考,然后师生一起归纳结果.[设计意图] 与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生接受.问题5上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗?[师生活动] (1)给学生充分的思考时间,引导学生重新回顾用集合与对应语言刻画函数的过程,小组合作完成上述表格.(2)教师引导学生得出:①都包含两个非空实数集;②都有一个对应关系;③尽管对应关系的表示方法不同,但它们都有如下特征:对于数集A中的任意一个x,按照对应关系,在数集B中都有唯一确定的y和它对应.(3)归纳得出,除解析式、图象、表格外,还有其他表示对应关系的方法,为了表示方便,引入符号f统一表示对应关系,进而给出函数的一般性定义.教师解释函数记号y=f(x),x∈A.[设计意图] 让学生通过归纳四个实例中的函数的共同特征,体会数学抽象过程,概括出用集合对应语言刻画的一般性函数概念.在此过程中,要突破“如何在四个实例基础上让学生进行归纳、概括、抽象函数的概念,并以此培养学生的数学抽象素养”这一难点,突出“在学生初中已有函数的认识基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.(三)函数概念的理解1.函数的概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个函数,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.理解:(1)集合A,B及对应关系f是一个整体,函数是两个集合的元素间的一种对应关系;(2)y=f(x)的意义:把对应关系f作用到x就得到一个y;(3)f可以是一个解析式,也可以是一个图象,还可以是一个表格.从图表中可以比较直观地看出x与y之间的对应关系.[师生活动]师生一起归纳出函数的概念,教师再逐一解读.[设计意图]理解函数的概念,培养学生的归纳整理能力.(四)函数概念的初步应用问题6如果让你用函数的定义重新认识一次函数、二次函数与反比例函数,那么你会怎样表述这些函数?随堂练习:教材63页练习1,练习3[师生活动] 在学生思考后,教师用一次函数与二次函数进行示范,学生用反比例函数进行练习,之后让学生独立完成上述表格,最后让学生完成教材63页练习1,练习3,教师进行点评.[设计意图] 用函数定义重新认识已学函数,加深对函数定义的理解,进一步体会定义域,对应关系与值域是函数的三个要素.问题7试构建一个问题情境,使其中的变量关系可以用解析式y=x(10-x)来描述.随堂练习:教材64页练习4[师生活动] 在学生思考后,教师以例1进行示范,学生完成教材64页练习4.[设计意图] 让学生在完成例1的过程中,进一步体会函数模型应用的广泛性,加深对函数概念的理解. (五)课堂小结教师引导学生回顾本节课的学习内容,并引导学生回答问题:(1)什么是函数?其三要素是什么?(2)对于对应关系f,你有哪些认识?(3)与初中学习过的函数概念相比,你对函数又有什么新的认识》(4)本节课我们是怎样得到函数概念的?结合本节课的学习,你对如何学习数学又有什么体会?[师生活动] 教师出示问题后,先由学生思考,再由全班交流,最后教师再进行总结,要强调如下几点:(1)函数的定义是判断一个对应关系是不是函数的标准;(2)要通过具体例子理解函数的对应关系f 的特征,特别是对于“A 中任意一个数”“B 中都有唯一 确定的数”等关键词含义要认真体会;(3)对应关系f 的表示形式可以是解析式、图象、表格等多种形式,但它们的实质相同.[设计意图] 引导学生从函数概念的内涵、要素的归纳过程,关键词的理解角度进行小结,进一步加深对函数概念的理解.(六)布置作业1.复习巩固设集合A={x|0≤x ≤6},B={y|0≤y ≤2},下列对应关系f:A →B 上从A 到B 的函数的是( )A. f:x →y=21xB.f:x →y=31x C.f:x →y=x D.f:x →y=x+1[设计意图]考查学生对函数概念的认识,巩固函数概念.2.综合运用(1)教材73页习题3.1第8题和第11题;(2)试构建一个问题情境,使其中的变量关系可以用解析式22⎪⎭⎫ ⎝⎛⋅=ππx y 来描述. [设计意图]考查学生运用函数概念刻画实际问题的能力. 七、板书设计[设计意图] 强调函数的概念集合对应说中的关键词八、课后反思本节课是在初中的已有知识的基础上对函数从集合对应说这个角度做了一个诠释,引导学生结合实例归纳总结出函数的概念,并会用函数的集合对应说解释一次函数、二次函数和反比例函数.本节课的成功之处是对4个实例的分析,通过对这4个实例的一步步分析,引导学生进一步认识函数、了解函数、掌握函数;而败笔之处是对对应关系的解读不够清楚,学生仍然带有疑惑,对符号y=f(x)没有一个清晰的认识,这一点需要在今后的课堂中加以重视,多次讲解.。
《函数的概念》教学设计

《函数的概念》教学设计人教版《普通高中课程标准实验教科书数学Ⅰ必修本(A 版)》第一章概述:《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.如何上好一节概念课,概念不是由老师讲出,而是让学生去发现,并归纳概括出概念呢?从而让学生更好的理解概念,熟练的去应用概念解决问题.在本节课的教学中,我以学生作为活动的主体,创设恰当的问题情境,引导学生积极思考,大胆探索,从而去发现问题、提出问题和解决问题.注重培养他们的观察、分析和解决问题的能力,培养他们的逻辑思维能力及抽象概括能力.运用新课标的理念,我从以下几个方面加以说明:教材内容分析、教学目标分析、教法学法分析、教学过程分析、教学评价分析【教材内容分析】1.教材的地位及作用函数的概念是人教版数学必修①第一章第二节的内容,它不仅对前面研究的集合作了巩固和发展,而且是学好后继知识的基础和工具.本节的主要内容就是函数的概念和函数的三个要素,研究了本小节后,为以后研究其他类型的函数打下扎实的基础。
由于函数反映出的数学思想渗透到数学的各个领域并且它在物理﹑化学及生物等其他领域也有广泛的应用.因此,函数概念是中学数学最重要的基本概念之一。
2.学情分析在学生研究用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,且比较惯的用解析式表示函数,但这是对函数很不全面的认识。
由于函数的概念比较抽象,学生思维不成熟、不严密,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
【教学目标分析】根据上述教材内容分析,并结合学生的研究心理和认知结构,我将教学目标分成三部分进行说明:知识与技能:1、从集合与对应的观点动身,加深对函数观点的理解2、理解函数的三要素:定义域、值域和对应法则3、理解函数符号的含义。
过程与方法:在丰富的实例中,通过关键词的强调和引导,使学生发现、概括出它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
初中函数的概念优秀教案

教案:初中函数的概念教学目标:1. 了解函数的概念,理解函数是一种描述变量之间依赖关系的重要数学模型。
2. 掌握函数的定义域、值域的定义,并能求出一些简单函数的定义域和值域。
3. 能够用集合与对应的语言来描述函数,对事物间的联系进行数学化的思考。
教学重点:1. 函数的概念及定义域、值域的定义。
2. 用集合与对应的语言来描述函数。
教学难点:1. 函数概念的理解。
2. 函数定义域、值域的求解。
教学准备:1. 教材或教学PPT。
2. 相关实例和图片。
教学过程:一、导入(5分钟)1. 通过现实生活中的实例,如气温、海拔高度与时间的关系,让学生感受函数的概念。
2. 引导学生思考:这些实例中,变量之间的依赖关系是如何描述的?二、新课讲解(15分钟)1. 讲解函数的概念:函数是一种描述变量之间依赖关系的重要数学模型。
2. 讲解函数的定义域、值域的定义:定义域是函数所有可能的输入值的集合,值域是函数所有可能的输出值的集合。
3. 通过具体例子,讲解如何求解简单函数的定义域和值域。
三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题。
2. 引导学生思考:如何用集合与对应的语言来描述函数?四、案例分析(10分钟)1. 分析现实生活中的实例,如销售问题、物体运动问题等,让学生理解函数在实际问题中的应用。
2. 引导学生思考:如何将实际问题转化为函数问题?五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念、定义域、值域等知识点。
2. 强调函数在实际问题中的应用价值。
六、课后作业(课后自主完成)1. 复习本节课所学的内容,巩固函数的概念、定义域、值域等知识点。
2. 完成教材中的相关练习题。
教学反思:本节课通过现实生活中的实例,引导学生理解函数的概念,掌握函数的定义域、值域的求解方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,通过案例分析,让学生了解函数在实际问题中的应用,提高学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:函数的概念
教材:普通高中课程标准实验教科书数学必修1(人教版)第一章第二节
1.2.1函数的概念
教学目标:
(1)了解构成函数的概念及其要素,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)从大量的实际例子出发抽象概括出函数的概念,在过程中设法给学生创造运动、自然界、经济生活中的情境,启发引导,充分发挥学生的主体作用;
(3)利用函数解决实际问题,渗透数学来源于生活,服务于生活的思想.
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.
教学难点:函数概念及符号“y=f(x)”的含义.
教学手段:多媒体课件辅助教学.
教学过程:
(一)创设情景,揭示课题
1、初中阶段我们都学过哪些函数呢?
一次函数()0y ax b a =+≠
二次函数()20y ax bx c a =++≠
反比例函数()0k y k x
=
≠ 2、复习初中所学函数的概念,强调函数的模型化思想. 函数的概念:(初中)一般地,如果变量y 随着变量x 而变化,并且对于x 取的每一个值,y 都有唯一的值与对应,那么称y 是x 的函数,记作()y f x =.其中x 叫作自变量,y 叫作因变量.
两个关键点:①有两个变量x 、y ,②当x 取一个确定的值时,y 都有唯一确定的值.
初中概念从运动变化的角度刻画了变量之间的依赖关系.那么本节课将从一个新的角度:即用集合和对应的语言来进一步学习函数的概念.
【设计意图】通过回忆初中函数的定义,为探究新课做好铺垫.
(二)抽象概括,形成概念
1、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
课本的三个实例:①炮弹的射高与时间的变化关系问题;②南极臭氧层空洞面积与
时间的变化关系问题;③“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关 系问题.选自运动、自然界、经济生活中用三种不同方法表示的函数,让学生感受到函数 的广泛应用.在学生自学和独立思考的基础上,通过引导学生讨论、分析、归纳以上三个 实例的共性,并尝试用集合语言加以阐述.
【教材三个实例的处理方式】教师示范实例1,学生自主学习实例2,小组共同探究实例3,体现教师示范引领作用和学生自主、合作、探究的教学方式以及用教材教的教学思想.
活动:让学生分小组讨论交流,请小组代表汇报讨论结果.
归纳以上三个实例,可看出其共同点是:
1、都有两个非空的数集A ,B ;
2、对于数集A 中的任意一个数,按照某种对应关系f ,在数集B 中都有唯一确定的数和它对应.
教师进一步引导学生思考:满足以上共同特点的两个非空数集间的对应,我们称之为什么呢?
活动:让学生继续交流讨论,抽象概括出函数的概念.
【设计意图】提升学生分析、概括问题的能力,加强学生的数学抽象素养
1、函数的概念
设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:(),y f x x A =∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}
f x x A ∈叫做函数的值域.
2、概念剖析
1、集合A ,B 是非空的数集;
2、对于集合A 中的任意一个数,按照某种对应关系,在集合B 中都有唯一确定的数和它对应.
[这是判断一个对应关系是否为函数的两个条件,缺一不可]
注:(1)对应关系f 可以是“一对一”或是“多对一”,但不能是“一对多”;
(2)函数的三要素:定义域、对应关系和值域;
(3)函数的表示方法:解析法、图象法和列表法
(三)新知演练,及时反馈
1、以下给出的对应是不是从集合A 到集合B 的一个函数?(不是的打×)
①对应关系f 可以是“一对一”或是“多对一”,但不能是“一对多”
②函数的值域是集合B 的子集.
2、下列图形中,不可能是y=f(x)的图像的是( )
3、下列关系式是否表示y 是x 的函数?若是,写出它的定义域和值域;若不是,说明理由.
(1)21y x =+ (2)1,y x R =∈ (3)21y x =-+[课后思考]设函数**:N N f →满足:对于任意大于1的正整数n ,1)(-=n n f ,则1=n 时函数值可以是_________.(填一个值即可)
【设计意图】帮助学生加深对函数概念的理解,提高学生应用所学知识分析、解决问题的能力.。